
  

Verifying Distributed Protocols using MSC-Assertions, Run-time Monitoring,  
and Automatic Test Generation1 

 

Doron Drusinsky2 and Man-Tak Shing  
Department of Computer Science 

Naval Postgraduate School 
833 Dyer Road, Monterey, CA 93943, USA 

{ddrusins, shing}@nps.edu

                                                        
1 The research reported in this article was funded in part by a grant from the U.S. Missile Defense Agency.  The views and 
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official 
policies or endorsements, either expressed or implied, of the U.S. Government.  The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstanding any copyright annotations thereon. 
2 Also with Time-Rover Software Inc. www.time-rover.com 

 
 

 
 

Abstract 

This paper addresses the need for formal specification 
and runtime verification of system-level requirements of 
distributed reactive systems. It describes a formalism for 
specifying global system behaviors in terms of Message 
Sequence Chart assertions and a technique for the 
evaluation of the likelihood of success of a distributed 
protocol under non-trivial communication conditions via 
discrete event simulation and runtime execution 
monitoring. We constructed a proof-of-concept prototype 
for the leader-election algorithm within a 4-node ring 
network. The prototype consists of the following 
components: (i) an OMNeT++ model of the network 
using non-trivial communication conditions, (ii) C++ 
code for the network agents, (iii) a system-level assertion 
stipulating the formal requirement for a correct, time-
bound, leader election, (iv) simulation of the formal 
assertion, (v) automatic scenario generation, and (vi) 
run-time monitoring of the formal assertion and 
stochastic-based estimation of the likelihood of success of 
this assertion under the specified communication 
conditions. 

1 Introduction 

The design and implementation of reliable applications 
on top of asynchronous distributed systems that are prone 
to processor and network crashes is a difficult and com-
plex task. A distributed system is made up of several 
components, executing concurrently and interacting with 
each other under the control of specialized procedures 
called protocols. Individual components usually do not 

have real-time knowledge of the global state of the sys-
tem, and it may not even have the notion of a global 
clock. Moreover, whenever the application departs from 
its correct “state” due to processor crashes, the live proc-
essors must execute some algorithms (i.e. protocols) to 
restore the application back to the correct state.  

Runtime Execution Monitoring (REM) is a class of 
methods for tracking the temporal behavior of an underly-
ing application. REM methods range from simple print 
statement logging methods to run-time tracking of com-
plete formal requirements for verification purposes. 
NASA used REM to verify the flight code for its Deep 
Impact project [5]. A recent paper by the authors de-
scribes run-time verification of the CARA infusion pump 
using UML-statechart models combined with statechart-
assertions for formal requirement specification [4]. 

Often, distributed-system protocols are correct for an 
ideal system but do not operate as well in a less than ideal 
situation. For example, while the classical leader-election 
algorithm in a ring network is considered correct, a leader 
might not be elected within reasonable amount of time 
when the network suffers from significant communication 
delays. This paper addresses the problem using REM-
based techniques. 

In [2], we introduced a classification of formal asser-
tions into the following three categories: (i) test-time as-
sertions, (ii) run-time assertions and (iii) simulation-time 
assertions. Simulation-time assertions are assertions that 
use information about the environment not present in run-
time. Simulation-time assertions are particularly useful 
for the validation of global, emerging behaviors of dis-
tributed systems, where the global information of the dis-
tributed system is unavailable to individual nodes. Model-
ing and simulation holds the key to the early use of these 
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assertions to validate system behaviors of distributed sys-
tems. For example, prototypes augmented with simulation 
assertions will often be used to force catastrophic behav-
ior of the kind only available in simulation mode.  

Harel statecharts were first described in [6]. They are 
typically used for design analysis and implementation. In 
his recent book, Drusinsky suggested using statecharts-
assertions for formal requirement specification and run-
time verification of UML-statechart controller models [1]. 
While statecharts are used primarily for capturing intra-
agent behavior, UML Message Sequence Charts (MSC’s) 
are used for capturing inter-agent behavior, i.e., system 
and distributed system behavior. To overcome the limita-
tions of MSC as a formal specification language, re-
searchers have introduced different variants of MSC. For 
example, in [8], Harel and Morelly described Live Se-
quence Charts (LCS’s), an MSC-like formal specification 
language tailored for conditional scenario specification in 
the form of if a then b, a and b being sub-scenario’s. The 
LCS-based specifications can be translated to CTL or 
LTL for verification [10], or to intra-object state-based 
specifications for synthesis [7, 9]. 

This paper builds upon our previous work on state-
chart-assertions and REM of intra-agent behavior. It de-
scribes MSC-Assertions, a formal language extension of 
MSC’s, and their application to the formal specification 
and REM of inter-agent behavior. Unlike the other ap-
proaches, MSC-Assertions, being a natural extension of 
the statechart assertions,  provide a unified model for both 
intra- and inter-agent behavior specification, thus elimi-
nating the need to translate and maintain two models (one 
for intra-agent and the other for inter-agent) when design-
ing and analyzing distributed system behaviors. We dem-
onstrate the technique with a proof-of-concept prototype 
for assessing the failure rate of a time-bound formal re-
quirement for a distributed-system protocol (leader elec-
tion) operating with non-ideal communication links. 

Our proof-of-concept prototype is as follows: 
• We developed an OMNeT++ model of a 4-node ring 

network with parameterized network delays, as de-
tailed in Section 2. 

• We developed a UML statechart model and generated 
code for the network agents, as discussed in Section 
3. 

• We captured a formal requirement for the timely 
election of a leader. To this end, we devised a formal 
language extension to UML Message Sequence 
Charts, called MSC-Assertions, as discussed in Sec-
tion 4. Absent a code generator for MSC-Assertions 
we hand crafted the corresponding implementation 
code. In addition, we simulated the formal MSC-
Assertion requirement, as discussed in Section 5. 

• We created a large set of test scenarios for the 4-node 
ring distributed system, using white-box test genera-
tion techniques, as discussed in Section 6.  

• By executing these scenarios and run-time monitor-
ing the MSC-Assertion we calculated the failure rate 
of the assertion. 

2 OMNeT++ network model 

OMNeT++, which stands for Objective Modular Net-
work Testbed in C++, is an object-oriented discrete event 
simulator primarily designed for the simulation of com-
munication protocols, communication networks and traf-
fic models, and multi-processors and distributed systems 
models.  An OMNeT++ simulation model consists of a 
set of modules communicating with each other via the 
sending and receiving of messages. Modules can be 
nested hierarchically. The atomic modules are called sim-
ple modules; their code are written in C++ and executed 
as co-routines on top of the OMNeT++ simulation kernel. 
Messages are sent out through output gates of the sending 
module and arrive through input gates of the receiving 
module. Input and output gates are linked together via 
connections. Connections represent the communication 
channels and can be assigned properties such as propaga-
tion delay, bit error rate and data rate. Figure 1 shows a 
simple OMNeT++ model of a four-node ring network. 
The network is made up of four identical nodes (agents), 
whose behavior is captured using a UML statechart dia-
gram as discussed in Section 3.  

 
Figure 1.  The 4-node ring network model in OMNeT++ 

3 Network agents 

Figure 2a shows the object model of a network node, 
which is made up of an Agent class and the statechart 
classes generated from one or more statechart files. In 
other words, an agent is assumed to be doing more than 
merely electing a leader, hence the plurality of statecharts 
per agent. Figure 2b shows an instance of the network 
node, which contains an instance of the Agent class to-
gether with an instance of the LE statechart for leader 
election. The Agent class extends the OMNeT++ cSim-
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pleModule class and serves as the proxy to handle all 
network communications for the statechart object.   

 
Figure 2.  The object model of the network node 

Figure 3 shows the top-level statechart of a leader elec-
tion (LE) module. The top-level statechart consists of four 
states, the Initializing state and three composite states 
named DoingSomething, Electing_Leader and 
Found_Leader, together with a set of state variables de-
clared in the associated local variable declaration box.  As 
mensioned earlier, a node’s statechart is modeled to do 
more than just leader election. Hence, we added logic to 
the agent’s leader-election statechart to represent situa-
tions where the agent is busy performing activities other 
than electing a leader. The state DoingSomething repre-
sents (1) that the statechart, in general, has a life – it does 
work other than merely electing leaders, and (2) that not 
all agents request election when start occurs. 

C1

 
Figure 3. Top-level page of the LE statechart 

Each LE module uses the Own_Id variable to store its 
unique integer identity and uses the Leader_Id variable to 
remember the identity of the current leader, which is the 
largest identity value among the identities of all the active 
LE modules in the network. The LE statechart starts at the 
Initializing state waiting for the arrival of either the fire(), 
engage() or election() event from the environment. When 
it receives the fire() or engage() event, it will transition to 
the DoingSomething state. If the LE statechart receives 
the start() event while it is in the DoingSomething state, it 
starts a new round of leader election by sending an elec-
tion() message to its neighbor in the network using the 

send_election() method of its agent object and then enters 
the Electing_Leader composite state shown in Figure 4. 
Alternately, if it receives the election() event while it is in 
either the Initializing state or the DoingSomething state, it 
will join in the leader election process and transition to 
the Electing_Leader composite state. To simulate the non-
deterministic behavior of individual nodes, each LE state-
chart initializes its variable nStart to a random value when 
it enters the states A or B of the DoingSomething state and 
can start a new round of election only if nStart is less than 
the START_THRESHOLD. 

 

C1

C2

 
Figure 4. The content of the Electing_Leader state-

chart 

The Electing_Leader composite state consists of two 
concurrent threads, Electing and Watchdog_2. The state-
chart in the Electing thread models the logic of the fol-
lowing simple leader election algorithm.  

if (event == election(id)) then // on-going election 
{ 

  if (id == Own_Id) then   
   send leader(Own_Id) event to its neighbor; 
  else if (id > Own_Id) then 
   send election(id) event to its neighbor; 
  else  
   send election(Own_Id) event to its neighbor; 
 } 
 else if (event == leader(id)) then  
 { // found leader, terminate election 
  Leader_Id = id; 
  if (Leader_Id != Own_Id) then 
   send leader(id) event to its neighbor; 
  reset the watchdogTimer2 timer; 

  transition to the Found_Leader state 
                               via the page connector C4; 

 } 

The statechart in the Watchdog_2 thread makes sure 
that the LE statechart receives at least one election() mes-
sage every 60-second cycle while it is participating in an 
on-going election. If the LE statechart receives the event 
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time_out(timer_name) with timer_name == “Watchdog2” 
while it is in the Watching_2 state, it will initiate another 
round of leader election by sending an election(Own_Id) 
message to its neighbor because it has not received any 
election() message within the last cycle. 

The leader election algorithm terminates when the LE 
statechart receives a leader(id) message, and will transi-
tion from the Electing_Leader state to the Found_Leader 
state via the page connector C4. Note that the correctness 
of the algorithm relies on a reliable and fully trusted net-
work of cooperating LE modules. 

 
Figure 5. The content of the Found_Leader state 

Figure 5 shows the content of the Found_Leader com-
posite state. It consists of three concurrent threads. While 
in the Found_Leader state, the leader uses the statechart 
in the GenerateHeartBeat thread to send out a heart-
beat(Own_Id) message once every 60 seconds, and each 
LE statechart expects to receive at least one heartbeat() 
message from the leader via its neighbor every 60-second 
cycle. If any LE statechart receives the event 
time_out(timer_name) with timer_name == “Watchdog3” 
while it is in the Watching_3 state, it will initiate another 
round of leader election by sending an election(Own_Id) 
message to its neighbor and transitioning to the Elect-
ing_Leader state via the page connector C5 because it has 
not received any heartbeat() message within the last cy-
cle.  Other LE modules will also enter the Elect-
ing_Leader state via the page connector C3 when they 
receive the election() messages from their neighbors in 
the network while they are in the Found_Leader state. 

4 System-level assertions using MSC-
Assertions 

4.1 Limitations of UML MSC’s 
UML MSC’s are considered informal for two primary 

reasons. First, as discussed by David Harel in his book on 
Live Sequence Charts [8], a UML MSC does not distin-
guish between messages that might be sent and those that 
must be sent. Consider the MSC shown in  Figure 6: the 
only definite scenario that is acceptable is req.ack.ackack, 
between the respective agents. However, if for example, a 
req event is followed by an ack event, that in turn is not 
followed by an ackack event, then it is not clear from the 
specification whether that is an illegal scenario or not. 
Second, an UML 1.x MSC describes a single scenario 
(sequence of message events); for example, the MSC in 
Figure 6 captures a single scenario consisting of three 
messages. This limitation has been extended in UML 2.0, 
in which an MSC can describe a finite set of scenarios 
using the Loop construct. Nevertheless, even UML 2.0 
sequence diagrams capture only finite sets of scenarios. 
From a formal specification standpoint, however, a good 
formalism should be able to capture an infinite set of sce-
narios. In addition, it is not clear from the MSC of Figure 
6 whether the MSC generates the specified events (e.g., 
ack), or witnesses (monitors) those events. 

 
Figure 6. An MSC for the req-ack protocol 

4.2 MSC-Assertions 
MSC-Assertions are a formal-language extension of 

UML MSC’s. They have the look and feel of UML 
MSC’s yet are formal and executable. They are capable of 
making a distinction between events that can occur and 
those that must occur. In addition, MSC-Assertions are 
capable of specifying infinite sets of scenarios.  

MSC-Assertions are based on MSC diagrams aug-
mented with Java (or C++) conditions and actions. Con-
sider the time-bound (60 second) leader-election MSC-
Assertion for the requirement R1 of a 4-ring network: “All 
agents contain the same ID for the elected leader, which 
is the largest identity value among the ID’s of all the ac-
tive LE modules in the network, in at most 60 seconds 
after the first election event detected in the network” 
(Figure 7).  It looks, for the most part, like a UML MSC, 
but it enjoys the following unique features: 
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1. An MSC-Assertion is written from the standpoint of 
an observer, and indeed, in this paper, we will use the 
MSC-Assertion of Figure 7 for run-time monitoring 
the OMNeT++ network model.  Hence, consider for 
example the message leader(Integer m1) sent from 
agent #1 to agent #2. While a UML-MSC might con-
sider an interpretation where this event is generated 
by the MSC, for an MSC-Assertion it is meant that 
the MSC-Assertion should monitor-for, or listen-for, 
this event flowing from agent #1 to agent #2.  

2. An MSC-Assertion allows loops. In Figure 7 for ex-
ample, there is a loop starting from agent #1, through 
agents #2, #3, and #4, back to #1. This feature is in 
contrast to UML MSC’s where a vertical task bar 
represents a timeline and where clearly a task cannot 
move back in time. MSC-Assertion however, consid-
ers a vertical task bar as a progression of states, like a 
state diagram drawn vertically. It therefore permits 
loops. 

3. States and actions. As discussed above and as illus-
trated in Figure 7, an MSC-Assertion task might con-
tain explicit states. The purpose of these states is to 
specify actions, which are code snippets (written in 
Java or C++, depending on the code generator cho-
sen) to be performed, such as x++ or 
n2=m2.IntValue(). 

4. Java/C++ underlying language and code generation. 
An MSC-assertion is a diagrammatic representation 
of a Java or C++ class that implements the require-
ment as a monitor. All variables declared in the local-
variables box of Figure 7 are actually properties of 
this generated class.  

5. Parameterized events. An MSC-Assertion event can 
contain objects as actual parameters. In Figure 7, the 
transition annotated with the message leader(Integer 
m1), from the Electing1 state of agent #1 to agent #2,  
will be traversed if agent #1 is in the Electing1 state, 
and the leader event with some Integer object as an 
argument is observed from agent #1 to agent #2. 
Condition guards range over local properties and 
event arguments (e.g., m1.intValue() > 0 &&  
m1.intValue() <= 4 ). 

6. An MSC-Assertion is an assertion. It uses the same 
approach described in [1] for assertion statecharts 
where it announces a success or failure for every wit-
nessed input scenario. It does so using the built-in 
bSuccess property. The boolean bSuccess is true by 
default. The developer assigns bSuccess=false as an 
action wherever s/he wants the assertion to fail. The 
JUnit test-case then inspects this property to decide 
whether a particular test-run failed or not.  

 

/*Local Variables*/
int n1=-1;
int n2 = -1;
int n3 = -1;
int n4 = -1;
TRTimeoutSimulatedTime timer = 
       new TRTimeoutSimulatedTime(60, this);

Agent-1 Agent-2 Agent-3 Agent-4

Assertion-Agent

OK
on entry/

bSuccess=true;

timeoutFire[]

[true]

Checking
on entry/

bSuccess = false;
bRelevant = true;

timer.restart();

Error

leader(Integer m1)
[m1.IntValue() > 0 &&
m1.IntValue() <=  4]/
n1 = m1.IntValue() ;

leader(Integer m2)
[m2.IntValue() > 0 &&
m2.IntValue() <= 4]]/
n2 = m2.IntValue();

leader(Integer m3)
[m3.IntValue() > 0 &&
m3.IntValue() <= 4]/
n3 = m3.IntValue();

leader(Integer m4)
[m4.IntValue() > 0 &&
m4.IntValue() <= 4]/
n4 = m4.IntValue();

n1 == n2 && 
n2 == n3 && 
n3 == n4 &&

n4 == 4

Init1

Electing1

Init2

Electing2

Init
On entry/

bSuccess = true;
bRelevant = false;

[isState(“Init”)]

election(Integer m1)

election(Integer m2)

[isState(“Init”)]

Init3 Init4

Electing3 Electing4

election(Integer m3)

[isState(“Init”)]

election(Integer m4)

[isState(“Init”)}

[false]

 

Figure 7. A time-bound leader-election MSC-Assertion 
for a 4-ring network 

Figure 7 realized requirement R1 as follows. First note 
that the assertion contains five tasks (i.e. concurrent 
threads), one per network agent and an additional task for 
monitoring the assertion. Also, the assertion contains lo-
cal variables, n1 through n4, where ni represents the ID of 
the leader currently elected by agent i (-1 means no one 
has been elected). The MSC-Assertion monitoring starts 
as the Assertion-Agent task transitions to the Checking 
state when it detects the first election event flowing be-
tween any two neighboring agents, bSuccess is assigned 
false and the 60 second timer is triggered. In other words, 
the assertion now allows 60 seconds for a successful 
leader election or else it will fail.   Note that the first elec-
tion event does not have to occur on the top-left corner of 
the diagram, as usually the case with UML MSC’s; rather, 
it can occur anywhere provided that task is in the appro-
priate state. Suppose that the first election event occurs 
from agent #2 to agent #3. The outgoing election() mes-
sage from agent #2 will cause the Assertion-Agent to 
transition from the Init state to the Checking state since 
the guard isState(“Init”) is true. In addition, it also causes 
agent #3 to transition from the Init3 state to the Electing3 
state. Agent #2 will then advance from the Init2 state to 
the Electing2 state as it progresses down its vertical task 
bar.  Whenever agent i sends agent i+1 (modulus 4) a 
leader() message with an Integer argument m, it means 
that agent i has elected agent m as the leader. Clearly, m 
must be an id between 1 and 4 or else the agent is not 
following the protocol. This constraint is manifested as a 
condition guard on the message transition (in other words, 
MSC-Assertion message transitions have the same 
event[guard]/action look and feel as UML-statechart 
transitions). When the MSC-Assertion observes that agent 
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i sends a leader() message with parameter m, it assigns 
ni=m. Finally, when the Assertion-agent detects a timeout 
event (60 seconds have elapsed), it tests for a successful 
leader election according to R1. 

Note that R1 is not the only possible leader-election 
requirement. Consider requirement R2: “all agents con-
tain the same ID for the elected leader and that ID agrees 
with the choice of the predecessor agent”. R2 attempts to 
require that when a leader is elected every agent “knows”, 
and agrees-with, the selection of other agents. The differ-
ence between R1 and R2 is subtle. Since the MSC-
Assertion shown in Figure 7 only updates nj’s at the send-
ing of a leader() message, it is possible that R1 succeeds 
while R2 fails when a certain link is faulty or exhibits 
long delays, as follows. Suppose the link from agent #3 to 
agent #4 is faulty. Suppose also that agent #4 is the first 
node sending out the leader message. A leader (agent #4) 
will be elected according to R1 even though agent #4 does 
not “know” that agent #3 has chosen #4 as the leader and 
hence still in its Electing_Leader state in Figure 4. R2 on 
the other hand will fail under such circumstances since it 
has to monitor both the sending and receiving of the 
leader messages. In other words, R1 mandates a leader 
being elected but does not really deal with agents know-
ing that they agree on the same elected leader. 

Harel’s LSC’s introduce the notion of cold (blue) vs. 
hot (red) messages. These two types of messages are used 
to create a specification in the form of if a then b, where a 
is an optional precondition message (cold), and b is a 
mandatory consequence message (red). MSC-Assertions 
achieve the same effect using the bSuccess property (or 
any other custom property). In Figure 7 for example, the 
MSC-Assertion starts up with bSuccess=true by default, 
which effectively means “so far so good”. Once an elect 
message is detected between any two neighboring agents, 
bSuccess is set to false, which means that the assertion 
will fail unless some future behavior causes bSuccess  to 
be set to true. That mandatory future behavior is require-
ment R1 (within 60 seconds). MSC-Assertions, like state-
chart property assertions, use Java/C++ as an underlying 
language and therefore enjoy Turing-equivalent descrip-
tive power while LSC’s are sub-regular (in fact, they are 
limited to finite sets of scenarios). In addition, MSC-
Assertions support non-determinism, which allows the 
specification of complex real-life scenarios.  

5 System-level assertion simulation 

Our methodology, as presented in [1, 3, 4], is that formal 
requirements ought to be simulated to assure that the cog-
nitive understanding of the requirement matches the for-
mal specification. To that end, we developed a run-time 
monitor for MSC-Assertions that is fully integrated with 
the popular JUnit testing framework, and created a set of 

scenarios to be executed by the JUnit testing framework. 
The scenarios test the MSC-Assertion to assure that it 
announces a failure if-and-only if a leader is not elected in 
the prescribed time limit. For example, the following 
hand-code test case describes a scenario in which the 
agents successfully complete a round of leader election 
within an interval of 60 seconds. 

 import junit.framework.*; 
 public class TestMSC1 extends TestCase { 
  private MSC_Assertion  msc = null; 
  … // omit the constructor, setup and teardown code 
  // Test Scenario: 
  public void testExecTReventDiapatcher() { 
   msc.setTime(0);   //set clock to 0 sec 
   msc.election(3, 4  3); // from agent 3 to agent 4 with id 3 
   // Assertion-Agent should now be in Checking state 
   this.assertTrue(msc.isState(“Checking”)); 
    msc.incrTime(20); // advance clock by 20 sec 
   msc.leader(4, 1, 4);  // from agent 4 to agent 1 with id 4 
   msc.incrTime(15); // advance clock by 15 sec 
   msc.leader(1, 2, 4); // from agent 1 to agent 2 with id 4   
      msc.incrTime(10); // advance clock by 10 sec 
   msc.leader(2, 3, 4); // from agent 2 to agent 3 with id 4   
   msc.incrTime(10); // advance clock by 10 sec 
   msc.leader(3, 4, 4); // from agent 3 to agent 4 with id 4   
   msc.incrTime(7); // advance clock by 7 sec 
   // the testcase should return bSuccess == true 
      this.assertTrue(msc.isSuccess()); 
    } 
 } 

 

6 Automatic scenario generation 

The component level White-Box Automatic Test Gen-
erator (WBATG) described in [1] generates a JUnit test 
suite that repeatedly exercises the component under test 
using events, time, and data information specified in the 
component.  In other words, the component-level 
WBATG creates a set of scenarios (sequences) ranging 
over information received by the component from its sur-
rounding environment. We customized this component-
level generator as follows: 
1. We distinguish intra-system messages from external 

messages and data transfers, where the former are 
those transactions that flow strictly within the system 
while the latter are transactions with external entities 
outside of the system. We customized the WBATG to 
create sequences that range only over external trans-
action, such as events received from the systems’ en-
vironment.  

2. The WBATG was used to modify inter-system com-
munication delays. In other words, scenarios gener-
ated by the WBATG would use varying communica-
tion delays along the four links. 
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7 Estimation of the likelihood of protocol 
success 

The likelihood of success of the leader-election re-
quirement was calculated as the ratio of relevant test sce-
narios for which the MSC-assertion succeeded to the 
overall number of relevant tests. A relevant test is a test 
that did trigger a leader-election process; obviously some 
tests do not trigger the leader election process at all. With 
the help of OMNeT++, we can now simulate different 
network conditions and collect statistics to estimate the 
likelihood of protocol success. 

Figure 8 shows the enhanced OMNeT++ model for the 
4-ring network with the additional Runtime Execution 
Monitor and White-Box Tester. The wb_agent node con-
tains the C++ code generated by the WBATG described 
in Section 6. It drives the simulation by sending events to 
the other nodes in the network via its OMNeT++ proxy 
and changing the communication delay of the four links. 
The msc_agent node contains the C++ code for the MSC-
Assertion shown in Figure 7. It monitors the activities of 
the other nodes in the network via the messages it re-
ceives and notifies the WBATG of the result if the asser-
tion reaches a terminal state.  

  
Figure 8. The OMNeT++ model augmented with Run-

time Execution Monitor and White-Box Tester 

8 Conclusion 

The paper brings together several technologies (MSC-
Assertion formalism, run-time monitoring, discrete event 
simulations, JUnit based test methodology) to support the 
behavior modeling and run-time verification of complex 
temporal requirements of distributed reactive systems and 
to asses the likelihood of success of distributed-system 
protocols under non-ideal circumstances.  

The paper presents a new formalism to support the run-
time verification of system level requirements of distrib-
uted systems using MSC-Assertions. The novelty of the 
proposed approach include: (1) writing formal specifica-
tions of inter-object behavior using MSC-Assertions, (2) 

JUnit-based simulation and validation of the MSC-
Assertions, and (3) the use of discrete event simulation in 
tandem with automatic, JUnit-based, white-box testing 
and run-time verification to verify the temporal behavior 
for distributed system prototypes.  
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