
RESEARCH CONTRIBUTIONS

Programming
Techniques and
Data Structures

Ellis Horowitz
Editor

Digital Signatures with RSA
and Other Public.Key
Cryptosystems

DOROTHY E. DENNING

ABSTRACT: Public-key signature systems can be
vulnerable to attack if the protocols for signing messages
allow a cryptanalyst to obtain signatures on arbitrary
messages of the cryptanalyst's choice. This vulnerability is
shown to arise from the homomorphic structure of public-
key systems. A method of foiling the attack is described.

1. INTRODUCTION
George Davida [1] uncovered a potential ly serious
weakness in the basic protocol for signing messages
using the RSA public-key cryptosystem [9]. Assuming
that a cryptanalyst can get a user to sign arbitrary mes-
sages that may be meaningless, the cryptanalyst can
decrypt ciphertext encrypted under the victim's public
key or forge the victim's signature on a meaningful
message. This is done by getting the victim to sign new
messages derived from the intercepted ciphertext or
chosen message. Although Davida refers to the attack
as a "chosen signature" attack, it is actually a "chosen
message" attack since the cryptanalyst chooses mes-
sages to be signed rather than signatures to be validated.
The attack also works with other public-key systems.

The attack does not break the RSA system in the
tradit ional sense whereby a cryptanalyst can obtain se-
cret keys. Indeed, the attack is carried out without
knowledge of the victim's private key. In this sense, the
attack is much weaker than a "chosen plaintext" attack

Research supported in part by NSF Grant MCS80-15484.

© 1984 ACM 0001-0782/84/0400-0388 75¢

on a conventional cryptosystem which, if successful,
breaks the system.

We first describe the attack with the RSA cryptosys-
tem and show how it generalizes to other public-key
systems. We then describe a signature-hashing tech-
nique, developed by Davies and Price [2], that appears
to foil the attack for any public-key system.

2. THE BASIC RSA PROTOCOL
Let n be the modulus for the victim's RSA cryptosystem
where n = pq for large secret primes p and q (say 100
digits each, making n 200 digits); and let e and d be the
public and private exponents respectively, where e and
d are mult ipl icat ive inverses mod 4~(n) = (p - 1}(q - 1).
The public exponent e is used to encipher and validate
signatures; the private exponent d to decipher and sign
messages. To send the user a secret message M, the
sender enciphers M by computing C = M e mod n; the
user deciphers the ciphertext C by computing C a mod
n = M. Similarly, the user signs a message M by com-
puting S = M d mod n; the receiver validates the signa-
ture S by computing S e rood n = M. The security of the
system rests on the assumption that a cryptanalyst can-
not determine the factors p and q of n. (See [4] for a
tutorial on the number theory behind the RSA system.}

3. THE POTENTIAL WEAKNESS
Suppose that a cryptanalyst has intercepted ciphertext
C sent to the victim where C = M e mod n. Davida [1]
has shown how the cryptanalyst may be able to deter-
mine M without knowing the deciphering exponent d.

388 Communications of the ACM April 1984 Volume 27 Number 4

Research Contributions

We first describe his method and then describe a sim-
pler method found by Judy Moore.

ALGORITHM 1.

Davida's method for obtaining C a mod n = M.

1. Factor C into t > 1 components, obtaining
C = GC2, - . . G (the components Ci need not be
prime or prime powers--any decomposition of C
will do). This implies that M also factors into t
corresponding components M~ Mt where

C = G C 2 " " Ct

= (M i M 2 . . . M,) e mod n

= (Mi)e(M2) e . . . (Mr) e mod n,

and Mi = C/a mod n (i = 1 t).

2. Get the victim to sign a message X and messages XG
mod n XG mod n. X can be a new message or a
message previously signed by the victim. The mes-
sages XC1 XCt might be lines in some file the
cryptanalyst requests the victim to sign line by line
to acknowledge receipt. The signatures obtained are
thus:

S = X a mod n

Si = (XCi} a rood n (i = 1 t).

3. Compute the multiplicative inverse S -a mod n of the
signature S, getting

S -1 = X -a mod n.

4. Multiply this by each of the Si to obtain the Mi:

S-1Si mod n = X-a(XCi) a rood n = C~ mod n = Mi.

5. Compute the product M1M2 • • • M t rood n = M.

The attack can also be made using X = 1. Then the
cryptanalyst needs only the t signatures Si = C/a mod n
= Mi. This attack, however, may be easier to detect
since the factors of C and M are exposed.

Obviously the attack would not be feasible if a com-
plete factorization of C were required in Step 1, since
we are assuming that factoring large {e.g., 200 digit)
numbers is infeasible (if not, then RSA could be bro-
ken). Even so, factoring is costly, so we are more inter-
ested in Moore's method which does not require any
decomposition.

The multiplicative inverse of S computed in Step 3
can be computed efficiently in O(log n) time using an
extended version of Euclid's algorithm {e.g., see [4]). In
the unlikely event that S is not relatively prime to n, S
does not have a unique inverse mod n. But in this case,
the cryptanalyst can easily factor n because S will be a
multiple of p or q, whence gcd(S, n) = p or q.

In Step 2, the cryptanalyst can pick an arbitrary mes-
sage S and compute X = S e mod n rather than asking
the victim to sign X, since this implies that S = X a mod
n. This reduces the amount of cooperation required
from the victim and is used in Step 1 of Algorithm 2,
the simpler approach found by Moore. Because the vic-

tim does not know X or S, it is unnecessary to decom-
pose C to conceal the attack, that is, t = 1 can be used.
Thus, Moore's attack requires only one signature from
the victim:

ALGORITHM 2.
Moore's method for obtaining C a mod n = M.

1. Pick an arbitrary S and compute X = S e mod n; this
implies

S ~- X d mod n.

2. Get the victim to sign the message X C mod n, obtain-
ing the signature

$1 = (XC) d rood n.

3. Compute S -1 mod n = X -d mod n.

4. Multiply S -I by $1 to obtain M:

S-1Si mod n = x - d (x c) d mod n = C d mod n = M.

Under the assumption that the RSA system in crypto-
graphically strong (computationally infeasible to break},
Moore's method is optimal in the sense of requiring the
minimal number of signatures from the victim. If it
were not, then we could decrypt ciphertext without
any cooperation from the victim, thereby breaking RSA.

Because both algorithms compute C d mod n, they
may also be used to forge the victim's signature on a
message C chosen by the cryptanalyst. If the cryptosys-
tern is used for signatures only and not for message
secrecy, or if separate keys (values of e, d, and n) are
used for secrecy and for signatures, the attack can still
be used to forge signatures, though it cannot be used to
decrypt ciphertext.

4. GENERALIZING THE RESULTS TO OTHER
PUBLIC-KEY SYSTEMS

Consider an arbitrary public-key cryptosystem with
private deciphering (signature) transformation D and
public enciphering (signature validation) transformation
E = D -1. Moore's method extends to the system if the
message space forms a group with binary operator o
and identity element 1; the signature space forms a
group with a binary operator, also denoted by o, and
identity 1; and the deciphering transformation D is a
homomorphism from the message group to the signa-
ture group, that is, the following properties hold for all
messages X, Y, and Z:

1. X o (Y o Z) = (X o Y) o Z (Associativity--for Step
4)

2. X o 1 = 1 o X = X (Identity--for Step 4)

3. X o X -I = X -1 o X = 1 (Inverses--for Steps
3 and 4)

4. D (X o Y) = D(X) o D(Y) (Homomorphism--for
Step 4)

Algorithm 3 computes D(C) to decrypt C or forge the
victim's signature on C:

April 1984 Volume 27 Number 4 Communications of the ACM 389

Research Contributions

ALGORITHM 3.
Generalization of Moore's method to obtain D(C).

1. Pick S and compute X = E(S); this implies S = D(X).

2. Get the victim to sign the messae X o C. The signa-
ture is 51 = D(X o C).

3. Compute S -~.

4. Compute

$2 = S -1 o $1

= S- ' o D (X o C) = S - ' o (D(X) o D(C))

= 5 -1 o (S o D(C)) = (5 -1 o S) o D(C)

= 1 o D(C) = D(C).

The RSA system fits this general pattern, where both
the message and signature groups are defined by the
integers relat ively prime to n together with multiplica-
tion. The deciphering transformation is a homomorph-
ism because

(XY} e mod n = [(X d mod n)(Y e mod n) mod n.

(Similarly, the enciphering transformation is a homo-
morphism.)

It is not surprising that a cryptosystem for which the
deciphering transformation is a homomorphism is vul-
nerable to certain types of attack. Rivest et al. [10]
showed that such cryptosystems can have inherent
weaknesses.

In a signature-only system, messages can be signed
but not encrypted for secrecy, since computing D(E(X))
will not usually restore X. For such systems, the attack
is therefore useful only for forging signatures. Note that
in this case, the transformation D need not be a homo-
morphism as long as E is a homomorphism. This is
because the signature $2 computed in Step 4 of Algo-
ri thm 3 will be accepted as a valid signature, though it
can differ from that which the victim would compute,
that is,

E(S2) = E(S -~ o $1) = E(S -~) o E(Si)

= E(S)- ' o E(S1) = X - ' o (X o C) = C.

Shamir 's signature-only knapsack scheme [11] (see
also [4]) fits this pattern, as shown by DeMillo and
Merritt [3]. Here, the signature validation transforma-
tion E is given by E(S) = 5A mod n, where n is a k-bit
prime, A and S are vectors of length 2k whose elements
are k-bit integers, and SA denotes the scalar product.
The signature group is defined by the integer vectors of
length 2k with vector addit ion and the 0 vector as iden-
tity. The messages C and X are integers mod n, and the
message group is defined by the integers mod n with
addition and identi ty 0. Although D is not a homo-
morphism, E is a homomorphism from the signature
group to the message group, since for all signatures S~
and $2:

(Sa + S2)A mod n = (S~A mod n + S2A mod n) mod n.

Algorithm 4 shows how a signature can be forged in
Shamir 's system.

ALGORITHM 4.
DeMillo's and Merrit t 's Method for Forging a Signature
$2 on C with Shamir 's Signature System.

1. Pick X and get the victim to re turn the signature S
such that SA mod n = X.

2. Get the victim to return a signature $1 on X + C such
that SiA mod n = X + C.

3. Compute S -1 = -S .

4. Compute the signature 52 = - S + $1. $2 is a valid
signature of C because

E(S2) = E(-S + $1) = (-S + Si)A mod n

= (- S A rood n + S1A mod n) rood n

= [- X + (X + C)] m o d n = C .

DeMillo and Merrit t also consider similar attacks on
variants of the RSA system. These systems all have an
underlying homomorphic structure (though not explic-
itly identified as such in their paper), which explains
their vulnerabi l i ty to this general method of attack.

5. A N I M P R O V E D S I G N A T U R E SCHEME
For the attacks to succeed, the cryptanalyst must be
able to get the victim to sign essentially arbitary mes-
sages that are supplied by the cryptanalyst and are not
likely to be meaningful. To protect against such attacks,
users can sign only meaningful messages, but this
places the burden of security entirely on the user.

A better strategy is to strengthen the signature sys-
tem to make the attacks impossible. We now describe a
method of doing this that transforms all messages with
a one-way public function h before they are signed. A
message M is thus signed by computing S = D(h(M)).

The function h should satisfy four properties:

1. h should destroy all homomorphic structure in the
underlying public-key cryptosystem; that is, h(X o Y)

h(X) o h(Y) must hold. Moreover, for almost all X
and Y, D(h(X o Y)) ~ D(h(X)) o D(h(Y))) should hold.
Then the cryptanalyst cannot factor out the X or Y in
a signature D(h(X o Y)).

2. h should be computed over entire messages (rather
than on a block-by-block basis). This will make it
difficult for a cryptanalyst to obtain signatures by
inserting blocks into a file that otherwise looks
legitimate.

3. h should be one-way so that messages are not dis-
closed by their signatures. This is needed when both
secrecy and authent ici ty are desired.

4. h should have the property that for any given mes-
sage X and value h(X), it is computat ional ly infeasi-
ble to find another message Y such that h(Y) = h(X).
This is needed to prevent forgeries since the value
h(X) can be obtained from a signature S = D(h(X)) by
applying the public function E to S.

390 Communications of the ACM April 1984 Volume 27 Number 4

Research Contributions

Applying the transformation h to a message before
signing has an additional benefit. Because the transfor-
mations E() and D(h()) are not inverses, a cryptanalyst
cannot hope to decrypt an intercepted ciphertext mes-
sage C by getting a signature on C.

The practice of transforming messages before Signing
was suggested by Davies and Price [2] who designed a
protocol for signing secret messages using a one-way
public hashing function h that conceals messages and
prevents forgeries. Their function h blocks a message
M into 56-bit blocks M1 Mr and computes a digest
(64 bits)

H = h(M, I) = EM r 0 . . . 0 EM~ 0 EMr 0 . . . 0 EM~(I),

where EMi is the DES-enciphering algorithm keyed to
block Mi, I is a random 64-bit initialization seed for the
DES, and "o" here denotes function composition. Be-
cause the function h can be computed both forwards
and backwards (by using the deciphering transforma-
tions DMi) for an arbitrary message M, the message must
be repeated in the keys to prevent a "meet in the mid-
dle" forgery (compute forwards from I using 2 a2 varia-
tions of the first half of the desired message and back-
wards from H using 2 a2 variations of the second half of
the message; sort the results to find a match, which is
likely to occur since there are 264 ways of pairing the
values in the two sets).

Wolfgang Bitzer has suggested an improved hashing
function that foils the meet-in-the-middle attack with a
single pass over the message. His hashing function is
given by

where

H = h(M, I) = Zr+l,

Zi+i = Ezi~Mi(Zi) (i = 1 r)

Z~ = I,

Z/' consists of 56 bits selected from Zi, and "~" denotes
"exclusive or." The meet-in-the-middle attack is pre-
vented because it is not possible to compute backwards
through the function, i.e., compute Zi from Zi÷l.

Both DES-based hashing functions would destroy the
multiplicative structure of the RSA system and the ad-
ditive structure of knapsack systems. They almost cer-
tainly would destroy the homomorphic structure of any
underlying cryptosystem.

Using the hashing function, the message M is signed
as S = D(HH I), where " [[" denotes concatenation, and
the 128-bit block (HllI) is replicated as many times as
necessary to fill the input block for the signature trans-
formation D. A signature S on an alleged message M is
validated by first computing E(S) = D-1(S) = (HllI); next
computing h(M, I) using the public function h and the
alleged message M; and finally comparing h(M, I) with H.

The message M can be transmitted either as cleartext
(if secrecy is not needed), as ciphertext encrypted using
the receiver's public key, or as ciphertext encrypted
using a secret key shared by the sender and receiver (if
a conventional cryptosystem is used for message se-

crecy, with the public-key system reserved for signa-
tures and key exchange).

The hashing function has two important advantages
besides protecting against signature attacks:

1. It separates the signature transformation from the
secrecy transformation, allowing secrecy to be im-
plemented with a one-key system or to be skipped
[2]. Yet the separation is achieved without much
message expansion, since each signature is a single
block.

2. It conceals messages so that signatures can be pub-
licly disclosed without revealing their correspond-
ing messages. This is important for recovering
from compromises or direct disclosure of private
keys. Let DA be the signature key of user A. In
order that a signature S of A can remain valid after
DA is compromised or deliberately disclosed, S
should be bound to A's current public key EA,
time-stamped, and signed by the public key server
(notary public) [8] giving a "signature certificate"
[5] G = Dp(T, A, EA, S), where Dp is the signature
key of the public key server, and T is the time
stamp. And in order that S can remain valid even
if Dp is compromised, G should be kept in a public
log. For this reason, it is important that S conceal
the message signed and have minimal storage
requirements. This is achieved with the hashed
signature method. (For further discussion of this,
see [5].)

3. It can provide a more efficient method of signing
messages, since the public key transformation is
applied to just one block of data. The RSA trans-
formation, for example, is several orders of magni-
tude slower per bit than the DES, so using the DES
to hash a long message down to a single block is
considerably faster than applying RSA to the en-
tire message.

6. CONCLUSIONS
Davida's discovery demonstrates the fundamental im-
portance of encryption protocols. It is not enough to
have an encryption algorithm that is computationally
hard to break; the procedures for using the algorithm
must also withstand attack. We have identified several
properties that should be satisfied by any signature sys-
tem; in particular, it should destroy any homomorphic
structure in the underlying public-key algorithm. The
signature scheme described here appears to satisfy
these properties. Further research along the lines initi-
ated by Dolev and Yao [7] and DeMillo et al. [3] may
lead to techniques for proving the security of signature
schemes.

The attacks on public-key signature systems are in-
stances of a general method of attack, which we call
the "many-time pad" [6]. Many-time pad attacks pad
the input to a query to conceal a request for sensitive
data, and then remove the effect of the padding from
the output by exploiting an underlying homomorphic
structure in the problem domain. "Tracker" attacks

April 1984 Volume 27 Number 4 Communications of the ACM 391

Research ContriButions

(e.g., see [4]) on statistical databases are also instances
of the many-time pad.

Acknowledgments This note evolved from discussions
with George Davida, who first brought the signature
attack on RSA to my attention; Judy Moore, who told
me of her simpler attack; and Michael Merritt, who
independently with Richard DeMillo identified a math-
ematical structure in the attacks similar to the one
described here. Many others have provided helpful
suggestions, including Bob Blakley, Peter Denning,
Ron Graham, Ron Rivest, and the students in my cryp-
tography class. Donald Davies brought Bitzer's hashing
function to my attention. Finally, the referees provided
man.y constructive comments.

REFERENCES
1. Davida, C.I. Chosen signature cryptanalysis of the RSA (MIT) public

key cryptos3fstem. Tech. Rept. TR-CS-82-2, Dept. of Electrical Engi-
neering and Computer Science, Univ. of Wisconsin, Milwaukee, WI.,
Oct. 1982,

2. Davies, D,W. and Price, W.L. The application of digital signatures
based on public key cryptosystems. Tech. Rept. NPL Report DNACS
39/80, National Physical Lab., Teddington, Middlesex, England,
Dec. 1980.

3. DeMillo, R., Lynch, N.A. and Merritt, M,J. Cryptographic protocols.
P roc. SIGACT Conf.. 1982.

4. Denning, D.E. Cryptography and Data Security. Addison-Wesley,
Reading, MA., 1982.

5. Denning, D.E. Protecting public keys and signature keys. 1EEE Com-
puter 16, 2 (Feb. 1983), 27-35.

6. Denning, D.E. The many-time pad: Theme and variations. Proc. 1983
Symp. Security and Privacy, IEEE Computer Society, Apr. 1983.

7. Dolev, D. and Yao, A.C. On the security of public key protocols.
Proc. 22d Ann. Syrup. Foundations of Comput Sci, IEEE Computer
Society, 1981.

8. Merkle, R.C. Protocols for public key cryptosystems. Proc. 1980
Syrup. Security and Privacy, IEEE Computer Society, April, 1980, pp.
122-133.

9. Rivest, R.L., Shamir, A. and Adleman, L. A method for obtaining
digital signatures and public-key cryptosystems; Commun. ACM 21, 2
(Feb. 1978), 120-126.

10. Rivest, R.L.. Adleman, L. and Dertouzos, M.L. On data banks and
privacy homomorphisms. In Foundations of Secure Computation, R.A.
DeMillo et al.. Eds., Academic Press, New York, 1978, 169-179.

11. Shamir, A. A fast signature scheme. Tech. Rept. MIT/LCS/TM-107,
MIT Lab. for Computer Science, Cambridge, Mass., July 1978.

CR Categories and Subject Descriptors: E.3 [Data]: Data Encryp-
tion--public-key cryptosystems

General Term: Security
Additional Key Words and Phrases: cryptanalysis, cryptographic pro-

tocol, hashing, homomorphism

Received 11/82; revised 7/83; accepted 11/83

Author's present address: Dorothy E. Denning, SRI International, Com -
puter Science Lab, 333 Ravenswood Ave., Menlo Park, CA 94025

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

SUBSCRIBE TO ACM PUBLICATIONS
Whether you are a computing novice or a master of your
craft, ACM has a publication that can meet your individual
needs. Do you want broad-gauge, high quality, highly read-
able articles on key issues and major developments and
trends in computer science? Read Communications of the
ACM. Do you want to read comprehensive surveys, tutorials,
and overview articles on topics of current and emerging
importance? Computing Reviews is right for you. Are you
interested in a publication that offers a range of
scientific research designed to keep you abre ~n*
of the latest issues and developments? Reae
Journal of the ACM. What specific topics are
worth explonng further? The various ACM
transactions cover research and applications

in-depth--ACM Transactions on Mathematical Software,
ACM Transactions on Database Systems, ACM Transac-
tions on Programming Languages and Systems, ACM
Transactions on Graphics, ACM Transactions on Office
Information Systems, and ACM Transactions on Computer
Systems. Do you need additional references oq computing?
Computing Reviews contains original reviews and. abstracts
of current books and journals. The ACM Guide to Comput-
ing Literature is an important bibliographic guide to

~^..~ ~ng literature. Collected Algorithms from ACM is
a collection Qf AC M a!gorithms available in

printed version, on microfiche, or machine-
readable tape.

For more information about ACM publications,
trite for you; free copy of the ACM Publications
atalog to: The Publications Department, The
;sociation for Computing Machinery, 1 ! West

=~nd Street, New York, NY 10036.

392 Communications of the ACM April 1984 Volume 27 Number 4

