INTEGRITY IN TRUSTED DATABASE SYSTEMS

Roger R. Schell
Gemini Computers, Inc.
P.O. Box 222417
Carmel, CA 93922

Dorothy E. Denning
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

INTRODUCTION

A trusted computer system is designed to be ‘secure’
with respect to some well-defined security policy. There are
two major classes of information security policy: (1) secrecy
policies, which govern the disclosure of information and (2)
integrity policies, which govern its modification. Although
much of the literature on computer security emphasizes
secrecy, for many systems integrity is of equal or greater
importance. The DoD Trusted Computer System Evaluation
Criteria! is careful to encompass (although not require)
security policies that include integrity. A trusted computer
system is designed to protect ‘sensitive information,” which is
defined in the Criteria as information that must be protected
from “‘unauthorized disclosure, alteration, loss or
destruction.”

In databases, the term ‘integrity’ is interpreted broadly,
as illustrated by the following definition taken from Date?:

“The term integrity is used in database
contexts with the meaning of accuracy,
correctness, or validity. The problem of
integrity is the problem of ensuring that the
data in the database is accurate — that is, the
problem of guarding the database against
invalid updates. Invalid updates may be
caused by errors in data entry, by mistakes on
the part of the operator or the application
programmer, by system failures, even by
deliberate falsification. The last of these,
however is not so much a matter of integrity as
it is of security ... The term ‘integrity’ is also
very commonly used to refer just to the special
situation ... in which it is possible that two
concurrently executing transactions, each
correct in itself, may interfere with each other
in such a manner as to produce incorrect
results.”

In this paper, we address all aspects of integrity in that all
are essential to the operation of secure database systems.

Classes of Integrity Policies

There are two distinguishable aspects of integrity
policies: whether a given modification of information is
authorized, and whether the modification results in
information that is in some sense consistent or correct.
Authorization is subdivided into two categories: (1)

mandalory integrity authorization, which is based on
integrity classifications, reflecting importance of data, and
clearances, reflecting user trustworthiness, and (2)
discretionary integrity authorization, which is based on
users’ needs to modify information. Both mandatory and
discretionary integrity controls can protect data from
malicious tampering and destruction as well as from
accidental modification and destruction through operator
errors (e.g., an operator may inadvertently attempt to delete
the wrong relation) or faulty software.

Consistency is subdivided into three categories: (1)
database integrity rules, which define correct states of a
database in terms of relationships among the data, (2)
recovery management, which returns the database to a
consistent state after failure, and (8) concurrency controls,
which ensure that concurrent transactions do not interfere,
thereby creating inconsistent states of the database.

We shall discuss each aspect of integrity in more depth
after first discussing assurance for these different aspects.

Assurance

The notion of a security perimeter is essential to
obtaining assurance that a security policy is actually enforced
by the Trusted Computing Base (TCB) of a system. As
stated in the Criteria “the bounds of the TCB equate to the
‘security perimeter’ "’ and “includes all those portions ...
essential to the support of the policy.” That is, the security
perimeter is with respect to the security policy being
enforced. Thus, the two categories of policy, viz., mandatory
and discretionary, may well have two distinct security
perimeters. This, of course, only applies to systems of Class
B1 or above, because Class C systems do not support a
mandatory policy.

The mandatory policy, for both secrecy and integrity,
can be enforced with a very high degree of assurance against
concerted attacks, including Trojan horses. As the evaluation
classes move from Bl to B2, B3, and finally Al, the primary
distinctions relate to the use of improved architecture,
specification, verification, and testing to increase the
assurance in the mandatory access controls enforced by the
TCB. It is expected that the higher evaluation classes will be

. used to protect against users with a wider range of

authorizations.

In contrast, because of their richer policies,
discretionary access controls have inherent limitations
(known as the ‘safety problem'a) and more complex
mechanisms than mandatory controls. This is especially true
for database systems that protect data at the granularity of
individual elements and have powerful access mechanisms,
such as views, which rely on much of the database system for
their support. Because of the inherent as well as
technological limitations, little meaningful assurance of
discretionary controls can be obtained beyond that of Class
C2; in particular, one cannot obtain high assurance against
Trojan horses. Fortunately, this matches well the real-world
need for discretionary controls for need-to-know and
corresponding integrity enforcement. Moreover, because
discretionary controls operate within the confines of
mandatory controls, the damage that can result from their
failure is limited.

Because of the sharp distinction in the possible
assurance for mandatory versus discretionary controls in a
database system, the following discussion presumes that there
may be two distinct security perimeters for systems at Class
B2 and above: an inner perimeter (the ‘reference monitor’)
for mandatory controls, and an outer perimeter (or
perimeters) for discretionary and consistency controls. The
maximum assurance that seems required, and the maximum
practical, for the portion of the TCB outside the mandatory
perimeter appears to be that prescribed for Class C2.

As discussed later, the assurance requirements for Class
B2 and above, in particular the need to control covert
channels, affects the meaning of consistency and the
functionality of other aspects of a database system. However,
having separate security perimeters makes it possible to more
meaningfully address these problems.

AUTHORIZATION INTEGRITY

Mandatory Integrity Authorization

Mandatory security policies are particularly important
because they describe global and persistent properties that
are required for authorizations in a secure system. As
defined in the Criterial, mandatory policies employ a reliable
label to reflect the degree of protection required for
information and to reflect the authorization of a subject to
access information. When considering integrity, these labels
reflect what the Criteria refers to as the ‘sensitivity
designation of the information,’ or what is commonly termed
the integrity access class, or simply integrity class, of the
information objects. There is a comparable label that reflects
an individual's ‘authorization for the information;’ this label
is assigned to corresponding subjects. The primary systems
of interest are those that can be represented by a Formal
Security Policy Model, as defined in the Criteria. For such a
system it is shown that if the initial state of the system is
secure with respect to the policy, then all future states of the
system will be secure.

For mandatory secrecy policies, the secrecy access
classes must form a lattice. This requirement may be
appropriate for mandatory integrity policies as well, although
nonlattice mandatory integrity policies have been proposed?.

For lattice-based policies, the integrity classes could
correspond to integrity levels (analogous to secrecy levels
such as SECRET), category sets of disjoint integrity
compartments (analogous to secrecy compartments such as
CRYPTO), or both.

Six mandatory security policies have been variously
proposed to deal with integrity. In the context of the above
concept of mandatory policy, each of these is examined as a
possible integrity policy for databases:

Strict integrity

Low-water mark

Ring policy

Multilevel security with no write-up
Program integrity

Domains and types

Bl o

The first three policies were introduced by Biba® as
possible policies for multilevel-secure systems.

Strict Integrity Policy. This policy is an exact dual
of multilevel secrecy as defined in the Bell and LaPadula
model®. Each subject and object is assigned a fixed integrity
class taken from the lattice of integrity classes, and strict
integrity is preserved by prohibiting a subject from reading
down or writing up in integrity.

There are two distinct considerations in assigning
integrity classes to objects and subjects. First, the integrity
class of the object to be protected from unauthorized
modification must reflect the sensitivity of the information,
viz., the potential damage that could result. Second, the
integrity class of the subject must reflect its trustworthiness
for making modifications. However, it is essential to note
that the modifications by a subject are effected by the
programs it executes and the data that control the execution
of these programs. Thus, if a high integrity class is assigned
to objects (files or segments) containing programs and
program data, this assignment must reflect a determination
that the resulting execution will produce only acceptable
modificatiops.

The strict integrity model was initially introduced to
deal with the threat of deliberate falsification or
contamination of very sensitive information. One such
application in which high integrity is of great importance is
the preparation of targeting data that are used to control
ballistic missiles. The practical threat is not so much that an
unauthorized individual will be allowed to use such a system,
but rather that a program and for data maliciously prepared
will be incorporated into s Trojan horse to retarget the
weapons towards inconsequential or even friendly targets.
This kind of Trojan horse could be implanted in what has
become popularly known as a ‘virus,” and strict integrity has
been recognized as one of the few effective defenses.

There is a growing body of experience with the
implementation and use of strict integrity in highly trusted
operating systems. For example, in the Honeywell SCOMP,
the first Class Al system on the Evaluated Products List,
strict integrity is included as part of the protection for
segments. This mechanism is used for the protection for

security related information such as audit data. In addition,
the Gemini GEMSOS’ has incorporated strict integrity as
part of the sensitivity label for all subjects, objects, and
devices; this approach has been found useful when designing
the integrity protection both of sensitive application
information and of system information used to support the
security controls themselves. Although there has been little
comparable experience in database systems, the LP. Sharp

multilevel database model® incorporates strict integrity along
with multilevel secrecy.

Low-Water Mark Policy. This policy is analogous
to the high-water mark security policy of the ADEPT-50
system?®. A subject’s integrity class is dynamic and decreases
as the subject reads data of lower integrity. If the integrity
classes of objects are static (as in ‘the strict integrity policy), a
subject will be unable to write into an object with a higher
integrity class than it has read; if the object classes are
dynamic, then their integrity classes are possibly lowered if
the subject writes into the object. As summarized by Bibas,
“This policy, in practice, has rather disagreeable behavior. .
.. In a sense, a subject can sabotage (inadvertently) its own
processing by making objects necessary for its function
inaccessible (for modification). The problem is serious since
there is no recovery short of reinitializing the subject.” To
the best of our knowledge, this policy has not been included
In any system design.

Ring Policy. By prohibiting read-downs in integrity
class, it seems the strict integrity policy and the low-water
mark policy could prove to be quite restrictive for most
systems, especially database systems. Because database
processes must have both read and write access to user data,
system tables, index files, logs, and other structures to answer
queries and update the database, it would appear that the
only workable assignment of integrity classes is system low.
Because of the restrictiveness of the two preceding policies,
Biba also introduced a more flexible policy called the ring
policy. Each subject and object has a fixed integrity class,
and a subject is only allowed to write into objects whose
integrity classes are dominated by the subject’s class. No
restrictions are placed on reading, so a subject can write high
integrity data even if it has read data of a lower integrity.
Unfortunately, the relaxation of this policy makes the
integrity class of the subject essentially meaningless, because
there are no restrictions on even what programs the subject
can execute. Thus, what would appear to be a high integrity
subject can, without restriction, be executing erroneous or
malicious programs that destroy the high integrity
information to which the subject has access. In reality, this
policy fails to meet the requirements for a mandatory policy.
Moreover, there is no real experience using this policy as a
basis for mandatory Integrity.

Multilevel Security with No Write-Up. Extending
the Bell and LaPadula model to prohibit ‘writing-up’ in
secrecy class provides a limited form of mandatory integrity.
In particular, this extended policy model addresses the ‘write-
up’ problem of the mandatory secrecy policy, which allows a
subject to write up in secrecy class. The extended model
would prevent a SECRET subject, for example, from
inserting data labeled as TOP-SECRET into a multilevel
relation or from overwriting a TOP-SECRET element (which

it cannot observe). This approach appears to protect
subjects from lower-level subjects. Closer examination makes
it clear that this approach is a case of the ring policy just
addressed in which the secrecy labels, such as SECRET, are
also used as the integrity labels; the difference is thus only
syntactic with no difference in the results of the policy. Of
course, this policy also has the same weaknesses as the ring
policy.

Program Integrity Policy. The restrictions of the
strict integrity policy remain a concern, $o it seems important
to try to identify a more flexible but useful policy. The real
world supports some notion of integrity class through job
levels and chain of command. However, the flows between
different levels (usually adjacent) are bidirectional, so
information flows both up and down in integrity class.
Moreover, the trust placed on the information provided by
any individual is often more a function of the individual than
position. The key to the effective protection in this context
is that the individuals are trusted to make only the desired
modifications of high integrity information, even though they
have been exposed to information of lower integrity classes.

This same concept can be applied to software by
imposing more stringent requirements on assigning an object
containing executable code a high integrity class. It seems
unreasonable to assume that once a program has observed
data of low integrity that it is incapable of writing data of
higher integrity, or because data are entered by a user of low
integrity into a database, that indexes and other structures
on the database must be treated of low integrity also - there
is little relationship between the quality of the data that go
into a database and the quality of the system structures that
represent it.

This problem has been approached by distinguishing
read access from execute access (which are treated identically
in the preceding policies). Based on this distinction, Shirley
and Schell'® have defined a program integrity policy in which
a subject is only allowed to write into objects of less than or
equal integrity class and only allowed to execute objects of
greater than or equal integrity. As with the ring policy, there
are no restrictions on reading. This policy appears to be
better suited for databases because the database processes
could operate with a high integrity class, where they would
be able to read and update the entire database. Users and
application processes would be assigned integrity classes
reflecting their ‘trustworthiness’. Furthermore, Shirley has
shown not only that this is a mandatory policy but also that
it is the identical policy implemented by the hardware
protection ring mechanism of Multics and several other
systems (no connection with Biba’s use of the term ‘ring’).
Thus there is a substantial body of experience with this
policy, and it has indeed been shown to be quite useful in
operating systems. There is no comparable body of direct
experience with database systems.

An even closer look at the program integrity policy
reveals the somewhat unexpected result that it is just a
special case of the strict integrity policy. To understand this,
it should be recalled that in the Bell and LaPadula model
there is the notion of a ‘trusted subject.” When interpreted
for integrity, as in the case of the strict integrity policy, a
trusted subject is trusted exactly to be able to read low

integrity information without damaging the integrity of high
integrity data. This notion of trusted subject is too coarse
for the problem at hand because a trusted subject can read
any integrity class. However, the notion has been refined in
the Gemini GEMSOS? to identify a ‘multilevel subject’ that
has both a minimum and maximum class. Now, if the
subject in each protection ring is regarded as multileve] (with
respect to integrity classes) with a maximum integrity equal
to the ring of execution and a minimum integrity equal to the
least trusted ring, the strict integrity policy in this case
becomes the program integrity policy if the multilevel subject
is trusted not to execute any program with a lower integrity
class than its maximum.

Domains and Types. Domains and types have been
proposed as a means to specify a mandatory integrity policy,
as illustrated by the Honeywell SAT system?*. Here, each
object is typed, and each domain has 2 list of types that it
can observe and modify plus a list of domains that it can call.
Although this policy model is similar to discretionary policies
based on the access matrix model, the set of types, domains,
and rights cannot be altered. Because it is a relatively new
approach, its properties are not yet completely clear. So far,
there is no experience applying this type of policy to a
database system, although Honeywell is working on it.

Discretionary Integrity Authorization

Discretionary integrity authorization policies control
access to data at the user or user group level. The usual
approach to controlling access in database systems includes
authorization lists, which specify what operations a user (or
group) is authorized to perform on some set of data. For
integrity, the operations of interest include update, insert,
and delete.

The authorization lists of database systems are included
in the data model at different layers of abstraction. At the
lowest layer, they are associated with files, records, or
elements. At the highest layer, they are associated with
views or subschema on the data. The high-level approach
has the advantage of specifying a context for access. The
context -- i.e., exact set of elements that fall within the target
of a view - is dynamic, changing as the underlying database
is updated. Because it is easier and more natural for users,
the high-level approach has proven to be far more usefu] than
the low-level approach, and is embodied in many systems
including SQL/DS, DB2, ORACLE, and INGRES (though in
a somewhat different form). '

The discretionary security policy contained in the
Trusted Computer System Evaluation Criteria! is
appropriate for database systems as long as the concept of
object is interpreted to mean views (actually view
specifications or subschema) rather than just physical
elements, records, or files. Note that this does not mean that
discretionary controls cannot be associated with individual
records and elements: such controls are easily defined as
views on the database.

The Criteria specify that discretionary controls are to
be applied to ‘cach named object.” There is no requirement
that the named objects be disjoint in memory, and in some
operating systems a file may be accessed via different path

names through different directories with different
discretionary authorizations placed on the different names.
Similarly, applying discretionary controls to views is
consistent with the Criteria because views are just a way of
naming objects. Also, there is no requirement that the
‘named objects’ of the discretionary policy be the same
objects or even at the same layer of abstraction as the
‘storage objects’ of the mandatory policy.

CONSISTENCY INTEGRITY

Database Integrity Rules

Database integrity rules protect a database from data
entry errors as well as from other errors made by the
operator or by software. They define the correct states of
the database and may specify actions to take if an update
would cause the database to enter an incorrect state. They
are similar to exception conditions built into programs,
except that the conditions are represented in the database (as
metadata) rather than in the application programs so that
they can be automatically applied to all transactions
updating the database.

In a relational system, there are two common types of
database integrity rules: domain integrity rules and
relational integrity rules. Domain integrity rules are
context-free rules specifying the allowable set of valyes (i.e.,
domain) for an attribute, e.g., DRIVER.AGE is greater than
16 but less than 100. Relational integrity rules are context-
sensitive rules specifying more global constraints on
individual tuples or sets of related tuples, e.g., that every
tuple in a PROGRAMMER relation has a corresponding
tuple in an EMPLOYEE relation (this is a form of ‘referential
integrity’). Many relational systems, e.g., INGRES, provide
mechanisms whereby users can define rather complex
integrity rules.

Integrity rules play a vital part in ensuring the integrity
of a database. Indeed, they are a very important part of
access controls because most systems are vulnerable to errors
as well as to sabotage. It is probably fair to say that a
database system would not be regarded as a useful trusted
system if it does not support integrity rules.

There are, however, intrinsic problems associated with
integrity rules in a multilevel system that is rated at the
evaluation level of B2 or higher, arising from the requirement
to protect against covert channels. Because the
implementation of integrity rules is outside the mandatory
security perimeter, the database subjects that enforce the
integrity rules must be denied access to data that is classified
higher than the subject level, Thus, if the subjects are
processing a transaction on behalf of a user, the only data
visible to those subjects will be data that is classified at a
level dominated by the user’s level. If the database system
were given access to data not dominated by the user’s level,
then a Trojan Horse in the database system could leak the
unauthorized data -- that is, unless the database system (or a
large portion thereof) were part of the mandatory security
perimeter. Because the latter is neither feasible nor
desirable, in multilevel systems rated at the level of B2 or
higher, we are forced to consider integrity constraints as
constraints on the subset of the database dominated by the
user's clearance.

To see how this revised interpretation of integrity
constraints affects the enforcement of integrity rules, consider
the relational model, which requires each tuple in a relation
to have a unique primary key. Suppose the tuples in a
multileve] relation are classified SECRET or TOP-SECRET,
and suppose the relation contains a TOP-SECRET tuple
with primary key FOO. This tuple will be invisible to
subjects operating on behalf of SECRET users. Thus, if a
SECRET user attempts to insert a new tuple, also with key
FOO, the system will accept the tuple. Because the access
class becomes the only means of distinguishing the tuples, the
class must then be considered to be part of the primary key.
We refer to the coexistence of multiple tuples with the same
primary key except for access class as polyinstantiated

tuples!!.

Problems also arise with respect to referential integrity.
For example, suppose a TOP-SECRET user creates a TOP-
SECRET tuple in a relation T(ID, A), which is associated
with a SECRET tuple in a relation S(ID, B} through the join
attribute ID. The relation S represents the entities named by
the primary key ID. If s SECRET user deletes the
referenced tuple in S, referential integrity will be violated.
But because the SECRET user, as well as all subjects that
run on that user’s behalf, cannot know of the existence of the
TOP-SECRET tuple, this cannot be avoided.

As a third example of the problems that arise from
invisible data, consider a relation that contains the weights of
items on board various flights. Suppose there is maximum
weight restriction of 5000 for any given flight and that some
of the items on board a flight are classified SECRET while
others are TOP-SECRET. If the integrity constraint is
specified simply as an upper bound of 5000 for the total of all
weights for a flight, a flight could be overloaded because the
TOP-SECRET weights would be invisible when the
constraint is applied at the SECRET level to determine
whether an additional SECRET item can be placed on board.
A possible solution is to have separate constraints for
SECRET and TOP-SECRET weights.

Thus, in B2 or higher systems, the consistency defined
by integrity constraints must be interpreted with respect to
the secrecy class of the subject applying the constraint.
However, whether there should be some notion of inter-level
consistency, or how this might be specified, is unclear. It is
also unclear how triggers fit into this notion since a trigger
activated by an operation on behalf of a user having one
secrecy class cannot read up or write down in secrecy class.
Finally, we note that if the database is polyinstantiated at
the tuple or element level, problems arise in applying the
integrity constraints because more than one tuple or element
with different values may be selected by the constraint, each
with different outcomes. Thus, the integrity rules must
specify which values to select among polyinstantiated values.

In a multilevel system, the concept of integrity
constraints should also be extended to include constraints on
the classifications assigned to data. For relational systems,
we have found that several properties should hold:

¢ The complete definition (schema) for a relation,
including the names of all attributes, should have
a single access class that is dominated by the

access classes of all data that is to go into the
relation. Integrity rules that constrain the data
going into the relation should also be assigned this
access class.

¢ The attributes representing the primary key in a
relation should be uniformly classified — that is,
within any given tuple, the elements forming the
primary key should have the same access class.

® The classification of the primary key should be
dominated by the classifications of all other
elements within a tuple.

In that integrity rules enforce constraints on the
relationships among data in the database, they can be
associated with inference problems. For example, if an
integrity constraint states that C = A + B for attributes A,
B, and C, where A and B are SECRET but C is TOP-
SECRET, then a SECRET user with access to A, B, and the
integrity constraint can infer C. In this particular case, the
best strategy for dealing with the problem may be to use the
integrity constraint to force classifications on the data to
prevent the inference - e.g., classify A or B, or both, as
TOP-SECRET. In cases where the rule of inference is
complex and unknown, it may be more appropriate to
classify the integrity constraint (which can be viewed as an
inference rule).

In summary, although a multilevel secure database
system should provide database integrity rules, the
mandatory secrecy policy affects the interpretation and
application of integrity constraints.

Recovery Management

Another vital aspeet of database integrity is protecting
the database from operator or software errors, including
system crashes. The accepted method of dealing with such
errors and faults is based on the concept of a transaetion,
which is a sequence of operations that behaves atomically -
that is, it either successfully completes (commits) all updates
or else it has no effect on the state of the database (rolls
back). The overall integrity policy for trusted systems should
include the concept of transactions with commit and roll-
back.

Multilevel updates raise some difficult issues regarding
transaction management. For example, if a trusted user can
simultaneously insert or update multilevel data (within the
user’s range of trust}, it may be desirable to decompose these
updates into single-level updates represented as single-level
transactions and performed by single-level database subjects.
However, the unit itself must also be treated as a transaction,
so the concept of a multilevel transaction with single-level
nested transactions appears to be very useful. The problem
is rolling back the low portions of the transaction if the high
portions fail.

Assuming recovery management is outside of the
mandatory security perimeter, it is not clear how the
database recovery log should be managed and processed in
systems that are rated at the level of B2 or higher. However,
some of the techniques used for general-purpose operating
systems to ensure the consistency of file systems during

backup and recovery may be useful.

Concurrency Controls

An important aspect of database integrity is ensuring
that concurrent transactions do not interfere with each other,
giving rise to inconsistent states of the database.
Sertalizability, which states that any transaction schedule
must be equivalent to one in which the transactions execute
serially, has been shown to be a necessary and sufficient
condition for global consistency!?, although there are systems
that enforce somewhat weaker policies. Some notion of
global consistency, however, is an essential aspect of the
overall integrity policy for trusted database Inanagement
systems. The concurrency policy should also address the
problems of deadlock, where multiple transactions cannot
proceed because they are waiting on each other, and livelock,
where a transaction never exits from a wait state, both of
which create denial-of-service problems.

In B2 or higher systems, the concurrency mechanisms
must use techniques other than simple locks because read-
write locks on multilevel data provide a signalling channel.
Event counters!® are not vulnerable to covert channels, but
require that higher-level transactions roll back when a lower-
level one causes an update that could interfere with its
behavior.

CONCLUSIONS

We do not know enough about the application of
mandatory integrity policies to databases to recommend any
one in particular or even state that one be mandated at all.
While the strict integrity policy without trusted subjects may
be appropriate for some threat environments, the more
flexible program integrity policy, which uses restricted
trusted subjects to manage a database, may be appropriate
for most environments. It would be premature to adapt a
particular mandatory policy in criteria for trusted database
systems until such a policy has been experimentally tried in
at least one operational environment and has been
demonstrably successful. On the other hand, a discretionary
policy along the lines of that given in the criteria is extremely
useful provided it is interpreted to apply to views rather than
just elements, records, or files.

Database integrity rules should be included in an
overall integrity policy because they provide users with
considerable assurance that the data is protected against
many errors. This is one of the best ways in which the users
themselves can greatly enhance the integrity of their data.
However, the interpretation and application of integrity rules
is constrained by the requirements for mandatory security.
Similarly, any trusted system should support the concepts of
atomic transactions, recovery, and noninterference, though
again the features are constrained by the mandatory security
requirements.

Although we believe it is vital for trusted systems to
support these different integrity policies, it is neither
Decessary nor possible to have the same degree of assurance
in the enforcement of them all. Whereas Classes A and B are
appropriate for mandatory access controls, Class C2 is
appropriate for discretionary controls and consistency

A

controls, which are considerably more complex than
mandatory controls and require much of the database system
for their support.

To provide a high degree of assurance, the mandatory
integrity policy must be enforced by the reference monitor.
In addition to enforcing the mandatory secrecy policy, the
reference monitor ensures the integrity of all data in the
system, including the labels that represent the secrecy and
integrity access classes. If the data are vulnerable to
tampering during storage or transmission to and from the
reference monitor, cryptographic checksums may be used to
ensure the integrity of the data and its labels. For
eryptographic checksums to be meaningful, it is essential that
the processes that compute and validate the checksums and
manage the key be under the strict control of a reference
monitor.

ACKNOWLEDGMENTS

An earlier version of this paper was prepared for the
National Computer Security Center’s Invitational Workshop
on Database Security, where both authors participated in a
working group on integrity and inference. The current
version has benefited greatly from the group discussions, and
we would like to thank the other group members, namely
A. Arsenault, W. E. Boebert, D. Bonyun, D. Downs,

K. Jacobs, R. Miller, G. Raudnbaugh, J. Spain, and

S. Walker. We also thank T. Lunt, M. Heckman, and

P. Neumann for their comments on this paper. This research
was supported by the U.S. Air Force, RADC under contract
F30602-85-C-0243.

REFERENCES

1. Dept. of Defense, Computer Security Center,
Department of Defense Trusted Computer System
Evaluation Criteria, 1983, CSC-STD-001-83

2. Date, C. J., An Introduction to Database Systems,
Addison-Wesley, Vol. II, 1983,

3. Harrison, M. A, Ruzzo, W. L. and Ullman, J. D.,
“Protection in Operating Systems”, Comm. ACM,
Vol. 19, No. 8, Aug. 1976, pp. 461-471.

4. Boebert, W. E. and Kain, R. Y., “A Practical
Alternative to Hierarchical Integrity Policies”, Proe.
of the 8th DOD/NBS Computer Security Conf.,
1985, pp. 18-27.

5. Biba, K. J., “Integrity Considerations for Secure
Computer Systems”, Tech. report ESD-TR-76-372,
USAF Electronic Systems Division, Bedford, Mass.,
April 1977.

6. Bell, D. E. and LaPadula, L. J., “Secure Computer
Systems: Mathematical Foundations and Model”,
Tech. report M74-244, The MITRE Corp., Bedford,
Mass., May 1973.

7. Schell, R. R., Tao, T. F., and Heckman, M.,
“Designing the GEMSOS Security Kernel for Security
and Performance”, Proc. 8th Dod /NBS Computer
Security Conf., 1985, pp. 108-119.

8. Grohn, M. I, ““A Model of a Protected Data
Management System”, Tech. report ESD-TR-76-289,
L. P. Sharp Assoc. Ltd., June 1976.

10.

11

12.

13.

Weissman, C., “Security Controls in the ADEPT-50
Time-Sharing System”, Proc. Fall Jt. Computer
Conf., Vol. 351969, pp. 119-133.

Shirley, L. J. and Schell, R. R., “Mechanism
Sufficiency Validation by Assignment”, Proc. o f the
1981 Symp. on Security and Privacy, Apr. 1981, Pp-

26-32.

Lunt, T. F., Denning, D. E., Schell, R. R., Heckman,
M., “Polyinstantiation in a Secure Relational Database
System”, Tech. report, SRI International, May 1986.

Rosenkrantz, D. I, Stearns, R. E., and Lewis, P. M.,
“Consistency and Serializability in Concurrent
Database Systems”, SIAM J. Comp., Vol. 13, No. 3,
Aug. 1984, pp. 508-530.

Reed, D. P. and Kanodia, R. K., “Synchronization
with Eventcounts and Sequencers”, Comm. ACM,
Vol. 22, No. 2, Feb. 1979, pp. 115-123.

Ainth

Aatiomel C@m;>ukr St'cur"l»»/ (ehx,fcfc“c€k

621?4'/&@.»:6&{}, Mo, Se,n%./5~ /8’ 1986,

