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Introduction

Before joining Digital, I led the Secure Data Views (SeaView) project at SRI Interna-
tional, the goal of which is to design a multilevel-secure relational database system that
meets the criteria for Class Al [1]. The project is a three-year joint effort by SRI and
Gemini Computers, Inc., and is sponsored by the U.S. Air Force, Rome Air Develop-
ment Center (RADC). At the time of this writing, the project has completed the first
two years.

At the outset, we adopted a broad perspective of security that went bevond manda-
tory and discretionary access controls to requirements for data consistency (through
database integrity constraints and transactions). This interpretation is in keeping with
common usage of the word security, which Webster’s Dictionary defines as “freedom
from danger: safety,” and recognizes the affinity between security and dependability.
Our approach was motivated by the expressed needs of customers for security measures
that emphasize data integrity in addition to secrecy, and by our belief that integrity
involves data consistency in addition to controlling write access to data.

We have developed security policies for mandatory access control, discretionary ac-
cess control, data consistency, the labeling of new and derived data, sanitization, and
reclassification [2]; a basic strategy for a system design based on existing security kernel
technology, such as that available in GEMSOS [3]; a multilevel relational data model
that extends the standard relational model to support element-level classification [4]:
and a formal security policy model [5]. The remaining tasks on the project include
developing a formal top-level specification and implementation specifications.

The process of designing and modeling a multilevel-secure database system has been
an interesting and challenging experience, filled with surprises and unsuccessful ap-
proaches that have not worked. In this note, [ would like to share some of the lessons
we have learned from the process, which are in summary:

1. Polyinstantiation is an intrinsic problem of multilevel systems.

2. Multilevel relations are inherently views, and may be better defined as such rather
than as real (i.e., base) relations.



3. The access classes associated with data in a multilevel database cannot be assigned
arbitrarily; they must reflect semantic relationships among the data.

4. A model for a multilevel-secure database system should build on a simple security
kernel that enforces mandatory security. Mandatory access controls should not be
part of the database model, although the latter must support labeled data.

5. Security policies for discretionary access control, data consistency, and the labeling
of data must be included in the database model.

Polyinstantiation is an Intrinsic Problem of Multilevel Systems

In a multilevel system, a user may inadvertently create an object whose name conflicts
with an invisible object; i.e., an object at an access class that is not dominated by the
user’s class. Because mandatory security requires that the system behave as though
the invisible object did not exist, neither can the user be notified of the conflict nor
the invisible object be overwritten. Thus, any system that enforces mandatory security
must support the possibility that multiple data objects, differentiated only by their
access class (i.e., bearing names otherwise identical), may exist simultaneously. In the
SeaView project, we called the existence of like-named objects polyinstantiation [4].

In a multilevel database system, polyinstantiation arises whenever two or more rela-
tions with the same name are defined with different classes (polyinstantiated relations),
multiple tuples with the same primary key values but different access classes are inserted
into a relation (polyinstantiated tuples), or multiple values exist for a single attribute
within a tuple, where each value is associated with a different class (polyinstantiated
elements) [4]. One way in which polyinstantiation within a relation can arise is through
updates by subjects for whom some tuples or elements are hidden (hidden elements
appear as null values).

Polyinstantiation affects the system model and design in that a mechanism is needed
for distinguishing and accessing the multiple versions. It also affects the user interface
in that users and application software, including queries and application-dependent in-
tegrity constraints, must be prepared for the possibility of multiple versions, with a need
to specify which one(s) are desired - e.g., object with highest class, most recent object,
all objects. The Bell and LaPadula model {6] supports polyinstantiated objects, namely
files and segments, through its hierarchical directory structure, which ensures that all
objects have a different path name in the hierarchy.

Although polyinstantiation is intrinsic to any kind of multilevel system, it is poten-
tially of greater concern in a database system because it affects the database model.
For example, to support polyinstantiated elements, it is necessary to either remove the
requirement that elements be atomic (thus allowing relations that are not in first nor-
mal form) or represent multiple elements as multiple tuples, thereby eliminating the
constraint that tuples be distinguished by their primary key values alone (thus allowing
relations that are not in second normal form with respect to the primary key attributes).
The SeaView model! follows the latter approach, but both strategies complicate the sys-
tem design and user interface.

Throughout the project, we have sought restrictions that would reduce the effects
of polyinstantiation. One possibility is to require that each real relation be at a single



access class, because this eliminates the possibility of polyinstantiated tuples or ele-
ments within a real relation. While I recommend this approach, 1 also acknowledge
that making real relations single-level does not eliminate all of the problems associated
with polyinstantiation. If multilevel views can be formed, then polyinstantiation may
appear in the derived relations because the process of merging or joining the base re-
lations will generate multiple tuples for what are effectively polyinstantiated tuples or
elements. Indeed, the SeaView representation of polyinstantiated tuples and elements
in real relations is as though the real relations were defined as views over single-level
base relations. Thus, polyinstantiation can be moved from real relations to views, but
it cannot be avoided at the user interface completely.

Multilevel Relations are Inherently Views

If a relation contains data of different access classes, some of those data will be hidden
from subjects whose access class is not high enough. This means that, in effect, different
subjects have different views of the same relation - that is, they see different instances
thereof.

Although multilevel relations are inherently views, the SeaView model supports mul-
tilevel real relations with element-level classification as an abstraction available to users;
that is, users can, if they wish, define multilevel relations as base relations, and all
relations so defined will be treated like real relations in the standard relational model.
Specifically, the application-independent integrity rules of the relational model, namely,
entity integrity and referential integrity, apply to multilevel real relations, application-
dependent integrity rules can be defined on multilevel real relations, and updates to
multilevel real relations are well-defined. In addition, multilevel real relations are con-
strained by a third application-independent integrity rule called polyinstantiation in-
tegrity, which specifies consistency for polyinstantiated tuples and elements.

The different views of a multilevel real relation are modeled by a function that returns
the instance of a relation visible at a given access class, and by a property that shows
how the different instances must be related to each other. So that the database may
appear consistent to each user, entity integrity and referential integrity are extended in
the SeaView model to guarantee consistency at each access class. V

The task of designing and modeling a database system that supports multilevel rela-
tions as real relations, rather than simply as views, was much harder than expected. We
had not, for example, anticipated either the need to extend the application-independent
integrity rules of the relational model or the problems that arise with polyinstantiated
tuples and elements. Polyinstantiation requires not only an additional integrity rule,
hut also has potentially serious consequences for applications and users; as noted ear-
lier, both must be prepared to deal with the possibility of encountering multiple versious
of the same data during retrieval or update operations. Updating data associated with
polyinstantiated elements may be particularly troublesome because the relation is not in
second normal form when elements associated with a given primary key are represented
by several tuples at the user interface. Thus, the user or application may be confused
about which tuple or tuples to update in order to change a particular element. (In
the SeaView design, only one has to be changed because multilevel real relations are
decomposed into relations that are in normal form, in which the redundancy is handled
automatically.)



Another problem associated with updating multilevel real relations is classifying the
data entered into a relation. The SeaView model supports the concept of classification
constraints, which are user-defined integrity rules that constrain the classes of data
elements. Classification constraints provide a means of rule-base classification that
allows an element’s access class to be determined by a subject, by the access class of
a subject, or by the type, context, or content of the data. However, the rules can be
applied only by a subject who is trusted to operate over a range of access classes; if
the subject is not trusted, then the data must be assigned the subject’s class. If real
relations are single-level, classification rules are not needed, although they might still
be useful as a means of supporting updates of multilevel views by trusted subjects.

Another potential problem with multilevel real relations is that they can complicate
the specification of meaningful application-specific integrity constraints on relations.
This is because the evaluation and enforcement of an integrity constraint on a relation
must take place at the access class of the subject attempting an update operation on
the relation. Therefore, data that are used to evaluate a constraint for one subject may
be hidden from another subject, and the effect of this hidden data must be accounted
for in the constraint. In addition, the constraint must take into account the possibility
of polyinstantiated data within a relation. Unless the effects of hidden and polyin-
stantiated data are taken into account in the rules, the database may not behave as
anticipated [7]. Note that these effects must be accounted for with respect to integrity
rules that constrain the classes of elements (i.e., classification constraints) as well as
to integrity rules that constrain their values (called value constraints in the SeaView
model). Making real relations single-level partially addresses the problem, though it
does not solve it completely because real-world constraints that relate multilevel data
must still be represented.

On the basis of these consequences, multilevel relations may be better treated as
views over single-level relations rather than as real relations. Then each real relation
is single level and, therefore, has a single instance at any given time, the application-
independent integrity rules of the standard relational model require no extensions, and
polyinstantiation integrity is unnecessary. In addition, application-specific constraints
should be easier to formulate.

The lack of support for multilevel real relations need not limit a user’s ability to
integrate and process multilevel data as long as the system supports derived multilevel
relations that are obtained through views. Moreover, if a view is updatable, the users
can update it as though it were a real relation.

An argument in favor of supporting multilevel real relations is that it frees the user
from the need to create many relations when the data are potentially associated with
many different access classes (e.g., compartmented data). However, users can be given
database design tools that automatically decompose a schema for a multilevel relation
into a set of single-level relations.

The L.P. Sharp model [8] classifies each real relation at a single level. However, this
is strictly an access control model, and lacks support for consistency through integrity
rules and multilevel views.

Although I favor treating all multilevel relations as views rather than as real relations
plus views, it is difficult to assess the two approaches in the absence of any multilevel
database system that supports either. Because the SeaView model supports both multi-
level real relations, which can be single-level in the degenerate case, and multilevel views,



implementation of a prototype system based on the model would provide a testbed on
which both approaches could be evaluated to determine how multilevel real relations
affect the system and the user interface.

Access Classes Must Reflect Semantic Relationships

If a database system supports multilevel real relations with element-level classification,
the classes of the elements must be constrained to reflect semantic relationships. This
is necessary for several reasons: to ensure that the integrity rules of the relational
model will be satisfied at each access class - that is, by all relation instances; to ensure
that the data path needed to access an element is also accessible; and to simplify the
implementation. Some of the constraints we found necessary are the following:

o The classes of the elements comprising the primary key of a tuple must be the
same — that is, each primary key must be of a single class (for entity integrity, so
that a primary key will not appear to have null elements at a given access class).

o The class of the primary key of a tuple must be dominated by all other element
classes within the tuple (for entity integrity and to ensure that the path to an
element will be accessible).

¢ Elements that refer to other tuples must be assigned a class that dominates the key
of the target tuple - i.e., all references must be downward (for referential integrity,
so that there are no dangling references at a given access class).

e The class of a relation name must be dominated by the classes of all elements
within the relation (to ensure that the path to the element will be accessible).

¢ All schema data for a relation (e.g., names and types of attributes) must be at
the level of the relation name (for implementation reasons, so that (1) there will
not be any polyinstantiated attributes, and (2) the entire record structure will be
visible at the level of the relation name). This is not a limiting factor because
higher-level attributes can be put into a separate relation, which is then joined to
the lower-level relation.

¢ The class of a view name must dominate the classes of the relation names in the
view definition (so the view can be evaluated).

In addition, if data are semantically related - e.g., as expressed by integrity con-
straints - then the classes assigned to the data (and to the constraints themselves) must
reflect these relationships if inference problems are to be avoided [9, 10]. Matthew Mor-
genstern and | have examined ways of using constraints to determine what classes to
assign to data in order to avoid such inference problems [11, 12].

A Database Security Model Should Build on a Simple Manda-
tory Kernel Model

Database systems are complex, consisting of hundreds of thousands of lines of code. To
build a secure database system that meets the criteria for Class Al, those portions of



the system that support mandatory security must be confined to a small security kernel
that can be formally specified, verified, and then analyzed for covert channels. Because
less assurance is needed for discretionary security and data consistency, these pélicies
can be handled by the trusted database system, which need not be developed quite as
rigorously.

Early in the project, we considered the possibility of designing a special database
kernel whose protected objects would be the individual elements in a relation (since
classification is at the level of elements). However, this approach seemed overly com-
plex, owing mainly to two problems: merging together the elements of a relation and
polyinstantiation. This led us to consider a much simpler approach, namely building
the database system on top of a general-purpose operating system kernel whose pro-
tected objects are single-level files and segments. We did not consider the possibility
of a database kernel whose protected objects are multilevel real relations, because this
would push the database problems associated with multilevel relations, including polyin-
stantiation, in the kernel, thereby creating a complex kernel.

We were led to the more general OS kernel approach by the inherent view nature
of multilevel relations, as discussed earlier. We saw how we could define these views
as relational expressions over a set of single-level base relations, each of which could be
stored in a single-level object managed by the kernel. Thus, each multilevel relation
would be decomposed into single-level relations and the instance of a relation at a
given class would be restored by evaluating a relational formula over these underlying
relations [4]. (Because SeaView provides the abstraction of multilevel real relations, the
decomposition is transparent to the users; however, if all multilevel relations are treated
as views, then the decomposition could be made available to users as a design tool as
discussed earlier.) The database system would be responsible for labeling the elements
in a derived view; however, it need not be relied upon to enforce mandatory security
because the kernel would not make any data accessible that were not authorized to be
retrieved by the requesting subject. Thus, the labels managed by the database system
are for the user’s convenience rather than for enforcement of mandatory security.

The SeaView security model reflects this design strategy and is formulated in two
layers: an inner layer called the MAC model, which enforces a mandatory access control
policy, and and an outer layer called the TCB model, which represents the trusted
computing base. The TCB model defines the database system security perimeter and
formalizes the relationship between the database system and the security kernel.

The MAC model represents a general-purpose security kernel that meets the criteria
for Class Al with respect to mandatory security. It includes the concepts of subjects,
objects, and current access set from the Bell and LaPadula model[6], but contains no
components that are specifically related to database systems.

The TCB model defines the discretionary access control policy and policies relating to
data consistency and the labeling of new and derived data. It specifies the components of
a multilevel-secure relational database system, including multilevel relations as defined
by the multilevel relational data model, views, application-dependent and independent
integrity constraints (both value constraints and classification constraints), transactions,
and discretionary authorizations.

The TCB model is mapped onto the MAC model. Specifically, all the information of
the TCB model is to be stored in objects managed by the MAC model, and all operations
of the TCB model are decomposed into operations of the MAC model. Thus, the TCB



interface is constrained by the kernel. The layering allows one to obtain Al assurance
for the system as a whole without having to apply the Al criteria for mandatory security
to the TCB layer {13]. ‘

Security Must Be Part of the Database Model

For many years, the security community has been arguing that security must be built
into a system at the outset in order to achieve the desired result. At the same time,
the community has been developing security models that are strictly access control
models, disregarding, for example, data consistency requirements. (See also Clark and
Wilson [14].)

Our experience on the SeaView project has shown that access controls and consis-
tency must be considered within the framework of a complete database model. As noted
earlier, database integrity constraints are affected by mandatory security, and these ef-
fects must be incorporated into the model. The modeling of application-dependent
constraints also had the side benefit of giving us a means of supporting classification
constraints for labeling new data, and of supporting a major part of the SeaView policy
for sanitization and reclassification since sanitization functions and time-dependent clas-
sification rules can be expressed as classification constraints. We also found that many
of the features one typically finds in a database model are security-relevant; for example,
relational expressions are security-relevant in that they are used to define views, which
are among the objects protected by discretionary access controls, to express application-
dependent constraints, and to specify the requirements for labeling derived data. -

The SeaView security model is close to being a complete database model for a mul-
tilevel relational database system, but falls short in that it lacks the five basic operators
of the relational model. While the SeaView model includes abstract components for de-
riving multilevel relations by means of relational expressions and specifies the properties
that must be satisfied by these components, it does not specify the latter in terms of
any specific relational operators. Nor does it specify how multilevel relations are decom-
posed into single-level standard relations. Thus, the security model is somewhat more
abstract than the multilevel relational data model developed eatlier in the project [4].
The security model could be further abstracted to apply to systems other than relational
ones, although doing so might make it less useful as a relational database model.

The SeaView model is considerably more complex than the standard relational
model.  Some of this complexity stems from the inclusion of application-dependent
integrity rules and components for discretionary security. Indeed, about a third of the
properties relate to discretionary security. However, much of the complexity results
{rom supporting multilevel relations as real relations. As noted earlier, making all real
relations single-level would simplify the model.

Conclusions

Multilevel relations are more than just standard relations with labels. They result in hid-
den and polyinstantiated data, which in turn affect integrity constraints, query process-
ing, and database updates. Consequently, mandatery security requirements for database
systems cannot and should not be considered in isclation of other requirements, espe-
cially those for data consistency. All requirements must be considered together, within
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the framework of a single database model. In addition, prototype systems should be built
so that users can experiment with multilevel relations and thereby determine whether
the latter should be supported as real relations or as views (my recommendation); and
so as to ascertain what types of tools are needed to help users design and manipulate
multilevel databases.
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