
Specification, Validation and Run-time Monitoring of
SOA Based System-of-Systems Temporal Behaviors

Thomas S. Cook
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA

tscoo1@nps.edu

Doron Drusinksy
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA
and Time Rover, Inc.
Cupertino, CA, USA

ddrusins@nps.edu, www.time-rover.com

Man-Tak Shing
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA

shing@nps.edu

Abstract - This paper is concerned with the correct
specification and validation of temporal behaviors in a
Service-Oriented Architecture based system-of-systems. It
presents a new formalism, called Message Sequence Chart
Assertions (MSC-Assertions), for the specification of
global system behaviors, and describes a specification
validation technique using scenario simulation based on
the JUnit Test Framework. We also describe the armor-
plating of system-of-systems using runtime execution
monitoring of MSC-Assertions.

Keywords: Message Sequence Chart (MSC) Assertions,
JUnit testing, formal specification, run-time execution
monitoring, validation, verification, service-oriented
architecture, web services.

1 Introduction
Large systems-of-systems (SoSes) are typically made up

of a federation of existing systems and developing systems
interacting with each other over a network to provide an
enhanced capability greater than that of any of the
individual systems within the system-of-systems. Service-
oriented architecture (SOA) and the supporting Web
Services (WS) technology hold promise to create SoSes
that are interoperable, composable, extensible, and
dynamically reconfigurable.

A SOA, in the most generic sense, is an architecture that
supports the discovery of, binding to, and execution of
some resource (service) or composition of resources
(services) on a network. Services are applications designed
to be reusable, loosely coupled, composable, autonomous,
stateless, discoverable, defined by a formal contract, and to
conceal underlying logic. As the supporting technology
evolves, so too does the concept of a SOA. Today, many
large organizations, including the US Department of
Defense, are thinking and acting in accordance with the
SOA definition found in [10], where SOA is defined as “an
architecture that promotes service-orientation through the
use of Web Services”.

The increasing use of SOA and WS for complex
system-of-systems has raised concerns regarding the
correctness and trustworthiness1 of the SOA-based SoSes
[2]. At the highest abstract level, the functionality of a
SOA-based SoS can be viewed as a set of Web Services.
A Web Service has two components: a contract defining its
external behavior from the clients’ point of view, and a
business process describing its internal logic via the
coordination and composition of other Web Services. The
specification of these complex business processes is error
prone due to concurrency in activities execution, possibility
of communication delay and error, as well as faults in the
remote service providers. Often, even if the specifications
are correct for an ideal operating environment, they do not
operate as well in a less than ideal situation, thus render the
resultant SOA-based SoS untrustworthy.

Many researchers proposed to enhance the
trustworthiness of the Web Services via formal
specification and verification of their business processes [3,
4, 11-14, 16], using light-weight formal methods consisting
of the following four steps:
Step 1. Specify the business process in some semi-formal
languages (e.g. the Business Processing Execution
Language (BPEL));
Step 2. Translate the specifications into formal models (e.g.
Linear temporal logic, state machines, Petri nets, process
algebras);
Step 3. Specify the desirable functional and non-functional
properties of the business process as formal assertions;
Step 4. Verify the formal business process models against
the properties using theorem proofing, model checking, or
specification-based testing.

1 The term trustworthy software is synonymous with
dependable software and hence can be expressed as a
composite vector of the software’s dependability attributes
that include availability, reliability, safety, security
(confidentiality and integrity), and maintainability.

However, for the aforementioned methods to effectively
produce trustworthy SoSes, we must address the following
concerns:

(1) We need to validate the accuracy and the correctness of
the formal-assertion representation of the mission-essential
and safety-critical properties of the SoSes. Otherwise, we
risk wasting our efforts in verifying the Business Process
Models against the wrong set of properties. To address this
concern, we present a new formalism and an iterative
process for engineers to create and validate system
behavior assertions based on Use Case scenarios.

(2) Even if we can correctly capture and specify the system
properties, and successfully verify the Business Process
models against these properties, there is no guarantee that
the SoS will behave as expected during run-time due to
possible communication delays and service provider
failures. To address this concern, we propose to combine
run-time execution monitoring and assertion checking as a
means to armor-plate the SOA-based SoSes.

The rest of the paper is organized as follows. Section 2
presents Message Sequence Chart Assertion for specifying
distributed system behaviors. Section 3 describes the
process for the development and validation of MSC
Assertions. Section 4 illustrates armor-plating the SoSes
using MSC Assertions and Run-Time Execution
Monitoring. Section 5 presents a discussion on the
approach and draws the conclusion.

2 Message Sequence Chart Assertions

MSC Assertions are a formal-language extension of
UML MSC’s superimposed with UML statecharts. They
have the look and feel of UML MSC’s and UML
statecharts, yet they are formal and executable. For
example, unlike UML MSC’s, MSC-Assertions are capable
of making a distinction between events that can occur and
those that must occur. In addition, MSC Assertions are
capable of specifying infinite sets of scenarios.

MSC Assertions are based on Statechart diagrams
superimposed on MSC diagrams and augmented with Java
(or C++) conditions and actions. For example, Figure 1
shows the MSC Assertion for a time-bound requirement of
a travel agent service: “R1: The travel agent must obtain
bids from at least two airlines and two hotels and return a
flight and a hotel matching the customer’s request within
30 seconds from the time the customer issues his travel
request”.

Figure 1. A MSC Assertion for the Travel Agent Service

The MSC-Assertion of Figure 1 looks, for the most part,
like a UML MSC, but it enjoys the following unique
features:

1. An MSC Assertion is written from the standpoint of an
observer, and can be used for run-time monitoring of
the target application. Consider for example the
message reqFlight(Flight f) sent from the Travel Agent
to Airline #1. While a UML-MSC might consider an
interpretation where this event is generated by the
Travel Agent, for an MSC Assertion, it is meant that
the MSC Assertion should monitor-for, or listen-for,
this event flowing from Travel Agent to Airline #1.
Note that while the Travel Agent service may send out
many requests for bids, the MSC Assertion only needs
to observe two of such requests to satisfy the
requirement R1.

2. An MSC Assertion allows loops and transitions back
up the vertical task bar. In Figure 1 for example, the
Travel Agent will return to the Waiting state if the
condition aBidCount ≥ 2 && hBidCount ≥ 2 is false.
This feature is in contrast to UML MSC’s where a
vertical task bar represents a timeline and where clearly
a task cannot move back in time. An MSC Assertion
however, considers a vertical task bar as a progression
of states, like a state diagram drawn vertically. It
therefore permits loops.

3. States and actions. As discussed above and as
illustrated in Figure 1, an MSC Assertion task might
contain both implicit and explicit states. The purpose

of explicit states is to specify actions, which are code
snippets (written in Java or C++, depending on the
code generator chosen) to be performed, such as
aBidCount++ or rightFlight(Flight h). For example,
the Customer will remain in its implicit initial state
until the event request(Req r) is observed leaving the
Customer. The Customer then enters the Monitoring
state. The Customer will remain in Watching state until
either the event response(Flight f, Hotel h) is observed
arriving at the Done state, or the timeout event is
detected.

4. Java/C++ underlying language and code generation.
An MSC Assertion is a diagrammatic representation of
a Java or C++ class that implements the requirement as
a monitor. Hence, all variables and functions declared
in the local-variables boxes of Figure 1 are actually
properties of this generated class.

5. Parameterized events. An MSC Assertion event can
contain objects as actual parameters. In Figure 1, the
transition annotated with the message bidFlight(Flight
f), from Airline #1 to the Travel Agent, is sent with
some Flight object as an argument. Condition guards
range over local properties and event arguments (e.g.,
rightFlight(f)).

6. An MSC Assertion is an assertion. It uses the same
approach described in [6] for assertion statecharts
where it announces a success or failure for every
witnessed input scenario. It does so using the built-in
bSuccess property. The boolean bSuccess is true by
default. The developer assigns bSuccess=false as an
action wherever s/he wants the assertion to fail. The
JUnit test-case then inspects this property to decide
whether a particular test-run failed or not.

Figure 1 realized requirement R1 as follows. First note
that, in the style of the UML-MSC notation, the assertion
contains six tasks, denoted by the six vertical task bars.
Also, the assertion contains local variables, timer,
aBidCount, hBidCount and bDoneOK, as well as two
Boolean functions rightFlight() and rightHotel() for
checking the correctness of the itinerary. The MSC
Assertion monitoring starts as a request(Req r) event is
observed from the Customer task to the Travel Agent task
while the Customer task is in its implicit inital state. The 30
second timer is triggered and the Customer task enters its
Watching state. The Customer will remain in Watching
state until either the event response(Flight f, Hotel h) from
the Travel Agent task (while the latter is in its Complete
state) or the timeout event is detected. If the Customer
receives the response() message before the timeout event, it
will enter the Done state. bDoneOK will be set to true and
the subsequent timeout event will cause the Customer task
to enter the OK final state. If the Customer task does not
receive the response() message before the timeout event,
bDoneOK will remain false and the timeout event will
cause the Customer task to enter the Error final state;

bSuccess will be set to false indicating the violation of the
requirement.

The Travel Agent task will remain in its Init state until it
receives the event request(Req r), then it will transition to
the Bidding state. The Bidding state consists of three
concurrent threads, in the style of the UML statechart
threads [6]. The Travel Agent task will remain in the
Waiting state until it has received at least two airline bids
and two hotel bids. It will then transition to the Complete
state where the MSC Assertion is ready to observe the
event response(Flight f, Hotel h) from the Travel Agent
task to the Customer task. Clearly, the Travel Agent task
must ensure that the bids received indeed satisfy the
customer’s request. This constraint is manifested as a
condition guard righFlight(f) or rightHotel(h) on the
message transition (in other words, MSC Assertion
message transitions have the same event[guard]/action
look and feel as UML-statechart transitions).

Since we are not interested in the detailed temporal
behavior of the Airline tasks and Hotel Network tasks in
the requirement R1, we treat these tasks as black boxes.
The MSC Assertion only wants to observe the fact that
each of these tasks returns a bid to the Travel Agent task
only after they have received a request for bid from the
Travel Agent task as follows. Each of these four tasks
remains in its Init state until it receives the request for bid
message from the Travel Agent task. It then enters its
implicit working state. It will transition from its working
state to its implicit terminal state when the MSC Assertion
observes that the task returns a bid to the Travel Agent task.

3 Validation of Message Sequence
Chart Assertions

It is important to validate the correctness of the
assertions early in the software development process.
Unfortunately, users often discover, late in the development
process, that their assertions are incorrect and do not work
as intended. Possible reasons for incorrect assertions are
listed in Table 1 below.

Table 1. Possible reasons for assertion failure
Case Reason

1. Incorrect translation of the natural language
specification to a formal specification.

2. Incorrect translation of the requirement, as
understood by the modeler, to natural
language.

3. Incorrect cognitive understanding of the
requirement. This situation typically occurs
when the requirement was driven from the
use case’s main success scenario, with
insufficient investigation of other scenarios.

In [8], we propose the following iterative process for
assertion development (Figure 2).

Figure 2. Iterative process for assertion development

Our methodology, as presented in [6-8], is that formal
requirements ought to be simulated to assure that the
cognitive understanding of the requirement matches the
formal specification. To that end, we developed a run-time
monitor for MSC Assertions that is fully integrated with the
popular JUnit testing framework [1], and created a set of
scenarios, using the JUnit testing framework. The scenarios
test the MSC Assertion to assure that it announces a success
if-and-only if the travel agent returns an acceptable
itinerary to the Customer after requesting and obtaining at
least two airline bids and at least two hotel bids matching
the Customer’s request in the prescribed time limit. For
example, the following hand-code test case describes a
scenario in which the Travel Agent successfully completes
its service 25 seconds after receiving the request from the
Customer.

import junit.framework.*;

public class TestMSC_Assertion extends TestCase {
 private MSC_Assertion mSC_Assertion = null;

 protected void setUp() throws Exception {
 super.setUp();
 mSC_Assertion = new MSC_Assertion();
 }

 protected void tearDown() throws Exception {
 mSC_Assertion = null;
 super.tearDown();
 }

 // Test Scenario 1
 public void testExecTReventDispatcher() {
 Flight f = new Flight(3, 1);
 Hotel h = new Hotel(3);
 Req req = new Req(f, h);
 // send request from Customer to Travel Agent
 mSC_Assertion.request(req,
 new Integer(MSC_Assertion.CUST),
 new Integer(MSC_Assertion.TA));
 // send request for Airline bids

 mSC_Assertion.reqFlight(f,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.AL1));
 mSC_Assertion.reqFlight(f,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.AL2));
 // send request for Hotel bids
 mSC_Assertion.reqHotel(h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.H1));
 // receive bid from Airline 1
 mSC_Assertion.bidFlight(f,
 new Integer(MSC_Assertion.AL1),
 new Integer(MSC_Assertion.TA));
 // send request for second Hotel bid
 mSC_Assertion.reqHotel(h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.H2));
 // advance clock by 25 seconds
 mSC_Assertion.incrTime(25);
 // receive bids from Hotel 2
 mSC_Assertion.bidHotel(h,
 new Integer(MSC_Assertion.H2),
 new Integer(MSC_Assertion.TA));
 // receive bid from Airline 2
 mSC_Assertion.bidFlight(f,
 new Integer(MSC_Assertion.AL2),
 new Integer(MSC_Assertion.TA));
 // receive bids from Hotel 1
 mSC_Assertion.bidHotel(h,
 new Integer(MSC_Assertion.H1),
 new Integer(MSC_Assertion.TA));
 // send response to Customer
 mSC_Assertion.response(f, h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.CUST));
 // advanced clock by 10 seconds
 mSC_Assertion.incrTime(10);
 assertTrue(mSC_Assertion.isSuccess());
 }
}

To test the correctness of the assertion, we created two

more scenarios by replacing the body of the
testExecTReventDispatcher() method with the following
code.
 // Test Scenario 2
 public void testExecTReventDispatcher() {
 Flight f = new Flight(3, 1);
 Hotel h = new Hotel(3);
 Req req = new Req(f, h);
 mSC_Assertion.request(req,
 new Integer(MSC_Assertion.CUST),
 new Integer(MSC_Assertion.TA));
 mSC_Assertion.reqFlight(f,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.AL1));
 mSC_Assertion.incrTime(35);
 mSC_Assertion.reqHotel(h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.H2));
 // too late
 assertFalse(mSC_Assertion.isSuccess());
 }

 // Test Scenario 3
 public void testExecTReventDispatcher() {
 Flight f = new Flight(3, 1);
 Hotel h = new Hotel(3);
 Req req = new Req(f, h);
 mSC_Assertion.request(req,
 new Integer(MSC_Assertion.CUST),
 new Integer(MSC_Assertion.TA));
 // send request for Airline bids

 mSC_Assertion.reqFlight(f,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.AL1));
 mSC_Assertion.reqFlight(f,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.AL2));
 // send request for Hotel bids
 mSC_Assertion.reqHotel(h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.H1));
 mSC_Assertion.reqHotel(h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.H2));

 // receive bid from Airline 2
 mSC_Assertion.bidFlight(f,
 new Integer(MSC_Assertion.AL2),
 new Integer(MSC_Assertion.TA));
 // receive bid from Hotels
 mSC_Assertion.bidHotel(h,
 new Integer(MSC_Assertion.H1),
 new Integer(MSC_Assertion.TA));
 mSC_Assertion.bidHotel(h,
 new Integer(MSC_Assertion.H2),
 new Integer(MSC_Assertion.TA));

 // assert that the Travel Agent task in not
 // in the Complete state
 assertFalse(mSC_Assertion.inState(“Complete”));

 // the MSC Assertion will ignore the
 // following event since it is not sent while
 // the Travel Agent task is in its Complete
 // state
 mSC_Assertion.response(f, h,
 new Integer(MSC_Assertion.TA),
 new Integer(MSC_Assertion.CUST));

 // advanced clock by 35 seconds
 mSC_Assertion.incrTime(35);
 assertFalse(mSC_Assertion.isSuccess());
 }

Scenario 2 represents the case where the Travel Agent

missed its deadline when it returned the response() back to
the Customer. Scenario 3 represents an interesting case
where the Travel Agent tried to return a response() back to
the Customer without getting at least two Airline bids. Note
that the MSC Assertion detects the error and ignores the
observed response() event because it was not sent while the
Travel Agent task was in its Complete state. The entry
action in the Error flowchart box in Figure 1 sets the
variable bSuccess to false, which in turn causes
mSC_Assertion.isSuccess() to return false and assertFalse()
to true.

4 Run-Time Execution Monitoring of

Message Sequence Chart Assertions
Runtime Execution Monitoring (REM) is a class of

methods for tracking the temporal behavior of an
underlying application. REM methods range from simple
print statement logging methods to run-time tracking of
complete formal requirements for verification purposes.
NASA used REM to verify the flight code for its Deep
Impact project [9]. A recent paper by the authors describes
run-time verification of the CARA infusion pump using

UML-statechart models combined with statechart assertions
for formal requirement specification [8].

Due to the possibility of communication delay and error,
as well as faults in the remote service providers,
verification alone can never give us the kind of assurance
one expects to have for trustworthy SOA-based SoSes. We
need to increase the robustness of these systems by armor-
plating them against unexpected behaviors. In [5],
Drusinsky proposed one form of armor-plating that fortifies
the software’s exception-handling ability via runtime
monitoring of temporal assertions, where formal
specifications are translated by a code generator into C,
C++, or Java statements to be deployed for catching
exceptions in the final product during runtime. Here, we
can armor-plate the SoSes by embedding the code
generated from the MSC Assertions in the Web Services
target code to detect run-time assertion failure. In addition,
we can add calls to exception-handlers in the Error
flowchart box of the MSC Assertion to enable run-time
recovery whenever the MSC Assertion fails during
execution of the Web Services.

5 Discussion and Conclusion

In this paper, we presented a scenario-based, iterative
process and UML-MSC like assertions to help ensure the
correctness of formal requirements per the modeler’s
expectations early in the development process. It is easier
for system designers to create and understand MSC
Assertions than text-based temporal assertions of the kind
found in the literature, such as Linear-time Temporal Logic
(LTL) [15] because MSC Assertions are similar to the
intuitive and familiar UML MSC’s.

Various formal verification techniques suggested in the

literature [3, 12-14] approach the correctness of Web
Services temporal behaviors by expressing these temporal
properties as LTL statements and subsequent model
checking. Most model checkers, like SPIN, do not support
specifications with real-life constraints such as real-time
and time-series. Moreover, LTL has a rather weak
expressive power (LTL is sub-regular). In contrast, MSC
Assertions use Java/C++ as an underlying language and
therefore enjoy Turing-equivalent descriptive power

Acknowledgement

The research reported in this article was funded in part
by a grant from the U.S. Missile Defense Agency. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright annotations thereon.

References
[1] K. Beck and E. Gamma, “Test infected: Programmers
love writing tests”, Java Report, 3(7) , pp. 37-50, 1998.

[2] K. Birman, R. Hillman and S. Pleisch, “Building
network-centric military applications over service oriented
architectures”, Proc. SPIE Defense and Security
Symposium, pp. 255-266, 29-31 Mar. 2005.

[3] F. van Breugel and M. Koshkina, “Models and
Verification of BPEL”, Dept. of Computer Science and
Engineering, York University, Toronto, Canada, September
2006. http://www.cse.yorku.ca/~franck/research/drafts/
tutorial.pdf

[4] J. Bhuiyan, S. Nepal and J.Zic, “Checking Conformance
Between Business Processes And Web Service Contract In
Service Oriented Applications”, Proc. Australian Software
Engineering Conference, 18-21 April 2006.

[5] D. Drusinsky, “Specs Can Handle Exceptions”,
Embedded Developers Journal, pp. 10-14, Nov. 2001.

[6] D. Drusinsky, Modeling and Verification Using UML
Statecharts, Elsevier Publishing, 2006.

[7] D. Drusinsky and M. Shing, Creation and Evaluation of
Formal Specifications for System-of-Systems
Development., Proc 2005 IEEE International Conference
on Systems, Man and Cybernetics, Waikoloa, Hawaii, pp.
1864-1869, Oct 2005.

[8] D. Drusinsky, M. Shing and K. Demir, “Creation and
Validation of Embedded Assertions Statecharts”, Proc 17th
IEEE International Workshop on Rapid Systems
Prototyping, Chania, Greece, pp. 17-23, June 2006.

[9] D. Drusinsky and G. Watney, “Applying Run-Time
Monitoring to the Deep-Impact Fault Protection Engine”,

Proc 28th IEEE/NASA Software Engineering Workshop, pp.
127-133, Dec 2003.

[10] T. Erl, Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall, Upper Saddle
River, NJ, 2005.

[11] X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for
Formal Analysis of Web Services”, Proc. 16th Conf. on
Computer Aided Verification, pp. 510-514, 13-17 July
2004.

[12] J. Fisteus, L. Fernández and C. Kloos, “Applying
model checking to BPEL4WS business collaborations”,
Proc. ACM Symposium on Applied Computing, pp. 826-
830, 13-17 Mar. 2005.

[13] J. Garcia-Fanjul, J. Tuya, and de la Riva, "Generating
Test Cases Specifications for BPEL Compositions of Web
Services Using SPIN", Proc. Int, Workshop on Web
Services Modeling and Testing (WS-MaTe 2006), 9 June
2006.

[14] H. Huang and R. Mason, “Model checking
technologies for Web services”, Proc 2nd Int. Workshop
on Collaborative Computing, Integration, and Assurance
and 4th IEEE Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems, 27-28 April
2006.

[15] A. Pnueli, “The Temporal Logic of Programs”, Proc.
18th IEEE Symp. on Foundations of Computer Science, pp.
46-57, 1977.

[16] W. Tsai, X. Wei, Y. Chen and R. Paul, “A robust
testing framework for verifying Web services by
completeness and consistency analysis”, Proc. 2005 IEEE
International Workshop on Service-Oriented System
Engineering (SOSE’05), pp. 151-158, 20-21 Oct. 2005.

