
A Design Pattern for Using Non-developmental Items
 in Real-Time Java

T. W. Otani, M. Auguston, T. S. Cook,

D. Drusinsky, J. B. Michael and M. Shing
Computer Science Department

Naval Postgraduate School
Monterey, California 93943, USA

(831) 656-3391
{twotani, maugusto, tscoo1, ddrusins, bmichael, shing}@nps.edu

ABSTRACT
This paper addresses the need to reduce the difficulties in
developing time-constrained Java applications. We present a
design pattern for a class of time-constrained real-time
applications that allows developers to use (and re-use) Java code
libraries and non-developmental items (NDI). The proposed
design pattern simplifies the implementation of the time-
constrained tasks substantially by not requiring the use of no-heap
real-time threads. We tested the design pattern with the Java Real-
Time System (RTS) 2.0 from the Sun Microsystems. This paper
also presents a simple methodology for determining the
appropriate values for the RTS run-time parameters (thread
priorities, memory usage, process load, and task deadlines) in
order to ensure the deterministic execution of the time-
constrained tasks.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features - concurrent programming structures, patterns, control
structures.

General Terms
Measurement, Performance, Design, Experimentation,
Languages.

Keywords
Real-time system, Java programming language, Garbage
collection, Design pattern, Non-developmental items.

1. INTRODUCTION
In response to the increasing popularity of the Java programming
language for time-constrained applications, the Real-Time for
Java Expert Group (RTJEG) developed the Real-Time
Specification for Java (RTSJ), an extension of the Java Language

Specification and the Java Virtual Machine Specification, to
enable “the creation, verification, analysis, execution, and
management of Java threads whose correctness conditions include
timeliness constraints (also known as real-time threads)” [1].
Having identified the garbage collected heaps as the major source
of unpredictable latencies in Java applications, the RTJEG
introduced two new features in the Java memory model (immortal
memory and scoped memory) as well as a new feature in the Java
thread model (no-heap real-time thread) to allow Java programs to
allocate objects outside the garbage collected heap and to permit
real-time threads to run without interference from the garbage
collector. These extensions, however, have resulted in a complex
programming model that is difficult to understand and hard to
analyze [2-6]. Moreover, the extensions take away two of the
most valuable assets of the Java programming language: the
abundance of free, open source, and commercial code libraries
and components, and the large number of skilled programmers in
the Java development community.

This paper addresses the need to reduce the difficulties in
developing time-constrained Java applications using the no-heap
real-time thread and scoped memory features provided by the
Real-Time Java Extension. It focuses on a class of real-time
applications whose computations must be terminated by their hard
deadlines and have to return the best approximations to their
clients if they cannot finish their computations by the deadlines.
Many of these computations are iterative in nature, resulting in
successive approximations that converge to the exact solution
only in the limit. Examples include Newton's method, the
bisection method, and the Jacobi iteration for solving large
complex system of ordinary and differential equations, inexact
computations for large-scale optimizations, as well as complex
search methods for pattern matching and discrete optimizations.
The computer programs for implementing these algorithms are
usually written by scientists or operations researchers who have
only limited understanding of real-time systems and lack the skill
to produce correct Java programs using the immortal/scoped
memories and no-heap real-time threads.

We present a design pattern for the aforementioned class of real-
time applications. This design pattern enables developers to use
(and re-use) Java code libraries and components in the time-
constrained applications without employing no-heap real-time
threads. We tested the proposed design pattern with the Java
Real-Time System (RTS) 2.0 from the Sun Microsystems [7, 8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
JTRES '07, September 26-88, 2007 Vienna, Austria
Copyright 2007 ACM 978-59593-813-8/07/9... $5.00

The rest of the paper is organized as follows. Section 2 discusses
the drawbacks of the no-heap real-time thread solution and
presents a design pattern that uses heaps. Section 3 describes a
methodology for determining the appropriate values for the RTS
run-time parameters (thread priorities, memory usage, process
load, and task deadlines) in order to ensure the deterministic
execution of the time-constrained tasks, Section 4 discusses
related work and Section 5 draws some conclusions.

2. DESIGN PATTERN FOR REAL-TIME
THREAD WITH REAL-TIME GARGAGE
COLLECTOR
In this section, we first discuss the difficulties involved in using
no-heap real-time threads for the class of applications we identi-
fied in Section 1. Then we present an overview of our proposed
design pattern and experimental results. (A detailed description of
the pattern is available in the Appendix.)

2.1 Drawbacks of the no-heap real-time
thread solution
When we require absolutely no interference from the garbage
collector, we can use no-heap real-time threads. Such an approach
would work smoothly if the upper bound of the memory usage is
known a priori. If the amount of required memory is small, then
we can allocate it in the call stack. Otherwise, we can allocate it
in the scoped or immortal memory. But for many types of
applications that manipulate data structures, such an a priori upper
bound is not known. Adopting no-heap real-time threads for such
data-intensive applications calls for the use of wait-free read and
write queues to pass the data back and forth between the heap and
the no-heap real-time threads.

Consider a hypothetical application that keeps track of very fast
moving objects in the sky. We have an external sensor that detects
a flying object, and the tracking data for the detected object is
stored in a data structure (inside the heap memory). For each
detected object, we want to discriminate whether it is a foe or a
friend. There is a hard real-time requirement for the discriminator
so that the system will be able to intercept the foes in time. To
meet the hard real-time deadline, we can run the discriminators as
no-heap real-time threads so that there will be no interference
from the garbage collector. To pass an object’s tracking data to
the discriminator, we must use a WaitFreeReadQueue. And if the
discriminator modifies the tracking data and we want to put the
updated information back into the data structure, we need to use a
WaitFreeWriteQueue. Notice that the data passed to the
discriminator is a clone of the actual data because no-heap real-
time threads must reside in the immortal memory and cannot
access any data in the heap directly. Figure 1 illustrates the
software architecture.

Using such wait-free read and write queues correctly and
managing the complexity of allocating objects (threads) in the
immortal/scoped memory is well beyond the expected skill level
of the majority of Java programmers. It begets the questions: Isn’t
there a simple design pattern that is easy to follow for the
majority of Java programmers? A design pattern that won’t
impose a steep learning curve? A design pattern for the masses?
Our answer is yes.

2.2 The Sun Java Real-Time System
We propose a simple design pattern for a real-time Java system
that does not require the use of no-heap real-time threads, and test
the pattern with a simple prototype that runs on the Sun RTS. The
prototype utilizes the following two parameters of the Sun Java
Real-Time System garbage collector [9].

2.2.1 RTGCCriticalPriority
The RTGCCriticalPriority runtime parameter is most significant
in the Sun Java RTS V2 release for ensuring the determinism of
time-critical threads. A thread with the assigned priority higher
than RTGCCriticalPriority is called the critical real-time thread.
RTGC starts running at RTGCNormalPriority (whose default
value is the minimum priority for the real-time threads). The auto-
tuning mechanism attempts to start RTGC soon enough so that the
garbage collection completes before reaching the memory
threshold (RTGCCriticalReservedBytes), which will result in
bumping up the priority of RTGC to RTGCCriticalPriority.

2.2.2 RTGCCriticalReservedBytes
To aid the RTGC in ensuring the deterministic behavior of all the
time-critical threads, the programmer needs to specify the second
runtime parameter RTGCCriticalReservedBytes (the default value
is 0). When the free memory becomes less than the value set for
the RTGCCriticalReservedBytes, RTGC runs at the
RTGCCriticalPriority, using all CPU cycles not used by the time-
critical threads. This prevents all other threads (non-time-critical
real-time threads and non-real-time threads) from allocating CPU
cycles and memory, and caused them to be blocked. It is
important to be aware that critical threads with a higher priority

Data

Reader

Writer

Discriminator

Read Queue

HEAP NO HEAP

Manager

Data
Store

Write Queue

Figure 1. Software architecture for passing data back and

forth between the heap and no-heap real-time threads.

Figure 2. Java real-time thread classification

can still get blocked by the lower priority RTGC if there is not
enough memory for the critical threads to run. In general, we want
to set the RTGCCriticalReservedBytes just high enough to ensure
that the critical threads do not get preempted by the RTGC due to
the lack of free memory. If RTGCCriticalReservedBytes is set too
high, the RTGC will run more frequently, thereby preventing the
lower priority threads from running. This will reduce the overall
throughput. The important points to remember regarding the value
for RTGCCriticalReservedBytes are as follows:

• RTGCCriticalReservedBytes too high ⇒ lower throughput

• RTGCCriticalReservedBytes too low ⇒ determinism
compromised

2.3 The Shadow Pattern
The proposed design pattern is defined by the following two key
features:

• Real-time threads are divided into two groups, with the
threads in the first group having a priority higher than the
one assigned to the RTGC and the threads in the second
group having a priority lower than the one assigned to the
RTGC.

• In case the set deadline is missed, a predetermined or
approximate value (e.g., via table-lookup or most recent
value of the approximation) is used as the result of the
computation.

Figure 3 shows the collaboration diagram of the design pattern.
Only the Shadow threads run in a priority lower than the RTGC
priority.

We name our design pattern Shadow because a real-time thread in
the second group act as a shadow for the corresponding real-time
thread in the first group and performs the actual computation. The
shadow threads do not interact directly with any other objects in
the application and can be used to encapsulate reusable
components. Because the threads in the first group are the ones
that interact with the other objects in the application, they are
called the fronts.

The Control is the main controller of the program, and it manages
data objects (e.g., data of the flying objects). For each task (e.g.,
determining the flying object is a foe or a friend) associated to a
data item, the Control creates a front thread and assigns the task to
it. The front in turn delegates the requested task to its shadow and
sets the deadline. The shadow carries out the task and reports the
result back to the front.

We run the front and shadow threads at a priority higher and
lower, respectively, than the one for the RTGC. We call the front

threads critical threads and the shadow threads non-critical
threads.

The defining feature of the shadow design pattern is the
requirement that only the non-critical shadow threads consume
uncertain amount of memory in the heap. The critical front
threads consume heap memory with known upper bounds on the
maximum heap usage and the heap mutation rate (e.g., only
performing simple table-lookup or keeping track of intermediate
results using a fixed number of data objects). This requirement
leads to an architecture that ensures the critical threads will not
get preempted by the RTGC, thus guaranteeing the determinism
of the critical threads.

The shadow threads carry out the computational tasks on behalf
of the front threads. A result is reported back to the front thread if
the task is completed before the deadline. Alternatively, the
shadow thread may choose to report the intermediate results to the
front thread periodically as it continues to work towards the final
result. If the deadline is missed, then the front thread kills its
shadow and uses a predetermined value via table-lookup or the
best value reported by the shadow thread so far as its final result.

A shadow thread can miss the deadline in two ways. First, as the
shadow thread runs in a lower priority, it can be preempted and
paused to wait for the RTGC to complete its garbage collection.
The shadow misses the deadline when the pause becomes too
long. Second, when the deadline is set too soon, the shadow
thread may simply not have enough time to complete the assigned
task even without any interruptions from the RTGC.

We use a timer to keep track of the deadline. The OneShotTimer
class from the standard javax.realtime package is appropriate for
the timer. The deadline can be set by designating the time
duration, an instance of the standard RelativeTime class. When
the deadline is missed, the timer transfers the control
asynchronously to a deadline miss handler. The deadline miss
handler then notifies the front thread that the deadline is missed.
At that point, the front thread returns the preset value as the result
of computation. When the actual result is computed by the
shadow thread before the deadline, the actual result is used by the
front thread.

2.4 Experimental Results
We ran a small test program using the Sun Java Real-Time
System V2 release on a Sun BladeTM 2500 workstation (with a
1.6-GHz UltraSPARC IIIi processors with 1 MB of Level 2
cache, and 2GB RAM) to study our proposed design and to
confirm its viability. In this section, we describe the test program
and report the results of running the test program under different
parameters such as the number of fronts, pause time between the
creation of fronts, and the deadline. In Section 3, we describe the
methodology for determining appropriate values for these
parameters.

The Control is implemented as a RealtimeThread and its run
method is defined as follows:

public void run() {
 for (int i = 0; i < N; i++) {
 DataItem node = new DataItem(i);
 front[i] = new Front(this, i, node);
 frontCnt++;
 }

Front

Shadow

Control
Deadline

Timer Miss
HandlerRTGC

Priority

Figure 3. Collaboration diagram of the Shadow pattern.

 for (int i = 0; i < N) {
 front[i].start();
 /* Point A - Place delay here */
 }
}

We are using an array to keep track of the front threads. Every
index position of this array is a non-null value as it points to an
instance of the Front class. When a front finishes its computation,
it calls the Control’s workDone() method to report the completion
of the assigned task. This will result in setting the corresponding
index position to null, thereby turning the used heap memory into
garbage.

At Point A in the code, we can place a time delay after a front is
started. Placing no delay means the program will run all front
threads simultaneously. This could lead to an OutOfMemory
exception when N, the total number of fronts, becomes larger than
a certain threshold. The reason is that the priority of Control is
higher than the one for RTGC. As Control creates and starts more
and more fronts, more and more memory gets consumed but there
is no garbage to collect because there is no index position in the
array that is set to null. In other words, the front threads never
have a chance to call the Control’s workDone() method.

If we insert some delay at Point A in the code, then it becomes
possible for the fronts to call the Control’s workDone() method to
turn themselves and memory allocated by the corresponding
shadows into garbage for the RTGC to collect.

A front thread performs the discrimination operation on a given
data item. The actual work of discrimination is done by its associ-
ated shadow thread. In this test program, we simulate the
computation by calling a method of the DataItem object. This stub
method will go through a “dummy” computation loop. When the
computation is complete, it calls its controlling front’s
reportFinal() method to report the full result, which will, in turn,
cause the front to invoke the Control’s workDone() method.
Alternatively, the shadow thread may call the front’s
reportProgress() method periodically to report the intermediate
results to the front thread as it continues to work towards the final
result.

The deadline is set by designating the time duration
(RelativeTime that specifies the time duration such as 2 ms) using
a OneShotTimer. When the time is up, its associated
asynchronous event handler DeadlineMissHandler calls the
front’s reportNominal() method to report the nominal result,
which will, in turn, cause the front to invoke the Control’s
workDone() method.

The front can get the result in two ways. The first is the full result,
that is, the actual computation result received from its shadow via
the reportFinal(). In this case, the OneShotTimer object is killed.
The second is the nominal result. This result is used when the
timeout occurs. In this case, the associated shadow is killed.

2.4.1 Test 1
The first set of tests is run by placing no delays (delay time = 0).
The test results are shown in Table 1. As expected, the table
shows that we get an OutOfMemory exception when N = 1500.
Placing no delays in between successive starting of fronts also
means that none of the low-priority shadows can run until all N
fronts have been started, resulting in the large number of missed

deadlines. As we increase the deadline, the number of timeouts
(i.e. missed deadlines by the shadow thread) decreases. When we
increase the deadline the shadows have more time to complete
their computations. This will result in having fewer timeouts for
the same number of fronts. For example, with 200 fronts, we see
anywhere from 35 to 200 occurrences of timeouts when the
deadline is set to 100 ms. When the deadline is increased to 500
ms, we see no timeouts at all.

Table 1: No delay between the starting of front threads
Deadlin
e (ms)

N
(# of front threads)

Results
 (# of timeouts)

20 100 79 ~ 100
 200 200
 500 500
 1000 1000
 1500 OutOfMemory

50 100 28 ~ 96
 200 142 ~ 200
 500 500
 1000 1000
 1500 OutOfMemory

100 100 0 ~ 60
 200 35 ~ 200
 500 500
 1000 1000
 1500 OutOfMemory

500 100 0
 200 0
 500 184 ~ 434
 1000 998 ~ 1000
 1500 OutOfMemory

2.4.2 Test 2
In the second set of tests, we place a delay of 5 ms at Point A in
the code. By placing a delay, we expect to have fewer timeouts,
and to be able to run a larger number of fronts without getting an
OutOfMemory exception because the RTGC will be able to
reclaim garbage. With no delay, the run method of Control never
gets interrupted, and there will be no null pointers in the front
array. With a delay, the run method can get interrupted and the
fronts get a chance to call the Control’s workDone() method,
which will reset the content of the front array, at the index
position that corresponds to the calling front, to null. This will
result in the RTGC reclaiming memory allocated by the
corresponding shadow. As heap memory spaces are recycled, we
can avoid the OutOfMemory exceptions we have seen in the first
set of tests.

Table 2 shows the results of test runs with the delay of 5 ms.
There is zero timeout when the number of fronts (N) is less than
or equal to 1000. When N is 1500, we still get an OutOfMemory
exception regardless of the values for the deadline. This means
that the 5 ms delay time is simply not large enough to slow down
the starting rate of the front threads so that enough fronts can call
the Control’s workDone() method to turn themselves into garbage
for the RTGC to collect.

Table 2: Delay of 5 ms between the starting of front threads
Deadline

(ms)
N

(# of front threads)
Results

 (# of timeouts)

20 100 0
 200 0
 500 0
 1000 0
 1500 OutOfMemory

50 100 0
 200 0
 500 0
 1000 0
 1500 OutOfMemory

500 100 0
 200 0
 500 0
 1000 0
 1500 OutOfMemory

2.4.3 Test 3
Test 3 is the same as Test 2 but with the delay time set to 50 ms.
This increase in the pause time enables the RTGC to perform gar-
bage collection, thereby resulting in the elimination of the
OutOfMemory exception. In this test run, when N = 1500, the
garbage collection occurred once, and there are only 5 or less
timeouts when deadline = 20 ms and N = 1500. Table 3 shows the
results.

Table 3: Delay of 50 ms between the starting of front threads
Deadline

(ms)
N

(# of front threads)
Results

 (# of timeouts)
20 100 0
 200 0
 500 0
 1000 0
 1500 1 ~ 5 (1 GC)

50 100 0
 200 0
 500 0
 1000 0
 1500 0 (1 GC)

500 100 0
 200 0
 500 0
 1000 0
 1500 0 (1 GC)

3. METHODOLOGY FOR DETERMINING
RUN-TIME PARAMETERS
The goal, when implementing our proposed design for the actual
program, is to set the necessary parameters so that the number of
timeouts (T) is minimized: fewer timeouts means better quality of
the final results. In an ideal situation, T should be equal to 0, that
is, no timeouts occur. We observe that three parameters are
important for determining the frequency of timeouts. They are the
pause time (P) between the starting of the fronts, the deadline (D)
for the shadows to complete the designated task, and the memory
usage (M) of the shadows.

If we set P = 0, then the value of M determines the total number
of fronts (N) (and their corresponding shadows and timeout han-
dlers) that can be executed concurrently without causing an
OutOfMemory exception. By increasing the value for D, we can
decrease the number of timeouts to reach the point where T would
be 0. Table 1, for example, shows that by setting D = 500, we can
run 200 fronts without any occurrence of timeouts, and Table 3
shows that we can run 1500 fronts without any timeouts by setting
P to 50 or longer.

In a typical real-time application, the upper bound for D is given
as a system requirement; that is, we want a guaranteed
performance of completing a critical task in no more than D time
units. If D is given, we can attain T = 0 by determining the
appropriate values for P and M. If the upper bound for M is
known, then we can increase the value of P until T becomes 0,
which, in turn, limits the number of concurrent critical threads the
application can run simultaneously. If the upper bound for P is
known, then we can determine the maximum value for M while
maintaining T = 0. This, in turn, may prevent the use of certain
algorithms or code libraries.

Table 4 summarizes the concepts. The "You Can/Need To"
column specifies what the system designer needs to or can do in
order to achieve no timeouts (T = 0) for the given parameters
listed in the Given column.

TABLE 4: The “You Can/Need To” column specifies what
you need to or can do in order to achieve no timeouts (T = 0)

for the given parameters listed in the Given column

To Achieve T = 0
Given the values for You Can/Need To

P and D Determine the maximum value for M.
If a discriminator requires less than this
value, then we can achieve T = 0. If a
discriminator requires more, then we
need to adjust the values of P or D to
get T = 0.

P and M Determine the threshold value for D. If
this value is not acceptable, then we
need to increase the value for P.

D and M Determine the threshold value for P.
Any value below this threshold will
increase the occurrences of timeouts.

T - timeouts; P - pause time (inter-arrival time);
M - memory requirements per task; D - deadline

4. RELATED WORK
In [10], Liu et. al. introduced the notion of imprecise
computation, where each periodic task is logically decomposed
into two parts: a mandatory part that must be completed by the
deadline to produce an acceptable result, followed by an optional
part to reduce the error of the result produced by the mandatory
part if the schedule permits. The focus of [10] is to produce a
feasible schedule that guarantees the timely completion of the
mandatory part of every periodic task while minimizing the
overall error (i.e. the average error or the total error) of the tasks.
Our work is concerned with the timely reporting of acceptable
results to the client. The refined results obtained from additional
computation beyond the specified deadline has no value to the
client. However, in the case that the application requires the
shadow threads to periodically report the intermediate results to
the front threads as they continue to work towards the final
results, one may apply the imprecise computation scheduling to
improve the fairness and timely progress among the shadow
threads.

Sha et. al. introduced an architectural framework, called the
Simplex Architecture, to support the use of commercial off-the-
shelf (COTS) software in high-reliability systems [11-13]. Under
the Simplex Architecture, a system is partitioned into a high-
assurance portion and a high-performance portion. The high-
assurance kernel monitors the system state and takes over the
computation using the software module in the high-assurance
portion of the system if it detects any fault (e.g. missed deadline)
in the high-performance portion of the system. Both the Simplex
Architecture and the shadow pattern work in the same spirit of the
safety executive pattern, relying on the run-time monitoring of
constraint violation and the use of analytic redundancy of
software to tolerate faults. Sha et al.’s work focused on the high-
level structure for a fault tolerant architecture and did not provide
implementation details of their framework in their publications. In
contrast, we introduce a practical pattern for creating Java real-
time applications by the masses.

5. CONCLUSION
This paper addressed the need to simplify the implementation for
a class of time-constrained applications. We proposed a design
pattern in which the developers can use (and re-use) Java code
libraries and components developed for non-time-constrained
applications in implementing time-constrained applications. In
our proposed design pattern, computational tasks either return the
final results by the hard deadlines or the best approximations of
them if the final results cannot be computed by the deadlines. The
key requirements for using the proposed design pattern include:

(1) The availability of the real-time garbage collector (RTGC)
with either an assignable priority lower than the critical
thread of the application or a deterministic garbage
collection behavior.

(2) A known upper bound on the maximum heap usage and the
heap mutation rate of the critical thread. This is easily
obtainable because the critical front threads (and the
associated timers and deadline miss handlers) only perform
simple table-lookup or keeping track of intermediate results
using a fixed number of data objects.

Our prototype with the Sun RTS uses a RTGC with an assignable
priority. This allows a uniform treatment for the priorities of all
real-time threads (including the RTGC) and simplifies the
schedulability analysis of the real-time software.

Our experiment showed that the proposed pattern can be used to
implement predictable time-constrained applications with
deadlines greater than or equal to 20 ms.

To improve the quality of the results returned by the time-
constrained application, this paper also described the three run-
time parameters that will affect the timeliness of the low-priority
shadow threads and presented a methodology to determine,
empirically, the tradeoff between the pause time (P), deadline (D)
and the memory usage of the shadow threads (M) to minimize the
number of timeouts experienced by the application.

There are two possible areas for future efforts. The first is the
testing for the applicability of our design pattern to different types
of garbage collectors. For instance, IBM WebSphere supports the
Metronome garbage collector whose priority is not assignable by
the programmer. We believe the proposed Shadow design pattern
would work well with the Metronome garbage collector. We ran
some preliminary experiments with favorable results but need to
perform more tests.

The second is the undertaking of more elaborate testing
methodologies. For the tests we reported in this paper, we simply
put a fixed amount of pause time between the creations of the
front threads. We would like to carry out the same tests by using
more complex stochastic models.

6. ACKNOWLEDGMENTS
The authors thank Greg Bollella for the insightful discussions
about the Sun Java Real-Time System. The research reported in
this article was funded in part by a grant from the U.S. Missile
Defense Agency. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright annotations
thereon.

7. REFERENCES
[1] Bollella, G., et al. The Real-Time Specification for Java,

Addison-Wesley, 2001. Available at
http://www.rtsj.org/specjavadoc/book_index.html

[2] Bollella, G., et al. Programming with non-heap memory in
the real time specification for Java. In Proceedings of the
Conference on Object Oriented Programming Systems
Languages and Applications (Anaheim, CA, USA, 2003).
ACM Press, New York, NY, 2003, 361 – 369.

[3] Kwon, J., Wellings, A., and King, S. Ravenscar-Java: a high
integrity profile for real-time Java. In Proceedings of the
2002 joint ACM-ISCOPE conference on Java Grande JGI
'02 (Seattle, Washington, USA, November 3-5, 2002). ACM
Press, New York, NY, 2002, 131-140.

[4] Laukkanen, M. Real-time Java—Memory Management.
Seminar on Real-time Java, Department of Computer
Science, University of Helsinki, April 2001.

[5] Pizlo, F., Fox, J., Holmes, D. Vitek, J. Real-time Java scoped
memory: design patterns, semantics. In Proceedings of the
IEEE International Symposium on Object-oriented Real-
Time Distributed Computing (ISORC’04) (Vienna, Austria,
May 2004), 101-112.

[6] Potanin, A., Noble, J., Zhao, T., and Vitek, J. A High
Integrity Profile for Memory Safe Programming in Real-time
Java. In Proceedings of the 3rd workshop on Java
Technologies for Real-time and Embedded Systems (San
Diego, CA, USA, October 2005).

[7] Cook, T.S., Drusinsky, D., Michael, J.B., Otani, T.W., and
Shing, M. Design of Preliminary Experiments with the Sun
Java Real-Time System, Technical Report NPS-CS-06-010,
Naval Postgraduate School, Monterey, CA, 2006.

[8] Auguston, M., Cook, T.S., Drusinsky, D., Michael, J.B.,
Otani, T.W., and Shing, M., Experiments with Sun Java
Real-Time System - Part II, Technical Report NPS-CS-07-
005, Naval Postgraduate School, Monterey, CA, 2007.

[9] Sun Java Real-Time System 2.0 Garbage Collection, Sun
Microsystems Inc., Dec. 6, 2006

[10] Liu, J.W.S., Shih, W.-K., Lin, K.-J., Bettati, R., and Chung,
J.-Y. Imprecise computations. In Proceedings of the IEEE,
82, 1(Jan. 1994), 83-94.

[11] Gagliardi, M., Rajkumar, R., ,Sha, L. Designing for
evolvability: building blocks for evolvable real-time systems.
In Proc. 1996 IEEE Real-Time Technology and Applications
Symposium (10-12 June 1996), 100-109

[12] Sha, L., Goodenough, J. B., and Pollak, B. Simplex
Architecture: Meeting the Challenges of Using COTS in
High-Reliability Systems. In Crosstalk The Journal of
Defense Software Engineering (April, 1998), 7 – 10.

[13] Seto, D., Krogh, B., Sha, L., Chutinan, A. The Simplex
architecture for safe online control system upgrades. In Proc.
1998 American Control Conference, Vol 6 (24-26 June
1998), 3504-3508

8. APPENDIX
In this appendix, we present our proposed pattern in the typical
design pattern documentation format for easy reference and use.

Name: Shadow

Classification: Behavioral
Intent:

Ensure a time-constrained task returns an acceptable result to
the client by the task deadline.

Motivation:
Consider for example an airspace defense system that keeps
track of very fast moving objects in the sky. The system uses
external sensors to detect flying objects and stores the
tracking data for the detected objects in a data structure
(inside the heap memory). For each detected object, the
system calls a discriminator to determine whether it is a foe
or a friend. There are many discriminators for the system to
choose from, ranging from simple table-lookup that is fast
but not very accurate, to feature-based analysis that is very
accurate but very time- and memory-consuming.

There is a hard real-time requirement for the discriminator so
that the system will be able to intercept the foes in time. To
meet the hard real-time deadline, the system can run the
discriminators as no-heap real-time threads so that there will
be no interference from the garbage collector. Such a design
will require the copying of tracking data between the heap
memory and the immortal/scoped memory, and the passing
of the cloned data to and from the no-heap real-time thread
via wait-free read and write queues.

Using of wait-free read and write queues correctly and
managing the complexity of allocating objects (threads) in
the immortal/scoped memory is well beyond the expected
skill level of the majority of Java programmers. Moreover, it
will prevent the direct use of non-developmental items that
are originally written for non-real-time Java applications.

The shadow pattern addresses the need to reduce the
difficulties in developing time-constrained Java applications
using the no-heap real-time thread and scoped memory
features provided by the Real-Time Java Extension.

Applicability:
Use the pattern for real-time application whose computations
must be terminated by their hard deadlines, and have to
return the best approximations to their clients if they cannot
finish their computations by the deadlines.

The approximate solution must be obtainable in time strictly
less than the deadline and in heap memory with known upper
bounds on the maximum heap usage and the heap mutation
rate (e.g., only performing simple table-lookup or keeping
track of intermediate results using a fixed number of data
objects).

The real-time application must run in a real-time Java system
with a real-time garbage collector (RTGC) that has either an
assignable priority lower than the critical thread of the
application or a deterministic garbage collection behavior.

Structure:

Participants:
• RealtimeThread, OneShotTimer and AsyncEventHandler

- Java Realtime API Standard classes

Figure 4. The Shadow pattern class model.

• Control
- Creates the Front objects to carry out the time-constrained

computations
- Destroy the Front objects when the computation is

completed

• Front
- Creates the Shadow object to carry out the detailed

computations
- Creates the DeadlineMissHandler object
- Creates the OneShotTimer object with its duration equal to

the deadline and associates it with the
DeadlineMissHandler

- Keeps track of updates from the Shadow object
- Reports either the full result or the nominal result to the

Control object when the reportFinal() or reportNominal()
method is called

• Shadow
- The reusable component that performs the actual

computation
- Calls the reportFinal() method of the Front object when

computation is done

• DeadlineMissHandler
- Used by the OneShotTimer to call the reportNominal()

method of the Front object

Collaboration:
Scenario 1. The Shadow object completes its computation
before the deadline.

Scenario 2. The Shadow object fails to complete its
computation before the deadline.

Control:
Control

front:
Front

shadow:
Shadow

timer:
OneShotTimer

timeOutHandler:
DeadlineMissHandler

loop

create(this, i, data)

start() create(this, data,
scheduling)

create(this)

create(dealine, timeOutHandler)
start()

start()

handleAsyncEvent()

deadline

workDone(i, result)

destroy

destroy

reportNominal()
quit()

destroy
destroy

Sample Code:
The Java code shown here sketches the implementation of the
Control, Front, Shadow and the DeadlineMissHandler classes
in the Shadow pattern.

• Control
 public void run() {

 for (int i = 0; i < repeatCnt; i++) {
 DataItem item = new DataItem(i);
 Front front =
 new Front(this, i, item);
 dataStore[i] = front;

 //other bookkeeping tasks
 }

 RelativeTime delay =
 new RelativeTime(50, 0);

 for (int i = 0; i < repeatCnt; i++) {
 dataStore[i].start();
 try {
 RealtimeThread.sleep(delay);
 } catch (InterruptedException e) {
 }
 }
 }

 public synchronized void workDone(
 int id, DataItem result) {
 dataStore[id] = null; //remove it, so it
 //gets garbage
 //collected

 //other bookkeeping tasks
 }

• Front

 public void run() {
 PriorityParameters scheduling =
 new PriorityParameters(
 PriorityScheduler.
 instance().getMinPriority());
 shadow = new Shadow(this,
 dataItem, scheduling);
 DeadlineMissHandler timeoutHandler =
 new DeadlineMissHandler(this);
 timer = new OneShotTimer(
 new RelativeTime(
 controller.getDeadline(), 0),
 timeOutHandler);

 timer.start();
 shadow.start();
 }

 public synchronized void reportFinal(
 DataItem result) {
 if (isActive) {
 isActive = false;
 timer.stop(); //we got a full result
 //from the stateless
 //discriminator so stop
 //this OneShotTimer
 //object
 timer = null;
 shadow = null;
 timeOutHandler = null;

 control.workDone(id, result);
 }

Figure 5. Scenario 1 sequence diagram.

Figure 6. Scenario 2 sequence diagram.

 }

 public synchronized void reportNominal() {
 if (isActive) {
 isActive = false;
 shadow.quit(); //this kills the shadow
 //by setting its
 //'isActive' to false.
 shadow = null;
 timer = null;
 timeOutHandler = null;

 control.workDone(id, nominalResult);
 }
 }

 public synchronized void reportProgress(
 DataItem result) {
 //bookkeeping tasks

 }

• Shadow
public void run() {

 while (isActive && i < 100) {
 //do work
 }

 front.reportFinal(result);
 }

• DeadlineMissHandler
public void handleAsyncEvent() {
 front.reportNominal();
}

