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Abstract - This paper is concerned with the correct 
specification and validation of temporal behaviors in a 
Service-Oriented Architecture based system-of-systems.  It 
presents a new formalism, called Message Sequence Chart 
Assertions (MSC-Assertions), for the specification of 
global system behaviors, and describes a specification 
validation technique using scenario simulation based on 
the JUnit Test Framework. We also describe the armor-
plating of system-of-systems using runtime execution 
monitoring of MSC-Assertions.   

Keywords: Message Sequence Chart (MSC) Assertions, 
JUnit testing, formal specification, run-time execution 
monitoring, validation, verification, service-oriented 
architecture, web services. 

1 Introduction 
Large systems-of-systems (SoSes) are typically made up 

of a federation of existing systems and developing systems 
interacting with each other over a network to provide an 
enhanced capability greater than that of any of the 
individual systems within the system-of-systems. Service-
oriented architecture (SOA) and the supporting Web 
Services (WS) technology hold promise to create SoSes 
that are interoperable, composable, extensible, and 
dynamically reconfigurable.  

A SOA, in the most generic sense, is an architecture that 
supports the discovery of, binding to, and execution of 
some resource (service) or composition of resources 
(services) on a network.  Services are applications designed 
to be reusable, loosely coupled, composable, autonomous, 
stateless, discoverable, defined by a formal contract, and to 
conceal underlying logic. As the supporting technology 
evolves, so too does the concept of a SOA.  Today, many 
large organizations, including the US Department of 
Defense, are thinking and acting in accordance with the 
SOA definition found in [10], where SOA is defined as “an 
architecture that promotes service-orientation through the 
use of Web Services”.   

The increasing use of SOA and WS for complex 
system-of-systems has raised concerns regarding the 
correctness and trustworthiness1 of the SOA-based SoSes 
[2]. At the highest abstract level, the functionality of a 
SOA-based SoS can be viewed as a set of Web Services.  
A Web Service has two components: a contract defining its 
external behavior from the clients’ point of view, and a 
business process describing its internal logic via the 
coordination and composition of other Web Services.  The 
specification of these complex business processes is error 
prone due to concurrency in activities execution, possibility 
of communication delay and error, as well as faults in the 
remote service providers. Often, even if the specifications 
are correct for an ideal operating environment, they do not 
operate as well in a less than ideal situation, thus render the 
resultant SOA-based SoS untrustworthy.  

Many researchers proposed to enhance the 
trustworthiness of the Web Services via formal 
specification and verification of their business processes [3, 
4, 11-14, 16], using light-weight formal methods consisting 
of the following four steps: 
Step 1. Specify the business process in some semi-formal 
languages (e.g. the Business Processing Execution 
Language (BPEL)); 
Step 2. Translate the specifications into formal models (e.g. 
Linear temporal logic, state machines, Petri nets, process 
algebras);  
Step 3. Specify the desirable functional and non-functional 
properties of the business process as formal assertions; 
Step 4. Verify the formal business process models against 
the properties using theorem proofing, model checking, or 
specification-based testing. 

                                                           
1 The term trustworthy software is synonymous with 
dependable software and hence can be expressed as a 
composite vector of the software’s dependability attributes 
that include availability, reliability, safety, security 
(confidentiality and integrity), and maintainability. 



However, for the aforementioned methods to effectively 
produce trustworthy SoSes, we must address the following 
concerns: 

(1) We need to validate the accuracy and the correctness of 
the formal-assertion representation of the mission-essential 
and safety-critical properties of the SoSes. Otherwise, we 
risk wasting our efforts in verifying the Business Process 
Models against the wrong set of properties. To address this 
concern, we present a new formalism and an iterative 
process for engineers to create and validate system 
behavior assertions based on Use Case scenarios.  

(2) Even if we can correctly capture and specify the system 
properties, and successfully verify the Business Process 
models against these properties, there is no guarantee that 
the SoS will behave as expected during run-time due to 
possible communication delays and service provider 
failures. To address this concern, we propose to combine 
run-time execution monitoring and assertion checking as a 
means to armor-plate the SOA-based SoSes. 

The rest of the paper is organized as follows. Section 2 
presents Message Sequence Chart Assertion for specifying 
distributed system behaviors. Section 3 describes the 
process for the development and validation of MSC 
Assertions. Section 4 illustrates armor-plating the SoSes 
using MSC Assertions and Run-Time Execution 
Monitoring. Section 5 presents a discussion on the 
approach and draws the conclusion. 
 
2 Message Sequence Chart Assertions 

MSC Assertions are a formal-language extension of 
UML MSC’s superimposed with UML statecharts. They 
have the look and feel of UML MSC’s and UML 
statecharts, yet they are formal and executable. For 
example, unlike UML MSC’s, MSC-Assertions are capable 
of making a distinction between events that can occur and 
those that must occur. In addition, MSC Assertions are 
capable of specifying infinite sets of scenarios.  

MSC Assertions are based on Statechart diagrams 
superimposed on MSC diagrams and augmented with Java 
(or C++) conditions and actions. For example, Figure 1 
shows the MSC Assertion for a time-bound requirement of 
a travel agent service: “R1: The travel agent must obtain 
bids from at least two airlines and two hotels and return a 
flight and a hotel matching the customer’s request within 
30 seconds from the time the customer issues his travel 
request”.  

Figure 1. A MSC Assertion for the Travel Agent Service 

The MSC-Assertion of Figure 1 looks, for the most part, 
like a UML MSC, but it enjoys the following unique 
features: 

1. An MSC Assertion is written from the standpoint of an 
observer, and can be used for run-time monitoring of 
the target application.  Consider for example the 
message reqFlight(Flight f) sent from the Travel Agent 
to Airline #1. While a UML-MSC might consider an 
interpretation where this event is generated by the 
Travel Agent, for an MSC Assertion, it is meant that 
the MSC Assertion should monitor-for, or listen-for, 
this event flowing from Travel Agent to Airline #1. 
Note that while the Travel Agent service may send out 
many requests for bids, the MSC Assertion only needs 
to observe two of such requests to satisfy the 
requirement R1.  

2. An MSC Assertion allows loops and transitions back 
up the vertical task bar. In Figure 1 for example, the 
Travel Agent will return to the Waiting state if the 
condition aBidCount ≥ 2 && hBidCount ≥ 2 is false. 
This feature is in contrast to UML MSC’s where a 
vertical task bar represents a timeline and where clearly 
a task cannot move back in time. An MSC Assertion 
however, considers a vertical task bar as a progression 
of states, like a state diagram drawn vertically. It 
therefore permits loops. 

3. States and actions. As discussed above and as 
illustrated in Figure 1, an MSC Assertion task might 
contain both implicit and explicit states. The purpose 



of explicit states is to specify actions, which are code 
snippets (written in Java or C++, depending on the 
code generator chosen) to be performed, such as 
aBidCount++ or rightFlight(Flight h). For example, 
the Customer will remain in its implicit initial state 
until the event request(Req r) is observed leaving the 
Customer. The Customer then enters the Monitoring 
state. The Customer will remain in Watching state until 
either the event response(Flight f, Hotel h) is observed 
arriving at the Done state, or the timeout event is 
detected. 

4. Java/C++ underlying language and code generation. 
An MSC Assertion is a diagrammatic representation of 
a Java or C++ class that implements the requirement as 
a monitor. Hence, all variables and functions declared 
in the local-variables boxes of Figure 1 are actually 
properties of this generated class.  

5. Parameterized events. An MSC Assertion event can 
contain objects as actual parameters. In Figure 1, the 
transition annotated with the message bidFlight(Flight 
f), from Airline #1 to the Travel Agent, is sent with 
some Flight object as an argument. Condition guards 
range over local properties and event arguments (e.g., 
rightFlight(f) ). 

6. An MSC Assertion is an assertion. It uses the same 
approach described in [6] for assertion statecharts 
where it announces a success or failure for every 
witnessed input scenario. It does so using the built-in 
bSuccess property. The boolean bSuccess is true by 
default. The developer assigns bSuccess=false as an 
action wherever s/he wants the assertion to fail. The 
JUnit test-case then inspects this property to decide 
whether a particular test-run failed or not.  

Figure 1 realized requirement R1 as follows. First note 
that, in the style of the UML-MSC notation, the assertion 
contains six tasks, denoted by the six vertical task bars. 
Also, the assertion contains local variables, timer, 
aBidCount, hBidCount and bDoneOK, as well as two 
Boolean functions rightFlight() and rightHotel() for  
checking the correctness of the itinerary. The MSC 
Assertion monitoring starts as a request(Req r) event is 
observed from the Customer task to the Travel Agent task 
while the Customer task is in its implicit inital state. The 30 
second timer is triggered and the Customer task enters its 
Watching state. The Customer will remain in Watching 
state until either the event response(Flight f, Hotel h) from 
the Travel Agent task (while the latter is in its Complete 
state) or the timeout event is detected. If the Customer 
receives the response() message before the timeout event, it 
will enter the Done state. bDoneOK will be set to true and 
the subsequent timeout event will cause the Customer task 
to enter the OK final state. If the Customer task does not 
receive the response() message before the timeout event, 
bDoneOK will remain false and the timeout event will 
cause the Customer task to enter the Error final state; 

bSuccess will be set to false indicating the violation of the 
requirement. 

The Travel Agent task will remain in its Init state until it 
receives the event request(Req r), then it will transition to 
the Bidding state.  The Bidding state consists of three 
concurrent threads, in the style of the UML statechart 
threads [6]. The Travel Agent task will remain in the 
Waiting state until it has received at least two airline bids 
and two hotel bids.  It will then transition to the Complete 
state where the MSC Assertion is ready to observe the 
event response(Flight f, Hotel h) from the Travel Agent 
task to the Customer task. Clearly, the Travel Agent task 
must ensure that the bids received indeed satisfy the 
customer’s request. This constraint is manifested as a 
condition guard righFlight(f) or rightHotel(h) on the 
message transition (in other words, MSC Assertion 
message transitions have the same event[guard]/action 
look and feel as UML-statechart transitions).  

Since we are not interested in the detailed temporal 
behavior of the Airline tasks and Hotel Network tasks in 
the requirement R1, we treat these tasks as black boxes. 
The MSC Assertion only wants to observe the fact that 
each of these tasks returns a bid to the Travel Agent task 
only after they have received a request for bid from the 
Travel Agent task as follows. Each of these four tasks 
remains in its Init state until it receives the request for bid 
message from the Travel Agent task. It then enters its 
implicit working state. It will transition from its working 
state to its implicit terminal state when the MSC Assertion 
observes that the task returns a bid to the Travel Agent task.  
 

3 Validation of Message Sequence 
Chart Assertions 

It is important to validate the correctness of the 
assertions early in the software development process. 
Unfortunately, users often discover, late in the development 
process, that their assertions are incorrect and do not work 
as intended. Possible reasons for incorrect assertions are 
listed in Table 1 below. 
 

Table 1. Possible reasons for assertion failure 
Case Reason 

1. Incorrect translation of the natural language 
specification to a formal specification. 

2. Incorrect translation of the requirement, as 
understood by the modeler, to natural 
language. 

3. Incorrect cognitive understanding of the 
requirement. This situation typically occurs 
when the requirement was driven from the 
use case’s main success scenario, with 
insufficient investigation of other scenarios. 



In [8], we propose the following iterative process for 
assertion development (Figure 2).  

  
Figure 2. Iterative process for assertion development 

Our methodology, as presented in [6-8], is that formal 
requirements ought to be simulated to assure that the 
cognitive understanding of the requirement matches the 
formal specification. To that end, we developed a run-time 
monitor for MSC Assertions that is fully integrated with the 
popular JUnit testing framework [1], and created a set of 
scenarios, using the JUnit testing framework. The scenarios 
test the MSC Assertion to assure that it announces a success 
if-and-only if the travel agent returns an acceptable 
itinerary to the Customer after requesting and obtaining at 
least two airline bids and at least two hotel bids matching 
the Customer’s request in the prescribed time limit. For 
example, the following hand-code test case describes a 
scenario in which the Travel Agent successfully completes 
its service 25 seconds after receiving the request from the 
Customer. 

import junit.framework.*; 

public class TestMSC_Assertion extends TestCase { 
 private MSC_Assertion mSC_Assertion = null; 
 
 protected void setUp() throws Exception { 
  super.setUp(); 
  mSC_Assertion = new MSC_Assertion(); 
 } 
 
 protected void tearDown() throws Exception { 
  mSC_Assertion = null; 
  super.tearDown(); 
 } 
 

 // Test Scenario 1 
 public void testExecTReventDispatcher() { 
  Flight f = new Flight(3, 1); 
  Hotel h = new Hotel(3); 
  Req req = new Req(f, h); 
  // send request from Customer to Travel Agent 
  mSC_Assertion.request(req,  
    new Integer(MSC_Assertion.CUST),  
    new Integer(MSC_Assertion.TA)); 
  // send request for Airline bids 

  mSC_Assertion.reqFlight(f,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.AL1)); 
  mSC_Assertion.reqFlight(f,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.AL2)); 
  // send request for Hotel bids 
  mSC_Assertion.reqHotel(h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.H1)); 
  // receive bid from Airline 1 
  mSC_Assertion.bidFlight(f,  
   new Integer(MSC_Assertion.AL1),  
   new Integer(MSC_Assertion.TA)); 
  // send request for second Hotel bid 
  mSC_Assertion.reqHotel(h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.H2)); 
  // advance clock by 25 seconds 
  mSC_Assertion.incrTime(25); 
  // receive bids from Hotel 2 
  mSC_Assertion.bidHotel(h,  
   new Integer(MSC_Assertion.H2),  
   new Integer(MSC_Assertion.TA)); 
  // receive bid from Airline 2 
  mSC_Assertion.bidFlight(f,  
   new Integer(MSC_Assertion.AL2),  
   new Integer(MSC_Assertion.TA)); 
  // receive bids from Hotel 1 
  mSC_Assertion.bidHotel(h,  
   new Integer(MSC_Assertion.H1),  
   new Integer(MSC_Assertion.TA)); 
  // send response to Customer 
  mSC_Assertion.response(f, h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.CUST)); 
  // advanced clock by 10 seconds 
    mSC_Assertion.incrTime(10); 
    assertTrue(mSC_Assertion.isSuccess()); 
  } 
} 

 
To test the correctness of the assertion, we created two 

more scenarios by replacing the body of the 
testExecTReventDispatcher() method with the following 
code. 
  // Test Scenario 2 
 public void testExecTReventDispatcher() { 
  Flight f = new Flight(3, 1); 
  Hotel h = new Hotel(3); 
  Req req = new Req(f, h); 
  mSC_Assertion.request(req, 
   new Integer(MSC_Assertion.CUST), 
   new Integer(MSC_Assertion.TA)); 
  mSC_Assertion.reqFlight(f,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.AL1)); 
  mSC_Assertion.incrTime(35); 
  mSC_Assertion.reqHotel(h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.H2)); 
  // too late 
  assertFalse(mSC_Assertion.isSuccess()); 
 } 

  

 // Test Scenario 3 
 public void testExecTReventDispatcher() { 
  Flight f = new Flight(3, 1); 
  Hotel h = new Hotel(3); 
  Req req = new Req(f, h); 
  mSC_Assertion.request(req, 
   new Integer(MSC_Assertion.CUST), 
   new Integer(MSC_Assertion.TA)); 
  // send request for Airline bids 



  mSC_Assertion.reqFlight(f,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.AL1)); 
  mSC_Assertion.reqFlight(f,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.AL2)); 
  // send request for Hotel bids 
  mSC_Assertion.reqHotel(h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.H1)); 
  mSC_Assertion.reqHotel(h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.H2)); 
 
  // receive bid from Airline 2 
  mSC_Assertion.bidFlight(f,  
   new Integer(MSC_Assertion.AL2),  
   new Integer(MSC_Assertion.TA)); 
  // receive bid from Hotels 
  mSC_Assertion.bidHotel(h,  
   new Integer(MSC_Assertion.H1),  
   new Integer(MSC_Assertion.TA)); 
  mSC_Assertion.bidHotel(h,  
   new Integer(MSC_Assertion.H2),  
   new Integer(MSC_Assertion.TA)); 
 
  // assert that the Travel Agent task in not 
  // in the Complete state 
  assertFalse(mSC_Assertion.inState(“Complete”)); 
 
  // the MSC Assertion will ignore the 
  // following event since it is not sent while 
  // the Travel Agent task is in its Complete 
  // state  
   mSC_Assertion.response(f, h,  
   new Integer(MSC_Assertion.TA),  
   new Integer(MSC_Assertion.CUST)); 
 
  // advanced clock by 35 seconds 
  mSC_Assertion.incrTime(35); 
  assertFalse(mSC_Assertion.isSuccess()); 
 } 

 
Scenario 2 represents the case where the Travel Agent 

missed its deadline when it returned the response() back to 
the Customer. Scenario 3 represents an interesting case 
where the Travel Agent tried to return a response() back to 
the Customer without getting at least two Airline bids. Note 
that the MSC Assertion detects the error and ignores the 
observed response() event because it was not sent while the 
Travel Agent task was in its Complete state. The entry 
action in the Error flowchart box in Figure 1 sets the 
variable bSuccess to false, which in turn causes 
mSC_Assertion.isSuccess() to return false and assertFalse() 
to true.  
 
4 Run-Time Execution Monitoring of 

Message Sequence Chart Assertions 
Runtime Execution Monitoring (REM) is a class of 

methods for tracking the temporal behavior of an 
underlying application. REM methods range from simple 
print statement logging methods to run-time tracking of 
complete formal requirements for verification purposes. 
NASA used REM to verify the flight code for its Deep 
Impact project [9]. A recent paper by the authors describes 
run-time verification of the CARA infusion pump using 

UML-statechart models combined with statechart assertions 
for formal requirement specification [8].  
 

Due to the possibility of communication delay and error, 
as well as faults in the remote service providers, 
verification alone can never give us the kind of assurance 
one expects to have for trustworthy SOA-based SoSes. We 
need to increase the robustness of these systems by armor-
plating them against unexpected behaviors. In [5], 
Drusinsky proposed one form of armor-plating that fortifies 
the software’s exception-handling ability via runtime 
monitoring of temporal assertions, where formal 
specifications are translated by a code generator into C, 
C++, or Java statements to be deployed for catching 
exceptions in the final product during runtime. Here, we 
can armor-plate the SoSes by embedding the code 
generated from the MSC Assertions in the Web Services 
target code to detect run-time assertion failure. In addition, 
we can add calls to exception-handlers in the Error 
flowchart box of the MSC Assertion to enable run-time 
recovery whenever the MSC Assertion fails during 
execution of the Web Services. 
 
5 Discussion and Conclusion 

In this paper, we presented a scenario-based, iterative 
process and UML-MSC like assertions to help ensure the 
correctness of formal requirements per the modeler’s 
expectations early in the development process. It is easier 
for system designers to create and understand MSC 
Assertions than text-based temporal assertions of the kind 
found in the literature, such as Linear-time Temporal Logic 
(LTL) [15] because MSC Assertions are similar to the 
intuitive and familiar UML MSC’s. 

 
Various formal verification techniques suggested in the 

literature [3, 12-14] approach the correctness of Web 
Services temporal behaviors by expressing these temporal 
properties as LTL statements and subsequent model 
checking.  Most model checkers, like SPIN, do not support 
specifications with real-life constraints such as real-time 
and time-series. Moreover, LTL has a rather weak 
expressive power (LTL is sub-regular). In contrast, MSC 
Assertions use Java/C++ as an underlying language and 
therefore enjoy Turing-equivalent descriptive power  
 
 
Acknowledgement 

The research reported in this article was funded in part 
by a grant from the U.S. Missile Defense Agency.  The 
views and conclusions contained herein are those of the 
authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either 
expressed or implied, of the U.S. Government.  The U.S. 
Government is authorized to reproduce and distribute 
reprints for Government purposes notwithstanding any 
copyright annotations thereon.  



References 
[1] K. Beck and E. Gamma, “Test infected: Programmers 
love writing tests”, Java Report, 3(7) , pp. 37-50, 1998. 

[2] K. Birman, R. Hillman and S. Pleisch, “Building 
network-centric military applications over service oriented 
architectures”, Proc. SPIE Defense and Security 
Symposium, pp. 255-266, 29-31 Mar. 2005. 

[3] F. van Breugel and M. Koshkina, “Models and 
Verification of BPEL”, Dept. of Computer Science and 
Engineering, York University, Toronto, Canada, September 
2006. http://www.cse.yorku.ca/~franck/research/drafts/ 
tutorial.pdf 

[4] J. Bhuiyan, S. Nepal and J.Zic, “Checking Conformance 
Between Business Processes And Web Service Contract In 
Service Oriented Applications”, Proc. Australian Software 
Engineering Conference, 18-21 April 2006.   

[5] D. Drusinsky, “Specs Can Handle Exceptions”, 
Embedded Developers Journal, pp. 10-14, Nov. 2001.  

[6] D. Drusinsky, Modeling and Verification Using UML 
Statecharts, Elsevier Publishing, 2006. 

[7] D. Drusinsky and M. Shing, Creation and Evaluation of 
Formal Specifications for System-of-Systems 
Development., Proc 2005 IEEE International Conference 
on Systems, Man and Cybernetics, Waikoloa, Hawaii, pp. 
1864-1869, Oct 2005.  

[8] D. Drusinsky, M. Shing and K. Demir, “Creation and 
Validation of Embedded Assertions Statecharts”, Proc 17th 
IEEE International Workshop on Rapid Systems 
Prototyping, Chania, Greece, pp. 17-23, June 2006.  

[9] D. Drusinsky and G. Watney, “Applying Run-Time 
Monitoring to the Deep-Impact Fault Protection Engine”, 

Proc 28th IEEE/NASA Software Engineering Workshop, pp. 
127-133, Dec 2003.  

[10] T. Erl, Service-Oriented Architecture: Concepts, 
Technology, and Design, Prentice Hall, Upper Saddle 
River, NJ, 2005. 

[11] X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for 
Formal Analysis of Web Services”, Proc. 16th Conf. on 
Computer Aided Verification, pp. 510-514, 13-17 July 
2004. 

[12] J. Fisteus, L. Fernández and C. Kloos, “Applying 
model checking to BPEL4WS business collaborations”, 
Proc. ACM Symposium on Applied Computing, pp. 826-
830, 13-17 Mar. 2005.  

[13] J. Garcia-Fanjul, J. Tuya, and de la Riva, "Generating 
Test Cases Specifications for BPEL Compositions of Web 
Services Using SPIN", Proc. Int, Workshop on Web 
Services Modeling and Testing (WS-MaTe 2006), 9 June 
2006. 

[14] H. Huang and R. Mason, “Model checking 
technologies for Web services”, Proc 2nd Int. Workshop 
on Collaborative Computing, Integration, and Assurance 
and 4th IEEE Workshop on Software Technologies for 
Future Embedded and Ubiquitous Systems, 27-28 April 
2006. 

[15]  A. Pnueli, “The Temporal Logic of Programs”, Proc. 
18th IEEE Symp. on Foundations of Computer Science, pp. 
46-57, 1977. 

[16] W. Tsai, X. Wei, Y. Chen and R. Paul, “A robust 
testing framework for verifying Web services by 
completeness and consistency analysis”, Proc. 2005 IEEE 
International Workshop on Service-Oriented System 
Engineering (SOSE’05), pp. 151-158, 20-21 Oct. 2005. 

 
 
 


