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Abstract 

This paper addresses the need for systematic verification of 
timing properties of real-time prototypes, which consist of 
timing constraints that must be satisfied at any given time 
and time-series constraints that must be satisfied over a 
period of time. Traditional schedulability analysis only 
works for the former kind of timing properties. It is not 
effective in verifying time-series constraints over a period 
of time. This paper presents a hybrid approach that com-
bines the traditional schedulability analysis of the design 
and the monitoring of timing constraint satisfaction during 
prototype execution based on a time-series temporal logic. 
The effectiveness of the approach is demonstrated with a 
prototype of the fish farm control system software. 

1 Introduction 

Real-time systems are those whose correct behavior de-
pends not only on the logical result of the computation but 
also on the time at which the result is produced. Tradition-
ally, these temporal requirements are expressed as hard and 
soft timing constraints. It is imperative for real-time sys-
tems to meet all deadlines in hard timing constraints but 
acceptable to miss the deadlines of the soft timing con-
straints occasionally [1]. There are currently two comple-
mentary approaches to evaluating the correctness of real-
time systems: static analysis of its behavior according to a 
set of metrics (e.g. schedulability analysis to establish the 
feasibility of the timing constraints) and run-time monitor-
ing of real-time systems to study its behavior according to 
set of metrics (e.g. release jitter, frequency and degree of 
tardiness, etc.). While the static analytic approach plays a 
very important role in helping system designers set time 
budgets and allocate resources in their designs, they are 

only effective if correct timing constraints can be deter-
mined during the requirements analysis phase. Feasible 
requirements for large dynamic systems are difficult to 
formulate, understand, and meet without extensive proto-
typing. Moveover, traditional analytical techniques are not 
effective in evaluating time-series temporal behaviors (e.g. 
the maximum duration between consecutive missing dead-
lines must greater than 5 seconds). This kind of require-
ments can only be evaluated through execution of the real-
time systems or their prototypes.  
Computer aid holds the key to rapid construction, evalua-
tion, and evolution of such prototypes. Analysis and meas-
urement of prototype designs provides upper bounds on the 
time required to execute particular functions, and experi-
ments with simulated environments provide information 
about the accuracies and response times required to keep 
external physical systems within desired operating regions. 
This paper presents hybrid approach that combines the 
static schedulability analysis of the design and the run-time 
monitoring of the prototype execution based on a time-
series temporal logic. The approach is supported by an en-
vironment made up of the Software Engineering Automa-
tion Tools (SEATools) [2] and the DBRover System [3]. 
The effectiveness of the approach is demonstrated with a 
prototype of the fish farm control system software. 
 

2 Models and Tools for Analysis, Design 
and Prototyping of Complex Systems 

We build upon our experience with prototyping languages 
[4], real-time systems modeling and analysis [5, 6], auto-
matic code generation techniques and rapid prototyping 
environments [7] and developed a set of PC-based com-



puter-aided tools to support the modeling, analysis and pro-
totyping of the systems under development (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SEATools is based on the Prototyping System Descrip-
tion Language (PSDL) [4], which is a high-level language 
designed specifically to support the conceptual modeling of 
real-time embedded systems. Real-time requirements in the 
system development are modeled as PSDL specifications, 
which are dataflow graphs augmented with non-procedural 
timing and control constraints (Figure 2). PSDL allows the 
specification of both input and output guards to provide 
conditional execution of an operator and conditional output 
of data. Guards can include conditions on timers that meas-
ure duration of system states, and can allow operators to 
execute only when fresh data has been written to an input 
stream. Each time critical operator has a maximum execu-
tion time (MET) constraint, representing the maximum time 
the operator may need to complete execution after it is 
fired, given access to all required resources. In addition, 
each periodic operator has a period and a deadline (FW). 
The period is the interval between triggering times for the 
operator and the deadline is the maximum duration from 
the triggering of the operator to the completion of its opera-
tion. Each sporadic operator has a maximum response time 
(MRT) and a minimum calling period (MCP). The mini-
mum calling period is the smallest interval allowed between 
two successive triggering of a sporadic operator. The 
maximum response time is the maximum duration allowed 
from the triggering of the sporadic operator to the comple-
tion of its operation.  
PSDL’s declarative timing and control constraints help de-
couple the behavioral aspects of a system from its timing 
properties to allow independent analysis of these two 
aspects, and organize timing constraints in a hierarchical 
fashion, to allow independent consideration of smaller 
subsets of timing constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SEATools User Interface provides the essential facili-
ties for users to create and modify the models. It also pro-
vides some degree of computer-aided consistency checking 
and data entry propagation at the user interface level. Com-
plete semantic check of the model and static analysis of the 
timing constraints are performed by the SEATools’ execu-
tion support system, which consists of a translator, a sched-
uler and a runtime monitor. The translator checks the se-
mantics of the model and generates code that binds together 
the code supplied by the designer and the reusable compo-
nents extracted from the software base. The scheduler ana-
lyzes the feasibility of the timing constraints against the 
resources specified in the target hardware model and create 
the real-time schedule and control code needed for execut-
ing the prototype. The resultant Ada main program consists 
of four parts. The first is a set of data streams, implemented 
as instantiation of generic packages containing Ada tasks 
controlling the mutually exclusive read/write access to the 
data buffers. The second part consists of a set of drivers, 
one for each of the atomic operators. Each driver reads data 
from the specified input streams, evaluates the input 
guards, executes the operators, evaluates the output guards 
and then writes the outputs to the specified data streams 
accordingly. The third part is a static schedule, which is a 
high priority Ada task that executes all time-critical opera-
tors in a deterministic and timely manner. The schedule is 
generated automatically based on the timing constraints and 
the precedence of the operators specified in the data-flow 
graph. The last part of the Ada main program is a dynamic 
schedule, which is a low priority Ada task that executes the 
non-time-critical operators during the slack time in the 
static schedule. SEATools also includes a simple runtime 
monitor that checks for missing deadlines during prototype 
execution. 

Figure 1. The SEATools Environment 

Figure 2. PSDL specification 
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3 Metric Temporal Logic with Time Series 
Constraints 

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. In [8], Pnueli sug-
gested using Linear-Time Propositional Temporal Logic 
(LTL) for reasoning about concurrent programs. Since 
then, several researchers have used LTL to state and prove 
correctness of concurrent programs, protocols, and hard-
ware (e.g., [9, 10]).  
Linear-Time Temporal Logic (LTL) is an extension of pro-
positional logic where, in addition to the propositional logic 
operators there are four future-time operators and four dual 
past time operators: always in the future (always in the 
past), eventually, or sometime in the future (sometime in 
the past), Until (Since), and next cycle (previous cycle).  
Metric Temporal Logic (MTL) was suggested by Chang, 
Pnueli, and Manna as a vehicle for the verification of real 
time systems [11]. MTL extends LTL by supporting the 
specification of relative time and real time constraints. All 
four LTL future time operators (Eventually, Always, Until, 
Next) can be characterized by relative time and real time 
constraints specifying the duration of the temporal operator. 
Hence, for example, the MTL assertion “Always < 20 
commandResult > 0”, states that commandResult > 0 must 
hold every cycle until 20 cycles in the future. 
MTL with time-series constraints (MTLS) enables the 
specification of requirements in which propositions include 
temporal instances of variables. Consider the following 
automotive cruise control code with a stability assertion 
(using embedded TemporalRover syntax [3]) requiring 
speed to be 5% stable while cruise is set and not changed: 
void cruise(boolean cruiseSet, boolean 

cruiseChange,  
boolean cruiseOff, boolean 
cruiseIncr, int speed){ 

… /* Cruise Controller functionality */ 

/* TRBegin 
TRAssert{Always ({cruiseSet}Implies  
    {speed*0.95 < speed’ &&  
     speed’ < speed*1.05}  
         Until $speed$ 
    {cruiseChange || cruiseOff})}=>  
  {…} // user actions 
TREnd */ 
 
In the example speed is a temporal data variable, which is 
associated with the Until temporal operator. This associa-
tion implies that every time the Until operator begins its 
evaluation, possibly in multiple instances (due to non-
determinism), the speed value is sampled and preserved in 
speed variable of this instance of the Until; this value is 
referred to as the pivot value for this Until node instance. 

Future speed values used by this particular evaluation of 
the Until statement are referred to using the prime notation, 
i.e., as speed’; these future instances of the speed variable 
are referred to as primed values. Hence, if the speed value 
was 100Km/h when cruiseSet is true, then the pivot value 
for speed is 100, while every subsequent speed is referred 
to as speed’ and must be within 5% of the pivot speed 
value. 

Note how speed is declared using the $speed$ notation to 
be a temporal data variable associated with the Until opera-
tor. This declaration indicates to the Temporal Rover that it 
should be sampling a pivot value from the environment in 
the first cycle of the Until operators lifecycle, and to refer 
to all subsequent samples of speed as speed’. 

Similarly, the following example consists of a monotonicity 
requirement for the cruise control system, where speed is 
monotonically increasing while Cruise Increase 
(cruiseIncr) command  is active: 
TRAssert {Always({cruiseIncr}Implies  
   {(speed<=speed')&& speed=speed')>=0}  
       Until $speed$ {!cruiseIncr} 
  )}=>  {…} // user actions 
In this example the temporal data variable speed is sampled 
upon every cruiseIncr event , and is compared to the cur-
rent value (speed’) every cycle. The latest speed value is 
then saved in the pivot for next cycles comparison. 

4 The DBRover Run-Time Monitor 

The DBRover is an MTLS monitoring tool based on the 
TemporalRover code generator of [3]. It consists of a GUI 
for editing temporal assertions, an MTLS simulator, and an 
MTLS execution engine (Figure 3).  
 
 
 
 
 
 
 
 
 
 

Figure 3. The DBRover System  
 
The DBRover builds and executes temporal rules for a tar-
get program or application. In run-time, the DBRover lis-



tens for messages from the target application and evaluates 
corresponding temporal assertions. Hence, in the cruise-
control example above, the DBRover will listen for Boo-
lean messages pertaining to the run-time values of the 
cruiseSet, cruiseChange, and cruiseOff 
Boolean propositions, as well as the run-time value of the 
speed variable. The DBRover then evaluates the corre-
sponding MTLS assertion for that cycle. Monitoring is per-
formed on-line, namely, the DBRover operates in tandem 
with the target program, and re-evaluates assertions every 
cycle. The DBRover uses an underlying algorithm that does 
not store a history trace of the data it receives; it can there-
fore monitor very long, and potentially never ending, exe-
cutions of target applications.  

In addition, we add another requirement that “whenever 
water level is below 88 cm for at least three minutes, the 
drain valve settings should be limited to be at most 10% of 
the maximum setting per second” to illustrate the expres-
sive power of the temporal logic. 

5.2 The PSDL Model 
Figure 4 shows the PSDL model for the FFCS. In the inter-
est of brevity, we shall only discuss the water quality con-
trol portion of the prototype in this paper, which is made up 
of six atomic operators:  monitor_h2o, monitor_o2, moni-
tor_nh3, control_water_flow, adjust_inlet and ad-
just_drain, with the associated control and timing con-
straints shown in Table 1.  
 

5 Prototype Generation and Runtime Veri-
fication of the timing properties  

 
In this section, we shall illustrate the hybrid approach with 
a fish farm control system prototype. 

 
 
 5.1 The Fish Farm Control System (FFCS) 
 

The FFCS will control the fish food dispenser and water 
quality in a fish tank. The tank has a mechanical feeder that 
drops pellets of fish food from a feeder tube suspended 
above the tank. The feeder can be turned on and off by the 
computer. The tank also has a water inlet pipe and a drain 
pipe with valves controlled by the computer, and sensors 
that measure the water level (millimeters above the bot-
tom), the oxygen level in the water (parts per million), and 
the ammonia level in the water (parts per million). 

 
 
 
 Figure 4. The PSDL model for the Fish Farm Control System 
 

Operator Control 
Constraints 

Timing 
Constraints 

monitor_h2o − 
Period = 2000 ms 
FW = 200 ms 
MET = 80 ms 

monitor_o2 − 
Period = 2000 ms 
FW = 200 ms 
MET = 80 ms 

monitor_nh3 − 
Period = 2000 ms 
FW = 200 ms 
MET = 80 ms 

control_water_flow − 
Period = 1000 ms 
FW = 200 ms 
MET = 100 ms 

adjust_inlet Triggered by SOME 
activate_inlet 

MCP = 2000 ms 
MRT = 2500 ms 
MET = 80 ms 

adjust_drain Triggered by SOME 
activate_drain 

MCP = 2000 ms 
MRT = 2500 ms 
MET = 80 ms 

The FFCS must deliver fish food at scheduled feeding 
times, repeated every day. The times when each feeding 
starts and stops are displayed on the console of the FFCS 
and can be adjusted from the keyboard. 
The FFCS must keep the oxygen level at least 8 parts-per-
million (ppm), and the ammonia level at most 9 ppm. Fish 
will die if left in an environment with low oxygen or high 
ammonia for 1 minute or more. The fish tank is 1 meter 
wide, 2 meters long, and 1 meter deep (1mm level = 2 liters 
volume). The FFCS must keep the water level between 60 
and 90 cm at all time. The fill/drain valves allow a maxi-
mum flow of 0.5 liters per second when valve is fully open. 
The fresh water coming in the inlet valve contains 30 ppm 
of oxygen and contains no ammonia. The fish in the tank 
consumes oxygen at a rate of 0.1 ml/sec and generates am-
monia at a rate of 0.0015ml/sec while resting and at a rate 
of 0.003 ml/sec while they’re eating. 

 Table 1. The control and timing constraints of the water 
quality control operators  

The FFCS should minimize water flow subject to the above 
constraints.  



Central to the design is the control_water_flow operator, 
which controls the inlet and drain water flow based on the 
following decision table.  

 
 
 

Water 
Level < 65 cm ≥ 65 cm, ≤ 85 cm > 85 cm 

Oxygen 
(O2) & 

Ammonia 
(NH3) 
Level 

− 

O2 < 8 
ppm or  
NH3 > 
9 ppm 

O2 ≥ 8 
ppm 
and  

NH3 ≤ 
9 ppm 

O2 < 8 
ppm or 
NH3 > 
9 ppm 

O2 ≥ 8 
ppm or 
NH3 ≤ 
9 ppm 

Inlet Valve 
Setting open open close open close 

Drain 
Valve 
Setting 

close close close open open 

 
 
 
 
 
 
 

  Table 2. Decision table for the control water flow logic  
Figure 5. The enhanced PSDL model with additional 
operators to invoke the DBRover runtime monitor 

  
 

5.3 Incorporating DBRover Run-time Checking 
to the PSDL Model  

 
Next, we want to find out if the prototype meets all the re-
quirements using the DBRover System. We use the Tempo-
ralRover to generate C code for the following temporal 
rules: 

 
 
 

Rule 1: The water level must be between 60 and 90 cm at 
all time, formally written as:  

 
 

Always {h2o >= 60 && h2o <=90}. 
 

Rule 2: The oxygen level cannot be less than 8 ppm for 
more than 60 seconds, formally written as:   

 Always {o2<8} Implies Eventually <=60 {o2>=8}. 
 Rule 3: The ammonia level cannot be more than 9 ppm for 

more than 60 seconds, formally written as:   
 Always {nh3>9} Implies  

  Eventually <=60 {nh3<=9}.  
Rule 4: If water level has been below 88 cm for 180 sec-

onds, then the change of the drain valve setting must 
be less than or equal to 10% of the maximum setting 
per second (100), formally written as: 

 
 
  
 Always( Always >=180 {h2o<=88} Implies  

  Eventually $dv, ffcs_timer$  
   {abs(dv’ – dv)/(ffcs_timer’-ffcs_timer) <= 10}. 
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We also add four operators (check_h2o_level, 
check_o2_level, check_nh3_level, check_drain_setting) to 
the PDSL model (Figure 5). These operators, when trig-
gered respectively by new data values in the h20, o2, nh3 
and drain_setting streams, will send the updated values to 
the DBRover for temporal property verification during pro-
totype execution (Figure 6). The control and timing con-
straints of these operators are shown in Table 3. 

 
 
 
 
 
 

 

Figure 6. Architecture of the integrated SEATools / 
DBRover Runtime Monitor System.  



 
 

Operator Control 
Constraints 

Timing 
Constraints 

check_h2o_level Triggered by SOME 
h2o 

MCP = 1000 ms 
MRT = 1500 ms 
MET = 80 ms 

check_o2_level Triggered by SOME 
o2 

MCP = 1000 ms 
MRT = 1500 ms 
MET = 80 ms 

check_nh3_level Triggered by SOME 
nh3 

MCP = 1000 ms 
MRT = 1500 ms 
MET = 80 ms 

check_drain_setting Triggered by SOME 
h2o, drain_setting 

MCP = 2000 ms 
MRT = 2500 ms 
MET = 80 ms 

 
 

6 Conclusions 

Traditionally, rapid prototyping and formal or run-time 
verification methods have been applied to, and thought of 
as, two separate phases of the design process. Rapid 
prototyping has traditionally been used in early stages of 
the design process, for the purpose of early system 
evaluation and demonstration, prior to implementation and 
coding. In contrast, formal and run-time verification 
methods have been used in later stages of the design 
process, to validate and debug code that has already been 
written.  This paper shows that run-time monitoring and verification 
can be applied much earlier in the design process, in tan-
dem with rapid prototyping. This approach helps identify 
errors earlier in the design process and also helps debug the 
requirements themselves. 
The executable prototype consists 3968 lines of source 
code, 2048 of which are Ada and C codes generated by the 
SEATools and the TemporalRover. The use of socket 
communication provides a very simple interface between 
the SEATools runtime environment and the DBRover Sys-
tem. We only need to create one atomic operator in the 
PSDL model for each temporal rule. The Ada implementa-
tion of each of these atomic operators consists of a one-line 
procedure call in the to invoke the corresponding C routine 
implementing the temporal rule. The mapping between the 
Ada and C code is very straightforward and can be auto-
matically generated easily. Although the use of socket 
communication introduces additional time delay between 
the detection of events during the prototype execution and 
the checking of the affected temporal properties by the 
DBRover, it has negligible effect on the accuracy of the 
verification result because DBRover allows user to specify 
time based on the client’s clock. All events detected during 

prototype execution are stamped with the local clock before 
sending to the DBRover for verification. 
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