To appear in: Advances in Cryptology; Proceedings of Crypto 83,
Plenum Press.

FIELD ENCRYPTION AND AUTHENTICATION

Dorothy E. Denning!

Purdue University
West Lafayette, Indiana

Abstract

Database encryption and authentication at the field level is attractive
because it allows projections to be performed and individual data elements
decrypted or authenticated. But field based protection is not usually
recommended for security reasons: using encryption to hide individual data
elements is vulnerable to ciphertext searching; using cryptographic checksums
to authenticate individual data elements is vulnerable to plaintext or
ciphertext substitution. Solutions to the security problems of field based
protection are proposed.

1. Introduction

Database encryption and authentication at the field level is not usually
recommended: using encryption to hide individual data elements is
vulnerable to ciphertext searching; using cryptographic checksums to
authenticate the integrity of individual data elements is vulnerable to
plaintext or ciphertext substitution. These problems do not arise with record
based protection, where each record is encrypted or authenticated as a unit.

1Rese3rch supported in part by NSF Grant MCS80-15484. Author's present address:
Computer Science Lab, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025,

There are, however, disadvantages to record based protection.
Projections cannot be applied before decryption or authentication to eliminate
unneeded fields, and selections cannot be performed without decrypting up
through the fields over which the selection is to be performed. With field
based encryption, unneeded fields can be projected out and individual fields
decrypted or authenticated. Moreover, record based protection is not suitable
for applications that require keeping all but one or two short (e.g. one byte)
fields in the clear for fast retrieval. An example of such an application is
described later.

The objective of this paper is to propose techniques for secure
encryption and authentication at the field level. The techniques we describe
all use the Data Encryption Standard (DES) [6], though they are readily
adapted to any conventional block encryption algorithm with the property
that any one bit change to either the key or plaintext unpredictably affects
each ciphertext bit.

For a given data element X, we let E;(X) denote the encryption of X

under the secret key K. If X is less than 8 bytes long (the block size of the
DES), then X will be replicated as many times as necessary to fill the block.
If X is more than one block long, cipher block chaining (CBC) will be used
during encryption to chain the blocks together [6] (also in [5]).

Section 2 discusses the secrecy problems of field encryption, and shows
how these problems can be solved. Section 3 addresses the integrity problems
of field authentication, and gives a solution to these problems. Section 4
describes a database application well suited to the field encryption and
authentication techniques proposed here. Section 5 discusses an alternative
approach that blends record and field based techniques, comparing it with the
proposed techniques. Section 6 concludes.

2. Field Encryption

Consider a file of N records where each record has M fields. The
objective is to conceal the data in some field j of every record. The obvious
way of doing this is to encrypt the field under a secret database key
K. Letting Xij denote the plaintext value for record i, field j, the ciphertext

value Cij= EK(Xij) is thus computed and stored in record i (i = 1,...,N).

2.1. Security Problem

It is well known that this method of encrypting a field is not secure,
especially when the field has low entropy relative to the total number of
records (e.g., see [5, 3]). If Xij = ij for records i and p, then Cij = ij;
thus, an intruder may be able to deduce plaintext values by searching for
records with identical ciphertext. In particular, if Cij = Cm. where ij is
known, then one can infer that X, = X .. Or, if the distribution of values in

the domain of the jth field is known, then the plaintext values can be inferred
from the distribution of ciphertext values. For example, if the domain
consists of two values 0 and 1, where 1 is expected to occur twice as often as
0, and the ciphertext *X:JT57.9%*® occurs about twice as often as the
ciphertext "8N..64*#*, then it is easy to deduce which records have 0 and
which have 1. This method of attack, sometimes called ciphertezt searching,
can also be performed across fields within a record or among different records
when the same key is used to encrypt all records and all fields. Because of
the threat of ciphertext searching, field encryption has not been recommended
for applications requiring a high level of cryptographic security.

2.2. Solution

The preceding method of field encryption is insecure because repetitions
of data values are encrypted under the same key. Our solution is simply to
use a distinct cryptographic key for each data element; that is, for each
record, and for each field within a record. Letting Kij denote the element key

for record i, field j, the value Xij is then encrypted as Cij = EK..(Xij)' Flynn
ij

and Campasano [8] proposed using a different key for each record; we are
extending their approach to individual fields within a record.

We first describe techniques for generating element keys Kij’ and then
discuss encryption of the data.

2.3. Key Generation

We will assume that the first field in every record uniquely identifies the
record; l.e., it is the primary key for the database (a primary key is not to be
confused with a cryptographic key). We will also assume that this field is at
most 8 bytes long, and that it is not encrypted. Let Ri = Xi1 be the

identifier for record i, and let Fj be an identifier for field j. An element key
, Kij is defined by Kij = g(R,, Fj, K), where g is a key generating function,
and K is the secret database key. Note that key generation must be a
cryptographic function of a secret key so that the element keys will be secret.
Before describing possible functions for g, we state three security requirements
that should be satisfied:

1. The probability of getting repetitions of keys should be low,
especially within a field.

2. It should be computationally infeasible to obtain new information
about an unknown data element Xij from the ciphertext values,
even if some plaintext elements are known, or the distribution of
plaintext values is known.

3. It should be computationally infeasible to determine one element
key from other element keys.

Property 1 is needed so that equal plaintext elements are encrypted
under different keys, and therefore have different ciphertexts, with high
probability. If none of the keys repeats or is *weak® [4, 10], then Property 2
will be satisfied as well - at least to some extent. This is because equal (or
unequal) plaintext elements have unpredictably different ciphertexts with the
DES for even one bit key changes, thereby foiling ciphertext searching
attacks. Note that some key repetitions can be tolerated as long as they do
not reveal new information about the plaintext. Assuming that a repeating
key is suspect only when Cij = Cpq for two ciphertexts, we require that the a

posteriori probability prob[Kij = qu | Cij = Cpq] be the same as the a priori
probability prob[Kij = qu]. Property 3 is needed so that if a cryptanalyst

obtains the key for one data element, other data elements in the database
remain protected.

In addition to satisfying these security problems, the key generator
should be efficient. It should be possible to generate any key Kij without

generating other element keys in record i or field j. When evaluating different
key generators, we will consider not only the effort required to generate a
single Kij, but also the effort required to generate all element keys in one
record (e.g., to decrypt or authenticate an entire record), and the effort
required to generate multiple element keys in a single field (e.g., to decrypt or
authenticate a field in a multiple record access).

We will discuss five possibilities for the key generator g (*H* is the
exclusive-or operator):

1 Kij = EKj(Ri) where K = EK(F])
2 Kij =R, D Kj where K = EK(F))
3 Kij = EKi(Fj) where K = Ex(R)
4 Kij =K, D F‘J where K; = E.(R))
5 Kij =ER, D F,)

In all five. methods, we assume that unique identifiers are padded as
necessary to fill 8 bytes. Figure 1 illustrates the different methods, where the
dashed lines represent key flow into encryption, and the solid lines represent
data flow. Because encryption is one way in the key, it is not possible to
compute backwards along dashed lines (i.e., a known plaintext attack).

Method 1 first generates a field key Kj by encrypting Fj under K, and
then generates the element key by encrypting R, under Kj. Because both
encryptions are one way in the keys, compromise of some element key Kij will
not compromise the field key Kj; because K. is needed to compute element
keys, other element keys cannot be determined from Kij.

Because encryption is a one-to-one function, and R, does not equal R
for any two records i and p, E;. (R,) does not equal Ej. (R). This does not,
K;

however, guarantee that no keys for field j will duphcate since only 56 bits of
the output blocks are used (the 8 parity bits are discarded). We expect,
however, duplicate keys to be rare because of the randomness of the DES
(assuming the number of records is much smaller than the size of the key

space, which is approximately 7 times 1016).

The disadvantage of method 1 is that two encryptions are needed to
compute each element key in a record. This potentially triples the effort
required to encrypt or decrypt an individual record. On the other hand, for
multiple record accesses to a particular field j, the element keys in field j can
be obtained with one additional encryption each once Kj 1s computed.

/Kj
ij
Ri /K
|
~
K.~

(0

3

<

K, @
R, K Fj
Ki
Kij (4)
K
/
/
&)

Figure 1. Key Generators.

Method 2 is similar to method 1 in that it first generates a field key.
But the second encryption is replaced with an exclusive-or operation to speed
computation of element keys. Because the element keys in a particular field
are quickly derived from the field key, multiple record accesses to the field
are extremely efficient. The problem with this approach is that if a key Kij is

compromised, then the field key Kj, and therefore every element key in field
j, is easily computed (we assume record identifiers are known).

Method 3 switches the order of the encryptions in method 1; that is,
first a record key K, is computed by encrypting the unique identifier R, under

K, and then the element key is computed by encrypting Fj under the record

key. This approach also protects keys when an element key is compromised.
Although method 3 does not guarantee distinct element keys within a field,
we again expect duplicate keys to be rare. Because the element keys are
obtained by one encryption from the record key, method 3 allows faster
access to all fields within a record than method 1. On the other hand,
multiple record accesses to a single field are slower.

Method 4 is similar to method 3 in that it first generates a record key.
But to further speed access to data elements, it replaces the second eneryption
with an exclusive-or operation. With this approach, the time to encrypt or
decrypt an entire record is competitive with record based encryption.
Multiple record accesses to a single field, however, still require an encryption
(of the record key) to obtain the element keys in the field. Like method 2,
method 4 does not protect keys from exposure when an element key Kij is

compromised; this is because the record key K, and therefore every element

key in record i, is easily computed. But for many applications this may be
acceptable since the keys for other records are not exposed.

Method 5 computes each element key Kij by encrypting R; exclusive-
ored with F. under K. This method has the advantage of never requiring

double encryption to compute an element key. Because it always requires an
encryption, it is slower than method 2 for multiple record accesses to a single
field, and it is slower than method 4 for single record encryption and
decryption. With method 5, duplicate keys within a record or within a field

should be rare and unpredictable. On the other hand, Kij = qu will occur

whenever R, Fj = Rp & Fq for two records. Because unique identifiers

are not concealed, this property could be useful in ciphertext searching
attacks. Moreover, if Kij is compromised, then qu is also exposed.

Figure 2 summarizes the discussion of the five methods. Methods 1 and
3 provide the greatest security, but are the least efficient. Methods 2 and 4
are most efficient, and would be attractive for applications where the risk
associated with multiple key exposures from key compromises can be
tolerated. The reader is invited to think of other methods.

Number of Number of
Method encryptions to encryptions to Element keys
compute each compute each exposed if Kij
Kij in record i Kij in field j compromised
1 2 1 0
2 1 0 All keys in field j
3 1 2 0
4 0 1 All keys in record i
5 1 1 All qu where
Rp b F‘q =R, D Fj

Figure 2. Comparison of Key Generators

With all five methods, there is some danger of getting weak keys. If
protection against weak keys is desired, unused bits in the identifier field
could be randomly set to 0 or 1, and then flipped as needed. (This technique

could also be used to change keys.)

2.4. How to Encrypt

Figure 3 illustrates the encryption and decryption of an element Xij' If

Xis less than the 8-byte block size of the DES, then X is replicated as many
times as necessary to fill the block. If Xij exceeds the block size, then the

encryption is performed using cipher block chaining with initialization block
I. Although a distinct value of I could be chosen for every record, or even

every field within a record, this is unnecessary since keys are secret and do

not repeat. We therefore propose to set

I to the all zero block, so that

encrypting a single block in standard block mode will be equivalent to
encrypting that block as the first block in cipher block chaining (cipher block
chaining begins by encrypting the first block exclusive-ored with I).

unique plaintext
id field j
Ri * e - xij » L 4 * l

— — d—— - — —

A

4

/

LR | - - - [S T - - |
unique ciphertext
id field j

Figure 3. Field Encryption (E) and Decryption (D).

To retrieve information based on the value of an encrypted field j, all
values in the field must be decrypted. For example, if employee salaries are
encrypted, then it is not possible to retrieve the records of employees making
more than 30,000 without decrypting the salary field of every record. It may
be possible to speed retrieval by placing a secondary index on salary, and
using field encryption to hide the pointers in the index; we do not yet know
whether this can be done securely without negating the performance benefits
gained by using the index.

One disadvantage of field encryption is that is causes expansion of short

fields. For example, using the DES would expand short fields to 64 bits. This
message expansion could be avoided by using stream encryption (e.g., see [5]).
Letting t be the length of Xij in bytes (t < 8), Xij is then encrypted by
exclusive-oring it with the first t bytes of the element key Kij' This approach
does not, however, provide as much integrity as block encryption since there
is less redundancy (see next section).

Stream encryption could also be used with longer fields, and would be
more efficient than block encryption. If Xij is exactly one block, then it

would be much faster to compute C.. = X..) K.. than to compute C.. =

Ex (X) If X is longer than one block then output feedback mode could be
used to generate a keystream from KJ and seed I. With stream encryption,

our method of field encryption would approximate a one-time pad, where
each key Ki (or stream generated by K,) is a separate pad.

Unfortunately, stream encryption is vulnerable to a known plaintext
attack when the data is not constant and keys are reused [2, 5]. If some Xij is

known, it is easy to compute the element key Kij (or key stream) by
exclusive-oring the known plaintext with the stored ciphertext. Once Kij is

known, updated ciphertext for the field element is easily decrypted. Stream
encryption is also vulnerable to a ciphertext only attack if keys are reused.
Because keys cannot be reused securely, stream encryption should not be used
with data that is potentially modifiable.

3. Field Authentication

The objective here is to verify that information retrieved from the
database has not been changed. The usual way of doing this is to store a
cryptographic checksum (authenticator) with each record. The checksum is a
cryptographic function of the entire record, and is computed using a
technique such as cipher block chaining with a secret key. When the record is
retrieved, the checksum is recomputed from the data fields. If thereis a
match, then the probability is only 1/2" that the record has been modified,
where n is the length of the checksum in bits (64 if a full output block from
the DES is used).

This strategy can degrade performance when some of the fields are long,
and these fields are not used in a query. Because authentication requires

10

access to entire records, projections cannot be used to suppress unneeded
fields. Cryptographic checksums computed at the field level would allow such
projections.

3.1. Security Problem

Unfortunately, using checksums with individual fields introduces a

security problem. Let Sij be the checksum of value Xij in record i, field j. If
Sij is a function only of Xij (plus the secret key K), then the pair (Xij’ Sij) in
record i can be replaced by the pair (ij, Spj) in record p without detection.

(If field j is encrypted, then the replacement is performed by substituting
ciphertext instead of plaintext.) Furthermore, the pair (Xij’ Sij) can be

replaced with the pair (Xiq’ Siq) in another field q of record i.

3.2. Solution

Our solution here is essentially the same as for encryption: make the
key used to compute the checksum for an element X.. a function of the record

identifier R;, the field identifier Fj , and the secret key K. Then replacing a
pair (Xij’ Sij) in record i with another pair should be detectable.

Consider first the case where the jth field is less than 8 bytes. Recall
that our method of encryption replicates the field as many times as necessary
to fill an 8-byte block. Because of this redundancy, the ciphertext Sij = Cij
= EKij(Xij) can serve as the checksum. If Xij is to be stored in the clear, then
both Xij and Sij are stored in the record, and the probability is 1/ 264 that a
change to Xij will go undetected. (The storage requirements for Sij can be
reduced by truncating it, say, to 32 bits, in which case the probability of not
detecting a change is 1 /232.) If Xij is to be stored as ciphertext Cij’ then Cij

serves the dual purpose of providing both secrecy and authenticity; no
additional storage or processing time is required for authentication. If there
are t bytes of data and 8 - t bytes of redundancy, then the probability is at
most 1/254‘& that a change will go undetected. If this is not enough for large
t (e.g., for t = 7 the probability is 1/256), then the field can be treated as a
full block as described next.

Consider next the case where the jth field is exactly one block. Again,

11

if Xij is to be stored in the clear, then Sij = E .(Xij) can serve as the

)
checksum, and the probability is 1/2°* that a change will go undetected. But
if Xij is to be stored as ciphertext Cij’ Cij cannot serve the dual purpose of
providing both secrecy and authenticity unless Xij has enough natural
redundancy, e.g., as with English language text. If any 8-byte block of data is
accepted as valid plaintext for the field, then there is no way of detecting
changes when the ciphertext is decrypted. One simple solution is to define Sij

= EK..(Cij); that is, the checksum is the encrypted ciphertext. Both Cij and
1

264

Sij are then stored in the record.

Finally, consider the case where the jth field is more than one block;
thus, cipher block chaining is used during encryption. Let last(Cij) be a

function that returns the last block of ciphertext Cij = EK..(Xij)' If Xij is to
1
be stored in the clear, the checksum is defined by Sij = last(Cij); the

probability is 1/264 that a change will go undetected. If Xij is to be stored as
ciphertext, the ciphertext again cannot serve the dual purpose of secrecy and

authenticity unless the data has enough natural redundancy. One method for
computing the checksum is to encrypt Cij using cipher block chaining and

keep the last block; that is, Sij = last(EK"(Cij)). This, however, has the
1)

disadvantage of requiring two encryption passes over the field. A more
efficient method is to append a manipulation detection code to the plaintext,
which is computed using noncryptographic means (e.g., by adding the blocks
of plaintext modulo 264). Jueneman, Matyas, Meyer [11] discuss this and
other approaches.

An attractive property of field checksums is that it is possible to tell
which field (or fields) have been changed when validation fails (a checksum is
also placed on the unique identifier so that when a validation error for record
i, field j occurs, it is possible to tell whether the change occurred to Xij or to

R,). With record checksums, it is not possible to pinpoint the changes to
specific fields.

The main drawback with field checksums is message expansion. If there
are M fields in the database, then M blocks are needed for checksums when
the data is stored in the clear. By comparison, only 1 block is needed for a
record checksum. On the other hand, field checksums allow fields (except for
the unique identifier) to be projected out during query processing, so that the

12

total volume of data processed may decrease substantially.

4. An Application: Protecting Classified Data

Field encryption can be used to hide as little as one or as many as all
fields of the database. It is most useful for applications where some fields
must be kept in the clear to allow for fast retrieval or for retrieval by
processes that do not have access to the secret key K. An example of such an
application arose at the Air Force Summer Study on Multilevel Database
Management Security [1]. The objective of the summer study was to make
recommendations leading to the development of secure systems that handle
classified data at different levels, where the users of the system are also
cleared to different levels.

A study group headed by Clark Weissman proposed a near-term
solution to this problem based on using a commercially available database
management system. Because the database system may have security holes,
all access to the database system is confined to a trusted (verified) interface.
The trusted interface stores a label in each record (or field within a record)
giving the classification level (Top Secret, Secret, Confidential, Unclassified)
of the data in the record (or field). The classification labels are used by the
trusted interface to determine what data a given user is allowed to access,
based on the user’s clearance. To ensure the integrity of the data and of the
classification labels, the trusted interface uses cryptographic checksums, which
are validated on retrieval.

In order that the database system can perform operations such as select
and join on the database, the data is stored in the clear. Doing so, however,
admits the possibility of a Trojan Horse in the database system leaking
classified information in its responses to queries (e.g., the response to a
predetermined query may be an unclassified value equal to a classified one).
To protect against such Trojan Horses, the classification labels should be
concealed. This can be done with the field encryption scheme proposed here,
where the secret key K is known only to the trusted interface, and all
encryption and decryption is done in the interface. Even if there are only a
few different plaintext classification labels, each record can be expected to
have a different ciphertext classification label. If the plaintext labels are short
(e.g., one byte), replicating the field for encryption will produce plenty of
redundancy so that the ciphertext can provide authenticity as well as secrecy.
An alternative method of concealing the labels, suggested by the study group,

13

is to store them in a separate database managed by the trusted interface.
This approach imposes a penalty on performance, however, and increases the
complexity of the trusted interface and the verification effort.

The field authentication scheme proposed here can protect the integrity
of the data and its classification at the field level. This is done simply by
concatenating each data element Xij with its classification label before

computing the checksum.

Figure 4 illustrates how classified data in record i is protected when
classification is at the record level, and field M gives the classification label.
The stored record shows the ciphertext classification C,, = E;. (X,),

i iM iM

where K, = g(R,, F)p, K); and the checksum 8= EKij(Xij | X.y), where K,

= g(R, Fj, K), for some key generator g, and *||* denotes concatenation.

unique data plaintext
id field j class.
Rl e & xij o @ @ le

i o
{lfl\‘
K Ky,

L
3 D iiffdé

Y y A y
i T
LR 1Sy | e [X T8y | oe> | S |
id checksum data checksum ciphertext
class.

Figure 4. Integrity Protection for Classified Data.

Because the fields are individually authenticated, the database system
can perform projections to suppress unwanted fields. The unique identifier

14

and classification label fields, however, are never projected out. The database
system is also free to change the physical locations of records since the
checksums are not a function of these locations.

When the data is returned to the trusted interface, only the returned
fields are checked for changes. Changes to other fields are not detected until
those fields are retrieved. Individual fields can be updated by the interface
without the need to obtain the entire record.

5. An Alternative Approach

During our search for secure field based techniques, we considered an
approach to database protection proposed by Davida, Wells, and Kam [3].
Their approach blends record and field based techniques in an intriguing way
that allows an individual field to be extracted from the ciphertext (using a
read subkey for the field), even though records are encrypted as a unit (to foil
ciphertext searching). The trick to doing this comes from the Chinese
Remainder Theorem. Like the scheme we have proposed, their scheme causes
message expansion.

Our analysis of the approach revealed several disadvantages compared
to the scheme we have proposed. First, it is more costly to decrypt a single
field element because a divide operation (specifically a reduction modulo the
read key for the field) must be performed over the complete record. Second,
it is not possible to project out fields without performing a computation over
complete records, and to do such a projection requires knowing the field keys.
Thus, an untrusted database system could not do such projections, as in the
classified database application. Third, it is not possible to update an element
without recomputing the ciphertext for the complete record. Fourth, it is not
applicable for concealing a single short field, such as a classification label.

8. Conclusions

We have proposed techniques for overcoming the security problems of
field based protection. The principle idea behind these techniques is to
generate a different key to encrypt (or authenticate) each data element in the
database. This principle is similar to that behind a stream cipher, where
different portions of the plaintext are exclusive-ored with different portions of
a nonrepeating key stream. Indeed, with Diffie’s and Hellman’'s (7, 9]counter

15

method of stream encryption, the ith key character in a stream is generated
from i, making random access into an encrypted file possible. One difference
between their method and ours is that we generate an element key Kij from

both the ith record identifier and the jth field identifier, which permits
records to be physically moved or even new fields added without reencrypting
the entire file. Another is that because we propose to use block encryption,
the data can be modified and the same element keys reused. (As noted
earlier, with stream encryption, portions of the key stream can never be
reused.) Moreover, with block encryption, each element key can encrypt as
little as one bit (though the ciphertext will be 64 bits) or as much as several
blocks.

There are two disadvantages to the techniques we have proposed over
record based techniques: message expansion, and the overhead of computing
element keys. These are compensated by two advantages; a single low
entropy field can be concealed within a record, and fields can be projected
out before decryption and authentication. The best strategy may be a hybrid
approach that groups certain fields together for protection purposes. For a
given application, the optimal groupings would be determined by the physical
representation of the data and the access patterns to the database.

This is a preliminary report, and we leave unresolved many issues
relating to the security and cost of the proposed techniques. We are exploring
these issues, and welcome comments and suggestions.

Acknowledgments

Thanks to Clark Weissman for stimulating me to think about the
problem, and to Peter Denning for helpful discussions.

16

References

1. Multilevel Data Managment Security. Committee On Multilevel Data
Managment Security, Air Force Studies Board, National Research Council,
1982,

2. Bayer, R. and Metzger, J. K. *On the Encipherment of Search Trees
and Random Access Files.®* ACM Trans. on Database Syst. 1, 1 (March
1976), 37-52.

3. Davida, G. I, Wells, D. L. and Kam, J. B. *A Database Encryption
System with Subkeys.® ACM Trans. on Database Systems 6, 2 (June 1981).

4. Davies, D. W. Some Regular Properties of the 'Data Encryption
Standard’ Algorithm. In Advances in Cryptology: Proc. of CRYPTO 82,
D. Chaum, R. Rivest, A. Sherman, Ed.,Plenum Pub. Co., 1983.

5. Denning, D. E.. Cryptography and Data Security. Addison-Wesley,
Reading, Mass., 1982.

6. Data Encryption Standard. National Bureau of Standards, Washington,
D.C., Jan., 1977. FIPS PUB 46

7. Diffie, W. and Hellman, M. *Privacy and Authentication: An
Introduction to Cryptography.* Proc. IEEE 67, 3 (Mar. 1979), 397-427.

8. Flynn, R. and Campasano, A. S. Data Dependent Keys for a Selective
Encryption Terminal. Proe. NCC, Vol. 47, AFIPS Press, Montvale, N. J.,
1978, pp. 1127-1129.

9. Hellman, M. E. On DES-Based, Synchronous Encryption. Dept. of
Electrical Eng., Stanford Univ., Stanford, Calif., 1980.

10. Jueneman, R. R. Analysis of Certain Aspects of Output Feedback
Mode. In Advances in Cryptology: Proc. of CRYPTO 82, D. Chaum,
R. Rivest, A. Sherman, Ed.,Plenum Pub. Co., 1983.

11. Jueneman, R. R., Matyas, S. M. and Meyer, C. H. Authentication with
Manipulation Detection Code. Proc. 1983 IEEE Symp. on Security and
Privacy, IEEE, Apr., 1983.

