
Verification of Timing Properties in Rapid System Prototyping*

Doron Drusinky and Man-Tak Shing
Department of Computer Science

Naval Postgraduate School
833 Dyer Road

Monterey, CA 93943 USA
{drusinsky, shing}@nps.navy.mil

* This research was supported in part by the U.S. Army Research Office under grant number 40473-MA-SP.

Abstract

This paper addresses the need for systematic verification of
timing properties of real-time prototypes, which consist of
timing constraints that must be satisfied at any given time
and time-series constraints that must be satisfied over a
period of time. Traditional schedulability analysis only
works for the former kind of timing properties. It is not
effective in verifying time-series constraints over a period
of time. This paper presents a hybrid approach that com-
bines the traditional schedulability analysis of the design
and the monitoring of timing constraint satisfaction during
prototype execution based on a time-series temporal logic.
The effectiveness of the approach is demonstrated with a
prototype of the fish farm control system software.

1 Introduction

Real-time systems are those whose correct behavior de-
pends not only on the logical result of the computation but
also on the time at which the result is produced. Tradition-
ally, these temporal requirements are expressed as hard and
soft timing constraints. It is imperative for real-time sys-
tems to meet all deadlines in hard timing constraints but
acceptable to miss the deadlines of the soft timing con-
straints occasionally [1]. There are currently two comple-
mentary approaches to evaluating the correctness of real-
time systems: static analysis of its behavior according to a
set of metrics (e.g. schedulability analysis to establish the
feasibility of the timing constraints) and run-time monitor-
ing of real-time systems to study its behavior according to
set of metrics (e.g. release jitter, frequency and degree of
tardiness, etc.). While the static analytic approach plays a
very important role in helping system designers set time
budgets and allocate resources in their designs, they are

only effective if correct timing constraints can be deter-
mined during the requirements analysis phase. Feasible
requirements for large dynamic systems are difficult to
formulate, understand, and meet without extensive proto-
typing. Moveover, traditional analytical techniques are not
effective in evaluating time-series temporal behaviors (e.g.
the maximum duration between consecutive missing dead-
lines must greater than 5 seconds). This kind of require-
ments can only be evaluated through execution of the real-
time systems or their prototypes.
Computer aid holds the key to rapid construction, evalua-
tion, and evolution of such prototypes. Analysis and meas-
urement of prototype designs provides upper bounds on the
time required to execute particular functions, and experi-
ments with simulated environments provide information
about the accuracies and response times required to keep
external physical systems within desired operating regions.
This paper presents hybrid approach that combines the
static schedulability analysis of the design and the run-time
monitoring of the prototype execution based on a time-
series temporal logic. The approach is supported by an en-
vironment made up of the Software Engineering Automa-
tion Tools (SEATools) [2] and the DBRover System [3].
The effectiveness of the approach is demonstrated with a
prototype of the fish farm control system software.

2 Models and Tools for Analysis, Design
and Prototyping of Complex Systems

We build upon our experience with prototyping languages
[4], real-time systems modeling and analysis [5, 6], auto-
matic code generation techniques and rapid prototyping
environments [7] and developed a set of PC-based com-

puter-aided tools to support the modeling, analysis and pro-
totyping of the systems under development (Figure 1).

The SEATools is based on the Prototyping System Descrip-
tion Language (PSDL) [4], which is a high-level language
designed specifically to support the conceptual modeling of
real-time embedded systems. Real-time requirements in the
system development are modeled as PSDL specifications,
which are dataflow graphs augmented with non-procedural
timing and control constraints (Figure 2). PSDL allows the
specification of both input and output guards to provide
conditional execution of an operator and conditional output
of data. Guards can include conditions on timers that meas-
ure duration of system states, and can allow operators to
execute only when fresh data has been written to an input
stream. Each time critical operator has a maximum execu-
tion time (MET) constraint, representing the maximum time
the operator may need to complete execution after it is
fired, given access to all required resources. In addition,
each periodic operator has a period and a deadline (FW).
The period is the interval between triggering times for the
operator and the deadline is the maximum duration from
the triggering of the operator to the completion of its opera-
tion. Each sporadic operator has a maximum response time
(MRT) and a minimum calling period (MCP). The mini-
mum calling period is the smallest interval allowed between
two successive triggering of a sporadic operator. The
maximum response time is the maximum duration allowed
from the triggering of the sporadic operator to the comple-
tion of its operation.
PSDL’s declarative timing and control constraints help de-
couple the behavioral aspects of a system from its timing
properties to allow independent analysis of these two
aspects, and organize timing constraints in a hierarchical
fashion, to allow independent consideration of smaller
subsets of timing constraints.

The SEATools User Interface provides the essential facili-
ties for users to create and modify the models. It also pro-
vides some degree of computer-aided consistency checking
and data entry propagation at the user interface level. Com-
plete semantic check of the model and static analysis of the
timing constraints are performed by the SEATools’ execu-
tion support system, which consists of a translator, a sched-
uler and a runtime monitor. The translator checks the se-
mantics of the model and generates code that binds together
the code supplied by the designer and the reusable compo-
nents extracted from the software base. The scheduler ana-
lyzes the feasibility of the timing constraints against the
resources specified in the target hardware model and create
the real-time schedule and control code needed for execut-
ing the prototype. The resultant Ada main program consists
of four parts. The first is a set of data streams, implemented
as instantiation of generic packages containing Ada tasks
controlling the mutually exclusive read/write access to the
data buffers. The second part consists of a set of drivers,
one for each of the atomic operators. Each driver reads data
from the specified input streams, evaluates the input
guards, executes the operators, evaluates the output guards
and then writes the outputs to the specified data streams
accordingly. The third part is a static schedule, which is a
high priority Ada task that executes all time-critical opera-
tors in a deterministic and timely manner. The schedule is
generated automatically based on the timing constraints and
the precedence of the operators specified in the data-flow
graph. The last part of the Ada main program is a dynamic
schedule, which is a low priority Ada task that executes the
non-time-critical operators during the slack time in the
static schedule. SEATools also includes a simple runtime
monitor that checks for missing deadlines during prototype
execution.

Figure 1. The SEATools Environment

Figure 2. PSDL specification

monitor_
environment

MET = 100 ms
PERIOD = 500 ms

speed_
control

throttle_
control

km_per_ho speed : ur
 = 100 ms crusing_speed :

 km_per_hour LATENCY

 200 ms MET =
MRT

 1000 m =

MCP
 s
 = 500 m s

TRIGGERED BY ALL speed
OUTPU throttle_adjustmentT

IF | throttle_adjustment | > 0.01

throttle_adjustment : real
LATENCY = 50 ms

 = 100 ms MET
 = 1000 ms
= 5000

MRT
MCP m
TRIGGERED

s
 BY ALL throttle_adjustment

3 Metric Temporal Logic with Time Series
Constraints

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. In [8], Pnueli sug-
gested using Linear-Time Propositional Temporal Logic
(LTL) for reasoning about concurrent programs. Since
then, several researchers have used LTL to state and prove
correctness of concurrent programs, protocols, and hard-
ware (e.g., [9, 10]).
Linear-Time Temporal Logic (LTL) is an extension of pro-
positional logic where, in addition to the propositional logic
operators there are four future-time operators and four dual
past time operators: always in the future (always in the
past), eventually, or sometime in the future (sometime in
the past), Until (Since), and next cycle (previous cycle).
Metric Temporal Logic (MTL) was suggested by Chang,
Pnueli, and Manna as a vehicle for the verification of real
time systems [11]. MTL extends LTL by supporting the
specification of relative time and real time constraints. All
four LTL future time operators (Eventually, Always, Until,
Next) can be characterized by relative time and real time
constraints specifying the duration of the temporal operator.
Hence, for example, the MTL assertion “Always < 20
commandResult > 0”, states that commandResult > 0 must
hold every cycle until 20 cycles in the future.
MTL with time-series constraints (MTLS) enables the
specification of requirements in which propositions include
temporal instances of variables. Consider the following
automotive cruise control code with a stability assertion
(using embedded TemporalRover syntax [3]) requiring
speed to be 5% stable while cruise is set and not changed:
void cruise(boolean cruiseSet, boolean

cruiseChange,
boolean cruiseOff, boolean
cruiseIncr, int speed){

… /* Cruise Controller functionality */

/* TRBegin
TRAssert{Always ({cruiseSet}Implies
 {speed*0.95 < speed’ &&
 speed’ < speed*1.05}
 Until $speed$
 {cruiseChange || cruiseOff})}=>
 {…} // user actions
TREnd */

In the example speed is a temporal data variable, which is
associated with the Until temporal operator. This associa-
tion implies that every time the Until operator begins its
evaluation, possibly in multiple instances (due to non-
determinism), the speed value is sampled and preserved in
speed variable of this instance of the Until; this value is
referred to as the pivot value for this Until node instance.

Future speed values used by this particular evaluation of
the Until statement are referred to using the prime notation,
i.e., as speed’; these future instances of the speed variable
are referred to as primed values. Hence, if the speed value
was 100Km/h when cruiseSet is true, then the pivot value
for speed is 100, while every subsequent speed is referred
to as speed’ and must be within 5% of the pivot speed
value.

Note how speed is declared using the $speed$ notation to
be a temporal data variable associated with the Until opera-
tor. This declaration indicates to the Temporal Rover that it
should be sampling a pivot value from the environment in
the first cycle of the Until operators lifecycle, and to refer
to all subsequent samples of speed as speed’.

Similarly, the following example consists of a monotonicity
requirement for the cruise control system, where speed is
monotonically increasing while Cruise Increase
(cruiseIncr) command is active:
TRAssert {Always({cruiseIncr}Implies
 {(speed<=speed')&& speed=speed')>=0}
 Until $speed$ {!cruiseIncr}
)}=> {…} // user actions
In this example the temporal data variable speed is sampled
upon every cruiseIncr event , and is compared to the cur-
rent value (speed’) every cycle. The latest speed value is
then saved in the pivot for next cycles comparison.

4 The DBRover Run-Time Monitor

The DBRover is an MTLS monitoring tool based on the
TemporalRover code generator of [3]. It consists of a GUI
for editing temporal assertions, an MTLS simulator, and an
MTLS execution engine (Figure 3).

Figure 3. The DBRover System

The DBRover builds and executes temporal rules for a tar-
get program or application. In run-time, the DBRover lis-

tens for messages from the target application and evaluates
corresponding temporal assertions. Hence, in the cruise-
control example above, the DBRover will listen for Boo-
lean messages pertaining to the run-time values of the
cruiseSet, cruiseChange, and cruiseOff
Boolean propositions, as well as the run-time value of the
speed variable. The DBRover then evaluates the corre-
sponding MTLS assertion for that cycle. Monitoring is per-
formed on-line, namely, the DBRover operates in tandem
with the target program, and re-evaluates assertions every
cycle. The DBRover uses an underlying algorithm that does
not store a history trace of the data it receives; it can there-
fore monitor very long, and potentially never ending, exe-
cutions of target applications.

In addition, we add another requirement that “whenever
water level is below 88 cm for at least three minutes, the
drain valve settings should be limited to be at most 10% of
the maximum setting per second” to illustrate the expres-
sive power of the temporal logic.

5.2 The PSDL Model
Figure 4 shows the PSDL model for the FFCS. In the inter-
est of brevity, we shall only discuss the water quality con-
trol portion of the prototype in this paper, which is made up
of six atomic operators: monitor_h2o, monitor_o2, moni-
tor_nh3, control_water_flow, adjust_inlet and ad-
just_drain, with the associated control and timing con-
straints shown in Table 1.

5 Prototype Generation and Runtime Veri-
fication of the timing properties

In this section, we shall illustrate the hybrid approach with
a fish farm control system prototype.

 5.1 The Fish Farm Control System (FFCS)

The FFCS will control the fish food dispenser and water
quality in a fish tank. The tank has a mechanical feeder that
drops pellets of fish food from a feeder tube suspended
above the tank. The feeder can be turned on and off by the
computer. The tank also has a water inlet pipe and a drain
pipe with valves controlled by the computer, and sensors
that measure the water level (millimeters above the bot-
tom), the oxygen level in the water (parts per million), and
the ammonia level in the water (parts per million).

 Figure 4. The PSDL model for the Fish Farm Control System

Operator Control
Constraints

Timing
Constraints

monitor_h2o −
Period = 2000 ms
FW = 200 ms
MET = 80 ms

monitor_o2 −
Period = 2000 ms
FW = 200 ms
MET = 80 ms

monitor_nh3 −
Period = 2000 ms
FW = 200 ms
MET = 80 ms

control_water_flow −
Period = 1000 ms
FW = 200 ms
MET = 100 ms

adjust_inlet Triggered by SOME
activate_inlet

MCP = 2000 ms
MRT = 2500 ms
MET = 80 ms

adjust_drain Triggered by SOME
activate_drain

MCP = 2000 ms
MRT = 2500 ms
MET = 80 ms

The FFCS must deliver fish food at scheduled feeding
times, repeated every day. The times when each feeding
starts and stops are displayed on the console of the FFCS
and can be adjusted from the keyboard.
The FFCS must keep the oxygen level at least 8 parts-per-
million (ppm), and the ammonia level at most 9 ppm. Fish
will die if left in an environment with low oxygen or high
ammonia for 1 minute or more. The fish tank is 1 meter
wide, 2 meters long, and 1 meter deep (1mm level = 2 liters
volume). The FFCS must keep the water level between 60
and 90 cm at all time. The fill/drain valves allow a maxi-
mum flow of 0.5 liters per second when valve is fully open.
The fresh water coming in the inlet valve contains 30 ppm
of oxygen and contains no ammonia. The fish in the tank
consumes oxygen at a rate of 0.1 ml/sec and generates am-
monia at a rate of 0.0015ml/sec while resting and at a rate
of 0.003 ml/sec while they’re eating.

 Table 1. The control and timing constraints of the water
quality control operators

The FFCS should minimize water flow subject to the above
constraints.

Central to the design is the control_water_flow operator,
which controls the inlet and drain water flow based on the
following decision table.

Water
Level < 65 cm ≥ 65 cm, ≤ 85 cm > 85 cm

Oxygen
(O2) &

Ammonia
(NH3)
Level

−

O2 < 8
ppm or
NH3 >
9 ppm

O2 ≥ 8
ppm
and

NH3 ≤
9 ppm

O2 < 8
ppm or
NH3 >
9 ppm

O2 ≥ 8
ppm or
NH3 ≤
9 ppm

Inlet Valve
Setting open open close open close

Drain
Valve
Setting

close close close open open

 Table 2. Decision table for the control water flow logic
Figure 5. The enhanced PSDL model with additional
operators to invoke the DBRover runtime monitor

5.3 Incorporating DBRover Run-time Checking
to the PSDL Model

Next, we want to find out if the prototype meets all the re-
quirements using the DBRover System. We use the Tempo-
ralRover to generate C code for the following temporal
rules:

Rule 1: The water level must be between 60 and 90 cm at
all time, formally written as:

Always {h2o >= 60 && h2o <=90}.

Rule 2: The oxygen level cannot be less than 8 ppm for
more than 60 seconds, formally written as:

 Always {o2<8} Implies Eventually <=60 {o2>=8}.
 Rule 3: The ammonia level cannot be more than 9 ppm for

more than 60 seconds, formally written as:
 Always {nh3>9} Implies

 Eventually <=60 {nh3<=9}.
Rule 4: If water level has been below 88 cm for 180 sec-

onds, then the change of the drain valve setting must
be less than or equal to 10% of the maximum setting
per second (100), formally written as:

 Always(Always >=180 {h2o<=88} Implies

 Eventually $dv, ffcs_timer$
 {abs(dv’ – dv)/(ffcs_timer’-ffcs_timer) <= 10}.

FFCS Rules

DBRover

Diagnostic
Info Viewer

FFCS
Prototype

Static
Scheduler

check_h2o
_level

check_o2
_level

check_nh3
_level

check_drain
_setting

Rule 1
implementation

Rule 2
implementation

Rule 3
plementationim2

Rule 4
implementation

DBRover generates
true/false notification
every cycle, and a
potential action to be
performed upon success
and/or failure.

1 3

Sockets communication of
values of the Boolean
propositions {nh3>9 and
nh3<=} used by Rule 3.

DBRover applies the current
cycle value of the ammonia
level to Rule 3: Always
{nh3>9} Eventually <=60
{nh3<=9}

Verification
Result Viewer

SEATools

We also add four operators (check_h2o_level,
check_o2_level, check_nh3_level, check_drain_setting) to
the PDSL model (Figure 5). These operators, when trig-
gered respectively by new data values in the h20, o2, nh3
and drain_setting streams, will send the updated values to
the DBRover for temporal property verification during pro-
totype execution (Figure 6). The control and timing con-
straints of these operators are shown in Table 3.

Figure 6. Architecture of the integrated SEATools /
DBRover Runtime Monitor System.

Operator Control
Constraints

Timing
Constraints

check_h2o_level Triggered by SOME
h2o

MCP = 1000 ms
MRT = 1500 ms
MET = 80 ms

check_o2_level Triggered by SOME
o2

MCP = 1000 ms
MRT = 1500 ms
MET = 80 ms

check_nh3_level Triggered by SOME
nh3

MCP = 1000 ms
MRT = 1500 ms
MET = 80 ms

check_drain_setting Triggered by SOME
h2o, drain_setting

MCP = 2000 ms
MRT = 2500 ms
MET = 80 ms

6 Conclusions

Traditionally, rapid prototyping and formal or run-time
verification methods have been applied to, and thought of
as, two separate phases of the design process. Rapid
prototyping has traditionally been used in early stages of
the design process, for the purpose of early system
evaluation and demonstration, prior to implementation and
coding. In contrast, formal and run-time verification
methods have been used in later stages of the design
process, to validate and debug code that has already been
written. This paper shows that run-time monitoring and verification
can be applied much earlier in the design process, in tan-
dem with rapid prototyping. This approach helps identify
errors earlier in the design process and also helps debug the
requirements themselves.
The executable prototype consists 3968 lines of source
code, 2048 of which are Ada and C codes generated by the
SEATools and the TemporalRover. The use of socket
communication provides a very simple interface between
the SEATools runtime environment and the DBRover Sys-
tem. We only need to create one atomic operator in the
PSDL model for each temporal rule. The Ada implementa-
tion of each of these atomic operators consists of a one-line
procedure call in the to invoke the corresponding C routine
implementing the temporal rule. The mapping between the
Ada and C code is very straightforward and can be auto-
matically generated easily. Although the use of socket
communication introduces additional time delay between
the detection of events during the prototype execution and
the checking of the affected temporal properties by the
DBRover, it has negligible effect on the accuracy of the
verification result because DBRover allows user to specify
time based on the client’s clock. All events detected during

prototype execution are stamped with the local clock before
sending to the DBRover for verification.

References

[1] J. Liu, Real-Time Systems, Prentice Hall, 2000.

[2] Luqi, et al., “SEA Environment for CARA Software”, in the
Tech. Report NPS-SW-03-001, Naval Postgraduate School,
Monterey, CA, 2003, pp. 169-196.

[3] D. Drusinsky, “The Temporal Rover and ATG Rover”, Proc.
Spin2000 Workshop, Springer Lecture Notes in Computer
Science, 1885, pp. 323-329.

[4] Luqi, V. Berzins, and R. Yeh, “A Prototyping Lan-
guage for Real-Time Software”, IEEE Trans. on Soft-
ware Eng., 14(10), pp. 1409-1423 (1988). Table 3. The control and timing of the new operators

[5] Luqi, “Real-Time Constraints in a Rapid Prototyping
Language”, Journal of Computer Languages, 18, pp.
77-103 (1993).

[6] Luqi and M. Shing, “Real-Time Scheduling for Soft-
ware Prototyping”, Journal of Systems Integration,
Special Issue on Computer Aided Prototyping, 6, pp.
44-72 (1996).

[7] Luqi et. al., “DCAPS-architecture for distributed com-
puter aided prototyping system”, Proc. 12th Interna-
tional Workshop on Rapid System Prototyping, 2001, pp. 103
–108.

[8] A. Pnueli, “The Temporal Logic of Programs”, Proc. 181977
IEEE Symp. on Foundations of Computer Science, pp. 46-57.

[9] B. T. Hailpern and S. Owicki, “Modular Verification of
Communication Protocols”, IEEE Trans of comm., COM-
31(1), No. 1, 1983, pp. 56-68.

[10] Z. Manna and A. Pnueli, “Verification of Concurrent Pro-
grams: Temporal Proof Principles”, Proc. of the Workshop
on Logics of Programs, Springer LNCS, 1981 pp. 200-252.

[11] E. Chang, A. Pnueli and Z. Manna, “Compositional Verifica-
tion of Real-Time Systems”, Proc. 9th IEEE Symp. On Logic
In Computer Science, 1994, pp. 458-465.

	Introduction
	Models and Tools for Analysis, Design and Prototyping of Complex Systems
	Metric Temporal Logic with Time Series Constraints
	The DBRover Run-Time Monitor
	Prototype Generation and Runtime Verification of the timing properties
	The Fish Farm Control System (FFCS)
	The PSDL Model
	Incorporating DBRover Run-time Checking to the PSDL Model

	Conclusions

