

Verifying Distributed Protocols using MSC-Assertions, Run-time Monitoring,
and Automatic Test Generation1

Doron Drusinsky2 and Man-Tak Shing
Department of Computer Science

Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943, USA

{ddrusins, shing}@nps.edu

1 The research reported in this article was funded in part by a grant from the U.S. Missile Defense Agency. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwithstanding any copyright annotations thereon.
2 Also with Time-Rover Software Inc. www.time-rover.com

Abstract

This paper addresses the need for formal specification
and runtime verification of system-level requirements of
distributed reactive systems. It describes a formalism for
specifying global system behaviors in terms of Message
Sequence Chart assertions and a technique for the
evaluation of the likelihood of success of a distributed
protocol under non-trivial communication conditions via
discrete event simulation and runtime execution
monitoring. We constructed a proof-of-concept prototype
for the leader-election algorithm within a 4-node ring
network. The prototype consists of the following
components: (i) an OMNeT++ model of the network
using non-trivial communication conditions, (ii) C++
code for the network agents, (iii) a system-level assertion
stipulating the formal requirement for a correct, time-
bound, leader election, (iv) simulation of the formal
assertion, (v) automatic scenario generation, and (vi)
run-time monitoring of the formal assertion and
stochastic-based estimation of the likelihood of success of
this assertion under the specified communication
conditions.

1 Introduction

The design and implementation of reliable applications
on top of asynchronous distributed systems that are prone
to processor and network crashes is a difficult and com-
plex task. A distributed system is made up of several
components, executing concurrently and interacting with
each other under the control of specialized procedures
called protocols. Individual components usually do not

have real-time knowledge of the global state of the sys-
tem, and it may not even have the notion of a global
clock. Moreover, whenever the application departs from
its correct “state” due to processor crashes, the live proc-
essors must execute some algorithms (i.e. protocols) to
restore the application back to the correct state.

Runtime Execution Monitoring (REM) is a class of
methods for tracking the temporal behavior of an underly-
ing application. REM methods range from simple print
statement logging methods to run-time tracking of com-
plete formal requirements for verification purposes.
NASA used REM to verify the flight code for its Deep
Impact project [5]. A recent paper by the authors de-
scribes run-time verification of the CARA infusion pump
using UML-statechart models combined with statechart-
assertions for formal requirement specification [4].

Often, distributed-system protocols are correct for an
ideal system but do not operate as well in a less than ideal
situation. For example, while the classical leader-election
algorithm in a ring network is considered correct, a leader
might not be elected within reasonable amount of time
when the network suffers from significant communication
delays. This paper addresses the problem using REM-
based techniques.

In [2], we introduced a classification of formal asser-
tions into the following three categories: (i) test-time as-
sertions, (ii) run-time assertions and (iii) simulation-time
assertions. Simulation-time assertions are assertions that
use information about the environment not present in run-
time. Simulation-time assertions are particularly useful
for the validation of global, emerging behaviors of dis-
tributed systems, where the global information of the dis-
tributed system is unavailable to individual nodes. Model-
ing and simulation holds the key to the early use of these

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

assertions to validate system behaviors of distributed sys-
tems. For example, prototypes augmented with simulation
assertions will often be used to force catastrophic behav-
ior of the kind only available in simulation mode.

Harel statecharts were first described in [6]. They are
typically used for design analysis and implementation. In
his recent book, Drusinsky suggested using statecharts-
assertions for formal requirement specification and run-
time verification of UML-statechart controller models [1].
While statecharts are used primarily for capturing intra-
agent behavior, UML Message Sequence Charts (MSC’s)
are used for capturing inter-agent behavior, i.e., system
and distributed system behavior. To overcome the limita-
tions of MSC as a formal specification language, re-
searchers have introduced different variants of MSC. For
example, in [8], Harel and Morelly described Live Se-
quence Charts (LCS’s), an MSC-like formal specification
language tailored for conditional scenario specification in
the form of if a then b, a and b being sub-scenario’s. The
LCS-based specifications can be translated to CTL or
LTL for verification [10], or to intra-object state-based
specifications for synthesis [7, 9].

This paper builds upon our previous work on state-
chart-assertions and REM of intra-agent behavior. It de-
scribes MSC-Assertions, a formal language extension of
MSC’s, and their application to the formal specification
and REM of inter-agent behavior. Unlike the other ap-
proaches, MSC-Assertions, being a natural extension of
the statechart assertions, provide a unified model for both
intra- and inter-agent behavior specification, thus elimi-
nating the need to translate and maintain two models (one
for intra-agent and the other for inter-agent) when design-
ing and analyzing distributed system behaviors. We dem-
onstrate the technique with a proof-of-concept prototype
for assessing the failure rate of a time-bound formal re-
quirement for a distributed-system protocol (leader elec-
tion) operating with non-ideal communication links.

Our proof-of-concept prototype is as follows:
• We developed an OMNeT++ model of a 4-node ring

network with parameterized network delays, as de-
tailed in Section 2.

• We developed a UML statechart model and generated
code for the network agents, as discussed in Section
3.

• We captured a formal requirement for the timely
election of a leader. To this end, we devised a formal
language extension to UML Message Sequence
Charts, called MSC-Assertions, as discussed in Sec-
tion 4. Absent a code generator for MSC-Assertions
we hand crafted the corresponding implementation
code. In addition, we simulated the formal MSC-
Assertion requirement, as discussed in Section 5.

• We created a large set of test scenarios for the 4-node
ring distributed system, using white-box test genera-
tion techniques, as discussed in Section 6.

• By executing these scenarios and run-time monitor-
ing the MSC-Assertion we calculated the failure rate
of the assertion.

2 OMNeT++ network model

OMNeT++, which stands for Objective Modular Net-
work Testbed in C++, is an object-oriented discrete event
simulator primarily designed for the simulation of com-
munication protocols, communication networks and traf-
fic models, and multi-processors and distributed systems
models. An OMNeT++ simulation model consists of a
set of modules communicating with each other via the
sending and receiving of messages. Modules can be
nested hierarchically. The atomic modules are called sim-
ple modules; their code are written in C++ and executed
as co-routines on top of the OMNeT++ simulation kernel.
Messages are sent out through output gates of the sending
module and arrive through input gates of the receiving
module. Input and output gates are linked together via
connections. Connections represent the communication
channels and can be assigned properties such as propaga-
tion delay, bit error rate and data rate. Figure 1 shows a
simple OMNeT++ model of a four-node ring network.
The network is made up of four identical nodes (agents),
whose behavior is captured using a UML statechart dia-
gram as discussed in Section 3.

Figure 1. The 4-node ring network model in OMNeT++

3 Network agents

Figure 2a shows the object model of a network node,
which is made up of an Agent class and the statechart
classes generated from one or more statechart files. In
other words, an agent is assumed to be doing more than
merely electing a leader, hence the plurality of statecharts
per agent. Figure 2b shows an instance of the network
node, which contains an instance of the Agent class to-
gether with an instance of the LE statechart for leader
election. The Agent class extends the OMNeT++ cSim-

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

pleModule class and serves as the proxy to handle all
network communications for the statechart object.

Figure 2. The object model of the network node

Figure 3 shows the top-level statechart of a leader elec-
tion (LE) module. The top-level statechart consists of four
states, the Initializing state and three composite states
named DoingSomething, Electing_Leader and
Found_Leader, together with a set of state variables de-
clared in the associated local variable declaration box. As
mensioned earlier, a node’s statechart is modeled to do
more than just leader election. Hence, we added logic to
the agent’s leader-election statechart to represent situa-
tions where the agent is busy performing activities other
than electing a leader. The state DoingSomething repre-
sents (1) that the statechart, in general, has a life – it does
work other than merely electing leaders, and (2) that not
all agents request election when start occurs.

C1

Figure 3. Top-level page of the LE statechart

Each LE module uses the Own_Id variable to store its
unique integer identity and uses the Leader_Id variable to
remember the identity of the current leader, which is the
largest identity value among the identities of all the active
LE modules in the network. The LE statechart starts at the
Initializing state waiting for the arrival of either the fire(),
engage() or election() event from the environment. When
it receives the fire() or engage() event, it will transition to
the DoingSomething state. If the LE statechart receives
the start() event while it is in the DoingSomething state, it
starts a new round of leader election by sending an elec-
tion() message to its neighbor in the network using the

send_election() method of its agent object and then enters
the Electing_Leader composite state shown in Figure 4.
Alternately, if it receives the election() event while it is in
either the Initializing state or the DoingSomething state, it
will join in the leader election process and transition to
the Electing_Leader composite state. To simulate the non-
deterministic behavior of individual nodes, each LE state-
chart initializes its variable nStart to a random value when
it enters the states A or B of the DoingSomething state and
can start a new round of election only if nStart is less than
the START_THRESHOLD.

C1

C2

Figure 4. The content of the Electing_Leader state-

chart

The Electing_Leader composite state consists of two
concurrent threads, Electing and Watchdog_2. The state-
chart in the Electing thread models the logic of the fol-
lowing simple leader election algorithm.

if (event == election(id)) then // on-going election
{

 if (id == Own_Id) then
 send leader(Own_Id) event to its neighbor;
 else if (id > Own_Id) then
 send election(id) event to its neighbor;
 else
 send election(Own_Id) event to its neighbor;
 }
 else if (event == leader(id)) then
 { // found leader, terminate election
 Leader_Id = id;
 if (Leader_Id != Own_Id) then
 send leader(id) event to its neighbor;
 reset the watchdogTimer2 timer;

 transition to the Found_Leader state
 via the page connector C4;

 }

The statechart in the Watchdog_2 thread makes sure
that the LE statechart receives at least one election() mes-
sage every 60-second cycle while it is participating in an
on-going election. If the LE statechart receives the event

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

time_out(timer_name) with timer_name == “Watchdog2”
while it is in the Watching_2 state, it will initiate another
round of leader election by sending an election(Own_Id)
message to its neighbor because it has not received any
election() message within the last cycle.

The leader election algorithm terminates when the LE
statechart receives a leader(id) message, and will transi-
tion from the Electing_Leader state to the Found_Leader
state via the page connector C4. Note that the correctness
of the algorithm relies on a reliable and fully trusted net-
work of cooperating LE modules.

Figure 5. The content of the Found_Leader state

Figure 5 shows the content of the Found_Leader com-
posite state. It consists of three concurrent threads. While
in the Found_Leader state, the leader uses the statechart
in the GenerateHeartBeat thread to send out a heart-
beat(Own_Id) message once every 60 seconds, and each
LE statechart expects to receive at least one heartbeat()
message from the leader via its neighbor every 60-second
cycle. If any LE statechart receives the event
time_out(timer_name) with timer_name == “Watchdog3”
while it is in the Watching_3 state, it will initiate another
round of leader election by sending an election(Own_Id)
message to its neighbor and transitioning to the Elect-
ing_Leader state via the page connector C5 because it has
not received any heartbeat() message within the last cy-
cle. Other LE modules will also enter the Elect-
ing_Leader state via the page connector C3 when they
receive the election() messages from their neighbors in
the network while they are in the Found_Leader state.

4 System-level assertions using MSC-
Assertions

4.1 Limitations of UML MSC’s
UML MSC’s are considered informal for two primary

reasons. First, as discussed by David Harel in his book on
Live Sequence Charts [8], a UML MSC does not distin-
guish between messages that might be sent and those that
must be sent. Consider the MSC shown in Figure 6: the
only definite scenario that is acceptable is req.ack.ackack,
between the respective agents. However, if for example, a
req event is followed by an ack event, that in turn is not
followed by an ackack event, then it is not clear from the
specification whether that is an illegal scenario or not.
Second, an UML 1.x MSC describes a single scenario
(sequence of message events); for example, the MSC in
Figure 6 captures a single scenario consisting of three
messages. This limitation has been extended in UML 2.0,
in which an MSC can describe a finite set of scenarios
using the Loop construct. Nevertheless, even UML 2.0
sequence diagrams capture only finite sets of scenarios.
From a formal specification standpoint, however, a good
formalism should be able to capture an infinite set of sce-
narios. In addition, it is not clear from the MSC of Figure
6 whether the MSC generates the specified events (e.g.,
ack), or witnesses (monitors) those events.

Figure 6. An MSC for the req-ack protocol

4.2 MSC-Assertions
MSC-Assertions are a formal-language extension of

UML MSC’s. They have the look and feel of UML
MSC’s yet are formal and executable. They are capable of
making a distinction between events that can occur and
those that must occur. In addition, MSC-Assertions are
capable of specifying infinite sets of scenarios.

MSC-Assertions are based on MSC diagrams aug-
mented with Java (or C++) conditions and actions. Con-
sider the time-bound (60 second) leader-election MSC-
Assertion for the requirement R1 of a 4-ring network: “All
agents contain the same ID for the elected leader, which
is the largest identity value among the ID’s of all the ac-
tive LE modules in the network, in at most 60 seconds
after the first election event detected in the network”
(Figure 7). It looks, for the most part, like a UML MSC,
but it enjoys the following unique features:

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

1. An MSC-Assertion is written from the standpoint of
an observer, and indeed, in this paper, we will use the
MSC-Assertion of Figure 7 for run-time monitoring
the OMNeT++ network model. Hence, consider for
example the message leader(Integer m1) sent from
agent #1 to agent #2. While a UML-MSC might con-
sider an interpretation where this event is generated
by the MSC, for an MSC-Assertion it is meant that
the MSC-Assertion should monitor-for, or listen-for,
this event flowing from agent #1 to agent #2.

2. An MSC-Assertion allows loops. In Figure 7 for ex-
ample, there is a loop starting from agent #1, through
agents #2, #3, and #4, back to #1. This feature is in
contrast to UML MSC’s where a vertical task bar
represents a timeline and where clearly a task cannot
move back in time. MSC-Assertion however, consid-
ers a vertical task bar as a progression of states, like a
state diagram drawn vertically. It therefore permits
loops.

3. States and actions. As discussed above and as illus-
trated in Figure 7, an MSC-Assertion task might con-
tain explicit states. The purpose of these states is to
specify actions, which are code snippets (written in
Java or C++, depending on the code generator cho-
sen) to be performed, such as x++ or
n2=m2.IntValue().

4. Java/C++ underlying language and code generation.
An MSC-assertion is a diagrammatic representation
of a Java or C++ class that implements the require-
ment as a monitor. All variables declared in the local-
variables box of Figure 7 are actually properties of
this generated class.

5. Parameterized events. An MSC-Assertion event can
contain objects as actual parameters. In Figure 7, the
transition annotated with the message leader(Integer
m1), from the Electing1 state of agent #1 to agent #2,
will be traversed if agent #1 is in the Electing1 state,
and the leader event with some Integer object as an
argument is observed from agent #1 to agent #2.
Condition guards range over local properties and
event arguments (e.g., m1.intValue() > 0 &&
m1.intValue() <= 4).

6. An MSC-Assertion is an assertion. It uses the same
approach described in [1] for assertion statecharts
where it announces a success or failure for every wit-
nessed input scenario. It does so using the built-in
bSuccess property. The boolean bSuccess is true by
default. The developer assigns bSuccess=false as an
action wherever s/he wants the assertion to fail. The
JUnit test-case then inspects this property to decide
whether a particular test-run failed or not.

/*Local Variables*/
int n1=-1;
int n2 = -1;
int n3 = -1;
int n4 = -1;
TRTimeoutSimulatedTime timer =
 new TRTimeoutSimulatedTime(60, this);

Agent-1 Agent-2 Agent-3 Agent-4

Assertion-Agent

OK
on entry/

bSuccess=true;

timeoutFire[]

[true]

Checking
on entry/

bSuccess = false;
bRelevant = true;

timer.restart();

Error

leader(Integer m1)
[m1.IntValue() > 0 &&
m1.IntValue() <= 4]/
n1 = m1.IntValue() ;

leader(Integer m2)
[m2.IntValue() > 0 &&
m2.IntValue() <= 4]]/
n2 = m2.IntValue();

leader(Integer m3)
[m3.IntValue() > 0 &&
m3.IntValue() <= 4]/
n3 = m3.IntValue();

leader(Integer m4)
[m4.IntValue() > 0 &&
m4.IntValue() <= 4]/
n4 = m4.IntValue();

n1 == n2 &&
n2 == n3 &&
n3 == n4 &&

n4 == 4

Init1

Electing1

Init2

Electing2

Init
On entry/

bSuccess = true;
bRelevant = false;

[isState(“Init”)]

election(Integer m1)

election(Integer m2)

[isState(“Init”)]

Init3 Init4

Electing3 Electing4

election(Integer m3)

[isState(“Init”)]

election(Integer m4)

[isState(“Init”)}

[false]

Figure 7. A time-bound leader-election MSC-Assertion
for a 4-ring network

Figure 7 realized requirement R1 as follows. First note
that the assertion contains five tasks (i.e. concurrent
threads), one per network agent and an additional task for
monitoring the assertion. Also, the assertion contains lo-
cal variables, n1 through n4, where ni represents the ID of
the leader currently elected by agent i (-1 means no one
has been elected). The MSC-Assertion monitoring starts
as the Assertion-Agent task transitions to the Checking
state when it detects the first election event flowing be-
tween any two neighboring agents, bSuccess is assigned
false and the 60 second timer is triggered. In other words,
the assertion now allows 60 seconds for a successful
leader election or else it will fail. Note that the first elec-
tion event does not have to occur on the top-left corner of
the diagram, as usually the case with UML MSC’s; rather,
it can occur anywhere provided that task is in the appro-
priate state. Suppose that the first election event occurs
from agent #2 to agent #3. The outgoing election() mes-
sage from agent #2 will cause the Assertion-Agent to
transition from the Init state to the Checking state since
the guard isState(“Init”) is true. In addition, it also causes
agent #3 to transition from the Init3 state to the Electing3
state. Agent #2 will then advance from the Init2 state to
the Electing2 state as it progresses down its vertical task
bar. Whenever agent i sends agent i+1 (modulus 4) a
leader() message with an Integer argument m, it means
that agent i has elected agent m as the leader. Clearly, m
must be an id between 1 and 4 or else the agent is not
following the protocol. This constraint is manifested as a
condition guard on the message transition (in other words,
MSC-Assertion message transitions have the same
event[guard]/action look and feel as UML-statechart
transitions). When the MSC-Assertion observes that agent

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

i sends a leader() message with parameter m, it assigns
ni=m. Finally, when the Assertion-agent detects a timeout
event (60 seconds have elapsed), it tests for a successful
leader election according to R1.

Note that R1 is not the only possible leader-election
requirement. Consider requirement R2: “all agents con-
tain the same ID for the elected leader and that ID agrees
with the choice of the predecessor agent”. R2 attempts to
require that when a leader is elected every agent “knows”,
and agrees-with, the selection of other agents. The differ-
ence between R1 and R2 is subtle. Since the MSC-
Assertion shown in Figure 7 only updates nj’s at the send-
ing of a leader() message, it is possible that R1 succeeds
while R2 fails when a certain link is faulty or exhibits
long delays, as follows. Suppose the link from agent #3 to
agent #4 is faulty. Suppose also that agent #4 is the first
node sending out the leader message. A leader (agent #4)
will be elected according to R1 even though agent #4 does
not “know” that agent #3 has chosen #4 as the leader and
hence still in its Electing_Leader state in Figure 4. R2 on
the other hand will fail under such circumstances since it
has to monitor both the sending and receiving of the
leader messages. In other words, R1 mandates a leader
being elected but does not really deal with agents know-
ing that they agree on the same elected leader.

Harel’s LSC’s introduce the notion of cold (blue) vs.
hot (red) messages. These two types of messages are used
to create a specification in the form of if a then b, where a
is an optional precondition message (cold), and b is a
mandatory consequence message (red). MSC-Assertions
achieve the same effect using the bSuccess property (or
any other custom property). In Figure 7 for example, the
MSC-Assertion starts up with bSuccess=true by default,
which effectively means “so far so good”. Once an elect
message is detected between any two neighboring agents,
bSuccess is set to false, which means that the assertion
will fail unless some future behavior causes bSuccess to
be set to true. That mandatory future behavior is require-
ment R1 (within 60 seconds). MSC-Assertions, like state-
chart property assertions, use Java/C++ as an underlying
language and therefore enjoy Turing-equivalent descrip-
tive power while LSC’s are sub-regular (in fact, they are
limited to finite sets of scenarios). In addition, MSC-
Assertions support non-determinism, which allows the
specification of complex real-life scenarios.

5 System-level assertion simulation

Our methodology, as presented in [1, 3, 4], is that formal
requirements ought to be simulated to assure that the cog-
nitive understanding of the requirement matches the for-
mal specification. To that end, we developed a run-time
monitor for MSC-Assertions that is fully integrated with
the popular JUnit testing framework, and created a set of

scenarios to be executed by the JUnit testing framework.
The scenarios test the MSC-Assertion to assure that it
announces a failure if-and-only if a leader is not elected in
the prescribed time limit. For example, the following
hand-code test case describes a scenario in which the
agents successfully complete a round of leader election
within an interval of 60 seconds.

 import junit.framework.*;
 public class TestMSC1 extends TestCase {
 private MSC_Assertion msc = null;
 … // omit the constructor, setup and teardown code
 // Test Scenario:
 public void testExecTReventDiapatcher() {
 msc.setTime(0); //set clock to 0 sec
 msc.election(3, 4 3); // from agent 3 to agent 4 with id 3
 // Assertion-Agent should now be in Checking state
 this.assertTrue(msc.isState(“Checking”));
 msc.incrTime(20); // advance clock by 20 sec
 msc.leader(4, 1, 4); // from agent 4 to agent 1 with id 4
 msc.incrTime(15); // advance clock by 15 sec
 msc.leader(1, 2, 4); // from agent 1 to agent 2 with id 4
 msc.incrTime(10); // advance clock by 10 sec
 msc.leader(2, 3, 4); // from agent 2 to agent 3 with id 4
 msc.incrTime(10); // advance clock by 10 sec
 msc.leader(3, 4, 4); // from agent 3 to agent 4 with id 4
 msc.incrTime(7); // advance clock by 7 sec
 // the testcase should return bSuccess == true
 this.assertTrue(msc.isSuccess());
 }
 }

6 Automatic scenario generation

The component level White-Box Automatic Test Gen-
erator (WBATG) described in [1] generates a JUnit test
suite that repeatedly exercises the component under test
using events, time, and data information specified in the
component. In other words, the component-level
WBATG creates a set of scenarios (sequences) ranging
over information received by the component from its sur-
rounding environment. We customized this component-
level generator as follows:
1. We distinguish intra-system messages from external

messages and data transfers, where the former are
those transactions that flow strictly within the system
while the latter are transactions with external entities
outside of the system. We customized the WBATG to
create sequences that range only over external trans-
action, such as events received from the systems’ en-
vironment.

2. The WBATG was used to modify inter-system com-
munication delays. In other words, scenarios gener-
ated by the WBATG would use varying communica-
tion delays along the four links.

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

7 Estimation of the likelihood of protocol
success

The likelihood of success of the leader-election re-
quirement was calculated as the ratio of relevant test sce-
narios for which the MSC-assertion succeeded to the
overall number of relevant tests. A relevant test is a test
that did trigger a leader-election process; obviously some
tests do not trigger the leader election process at all. With
the help of OMNeT++, we can now simulate different
network conditions and collect statistics to estimate the
likelihood of protocol success.

Figure 8 shows the enhanced OMNeT++ model for the
4-ring network with the additional Runtime Execution
Monitor and White-Box Tester. The wb_agent node con-
tains the C++ code generated by the WBATG described
in Section 6. It drives the simulation by sending events to
the other nodes in the network via its OMNeT++ proxy
and changing the communication delay of the four links.
The msc_agent node contains the C++ code for the MSC-
Assertion shown in Figure 7. It monitors the activities of
the other nodes in the network via the messages it re-
ceives and notifies the WBATG of the result if the asser-
tion reaches a terminal state.

Figure 8. The OMNeT++ model augmented with Run-

time Execution Monitor and White-Box Tester

8 Conclusion

The paper brings together several technologies (MSC-
Assertion formalism, run-time monitoring, discrete event
simulations, JUnit based test methodology) to support the
behavior modeling and run-time verification of complex
temporal requirements of distributed reactive systems and
to asses the likelihood of success of distributed-system
protocols under non-ideal circumstances.

The paper presents a new formalism to support the run-
time verification of system level requirements of distrib-
uted systems using MSC-Assertions. The novelty of the
proposed approach include: (1) writing formal specifica-
tions of inter-object behavior using MSC-Assertions, (2)

JUnit-based simulation and validation of the MSC-
Assertions, and (3) the use of discrete event simulation in
tandem with automatic, JUnit-based, white-box testing
and run-time verification to verify the temporal behavior
for distributed system prototypes.

References

[1] D. Drusinsky, Modeling and Verification Using UML
Statecharts, Elsevier Publishing, 2006.

[2] D. Drusinsky, M. Shing and K. Demir, “Test-time, Run-
time, and Simulation-time Assertions for RSP”, Proc 16th
IEEE International Workshop on Rapid Systems Prototyp-
ing, Montreal, Canada, June 2005, 105-110.

[3] D. Drusinsky and M. Shing, Creation and Evaluation of
Formal Specifications for System-of-Systems Develop-
ment., Proc 2005 IEEE International Conference on Sys-
tems, Man and Cybernetics, Waikoloa, Hawaii, Oct 2005,
1864-1869.

[4] D. Drusinsky, M. Shing and K. Demir, “Creation and Vali-
dation of Embedded Assertions Statecharts”, Proc 17th
IEEE International Workshop on Rapid Systems Prototyp-
ing, Chania, Greece, June 2006, 17-23.

[5] D. Drusinsky and G. Watney, “Applying Run-Time Moni-
toring to the Deep-Impact Fault Protection Engine”, Proc
28th IEEE/NASA Software Engineering Workshop, Dec
2003, 127-133.�

[6] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems”, Science of Computer Programming 8, 1987,
231-274.

[7] D. Harel and H. Kugler, “Synthesizing state-based object
systems from LSC specifications”. Int. J. of Foundations of
Computer Science (IJFCS), 13(1), 2002, 5–51.

[8] D. Harel and R Morelly, Come, Let’s Play: Scenario-based
Programming Using LSCs and the Play-Engine, Springer,
2003.

[9] I. Krüger, R. Grosu, P. Scholz, and M. Broy, “From MSCs
to Statecharts”, in F. J. Rammig, editor, DIPES, IFIP Conf.
Proc, vol. 155, 1998, 61–72.

[10] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps,
“Temporal Logic for Scenario-Based Specifications”, in N.
Halbwachs and L. D. Zuck, editors, TACAS, vol. 3440 of
LNCS, Springer, 2005, 445–460.

18th IEEE/IFIP International Workshop on Rapid System Prototyping(RSP'07)
0-7695-2834-1/07 $20.00 © 2007

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:01 from IEEE Xplore. Restrictions apply.

