
Quality Assurance of the Timing Properties
of Real-time, Reactive System-of-Systems

Man-Tak Shing
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA

shing@nps.edu

Doron Drusinsky
Computer Science Department

Naval Postgraduate School
Monterey, CA, USA
and Time Rover, Inc.
Cupertino, CA, USA

ddrusins@nps.edu, www.time-rover.com

Thomas S. Cook
Computer Science Department
Naval Postgraduate School

Monterey, CA, USA
tscoo1@nps.edu

Abstract - The paper concerns the quality assurance of the
timing properties of complex, real-time, reactive system-of-
systems. It builds upon our previous work on run-time
model checking of timing properties and the automatic
white-box testing based on run-time assertion checking,
and brings together several technologies to improve the
predictability of the system-of-systems’ logical and timing
behavior. The paper presents a microkernel architecture
for evolvable system-of-systems to isolate the computations
that are likely to change with time from the basic control
logics that are invariant in the application domain, and a
testing methodology that is based on formal statechart
assertions. We demonstrate the approach with a
conceptual design of a ballistic missile defense battle
management software.

Keywords: White-box testing, design by contract,
statechart assertions, formal specification, run-time
execution monitoring.

1 Introduction
Large systems-of-systems (SoSs), like the network-

centric C4 systems and the global ballistic missile defense
systems (BMDS), are typically large, heterogeneous and
distributed. Each SoS is made up of a federation of existing
and developing systems to provide an enhanced capability
greater than that of any of the individual systems within the
system-of-systems. The individual systems making up of a
SoS (i.e., the component systems) are often developed for a
different context and subjected to a different set of
constraints than those of the system-of-systems. When
assembled together as a SoS, these component systems are
expected to work together to provide additional services
beyond what they were originally designed to do.

Many of the SoSs are real-time, reactive systems.
These systems are very complex and yet have to be highly
dependable. Quality assurance is a dominant issue for these

real-time, mission critical SoSs. Some of the component
systems have to continuously interact with their
environment under tight timing constraints. Both the inputs
and outputs of these component systems must satisfy new
timing constraints imposed by the SoS requirements, which
may not be present in the original functional requirements
of the component systems. The consequences of these
component systems, like the ballistic missile defense battle
management software, missing their timing requirements
(i.e. not performing its intended function in a timely
fashion) could be the loss of thousands or perhaps tens of
thousands of innocent lives. Clearly, such system must be
of the highest quality. Hence, in addition to the typical
interoperability problem that may exist among the legacy
components, the SoS developers now have the difficult task
of verifying the correctness of the SoS’s timing behavior.
Moreover, the individual component systems and the SoS
as a whole are likely to constantly evolve with time.
Traditional testing methods that rely on hand-crafted test
codes are too tedious and time-consuming to cope with the
frequent changes in SoS code.

This paper addresses the need to verify the timing
properties of real-time, reactive SoSs. It presents a testing
methodology that builds upon our previous work on run-
time model checking of timing properties and the automatic
white-box testing based on run-time assertion checking [4].
Run-time Execution Monitoring of formal specification
assertions (REM) is a class of methods for tracking the
temporal behavior, often in the form of formal specification
assertions, of an underlying application. REM methods
range from simple print-statement logging methods to run-
time tracking of complex formal requirements (e.g., written
in temporal logic or as statechart assertions) for verification
purposes. NASA used REM for the verification of flight
code for the Deep Impact project [8]. In [7], we showed
that the use of run-time monitoring and verification of
temporal assertions, in tandem with rapid prototyping,
helps debug the requirements and identify errors earlier in
the design process. Recently, REM has been adopted by the

Proceedings of the 2006 IEEE/SMC International Conference on System of Systems Engineering
Los Angeles, CA, USA - April 2006

1-4244-0188-7/06/$20.00 ©2006 IEEE 224

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

U.S. Ballistic Missile Defense System project as the
primary verification method for the new BMDS battle
manager because of its ability to scale, and its support for
temporal assertions that include real-time and time series
constraints [2].

The rest of the paper is organized as follows. Section
2 provides an overview of the StateRover statechart
assertion formalism [6]. Section 3 presents a microkernel
architecture for the real-time, reactive SoS and describes
the process for testing such systems. Section 4 presents a
discussion on the approach and draws some conclusions.

2 The StateRover Statechart
Assertions
Harel Statecharts [10] are commonly used in the

design analysis phase of an object oriented UML based
design methodology to specify the dynamic behavior of
complex reactive systems. In [5, 6], Drusinsky presented a
new formalism that combines UML-based prototyping,
UML-based formal specifications, run-time monitoring,
and execution-based model checking. The new formalism
is supported by StateRover, a commercially available tool
from the Time Rover Inc. StateRover provides support for
design entry, code generation, and visual debug animation
for UML statecharts combined with flowcharts. The new
formalism and tool allow system designers to embed
deterministic and non-deterministic statechart assertions in
statechart designs and execute the assertions in tandem
with their primary UML statechart to provide run-time
monitoring and run-time recovery from assertion failures.

2.1 A statechart example

Figure 1. Track processing module statechart

For example, Figure 1 shows a design of the
simplified track processing module of a missile defense
battle manager. It consists of three concurrent threads,
MonitorTracks, ClassifyTracks and CorrelateTracks. The
MonitorTracks thread places all incoming track data into
the Track Data Store, and forwards them to the
ClassifyTracks thread for classification. The ClassifyTracks

thread retrieves the track data from the Track Data Store
one at a time, invokes the classify() method of a Classifier
component to determine the track’s classification, and
places the classified track in the Classified Track Data
Store for further processing. The CorrelateTracks thread
retrieves the track data from the Classified Track Data
Store one at a time and invokes the correlate() method of a
Correlator component to update the Correlated Track
database.

2.2 Statechart assertions
Studies have suggested that the process of specifying

requirements formally enables developers to gain a deeper
understanding of the system being specified, and to
uncover requirements flaws, inconsistencies, ambiguities
and incompletenesses [9]. StateRover uses deterministic
and non-deterministic statecharts as assertions for timing
properties as well as correct ordering and sequencing of
events and responses. For example, Figures 2 and 3 show
the statechart assertions for the following requirements.

Assertion 1:
 The time spent for classifying a track must not exceed 1

second.

Figure 2. Assertion1 Statechart

Assertion 2:
 Whenever the track count (cnt) exceeds 75% of the

MaxCount, cnt must be reduced back to 50% of the
MaxCount within 1 minute and must remain at or below
50% of the MaxCount for at least 10 minutes.

225

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

Figure 3. Assertion2 Statechart

Figure 4. Track processing module statechart
with embedded statechart assertions

Figure 4 shows the combined ProcessTracks
statechart with embedded statechart assertions, where the
Assertion statecharts shown in Figures 2 and 3 now
becomes sub-statecharts of the ProcessTracks statechart. In
addition, an unlabeled transition from the Assertion1
substatechart to the decision box “isState(CorrelatorIdel)”
in the ClassifyTracks thread is added to enable run-time
recovery. Whenever the assertion 1 fails because the
classify() method exceeds its execution time limit, the
Assertion1 substatechart reaches the terminal state (T) and
will therefore cause the unlabeled transition out of
Assertion1 to fire, forcing the ClassifyTracks thread to
abort the on-going classify() operation and use a simple
table-lookup to get a rough classification of the trkObj.

2.3 Target code generation
The StateRover’s code generator generates one Java

controller class for each statechart file. In our example, we
have three statechart diagram files, with the ProcessTracks
statechart in the first file and the Assertion1 and Assertion2
substatecharts in the second and third files. The
StateRover’s code generator automatically connects the

three statecharts objects resulting in an executable track
processing module. The controller class consists of a set of
event handlers (one per transition event), the central event
dispatcher execTReventDispatcher, and the source code for
local variable declarations and methods supplied by the
users via the dialog boxes of StateRover’s statechart editor.
In addition, the code generator also generates a Java
interface, named ProcessTracksIF, to allow the test drivers
or other systems from the external environment to interact
with the track processing module.

2.4 Testing of generated code
The generated code is designed to work with the JUnit

Test Framework. Use Case scenarios used by the system
designers to identify user needs and system requirements
are hand-coded as JUnit test cases and exercised against the
generated statechart code. For example, the following test
case describes a scenario in which ProcessTracks receives
one track per second for 100 seconds.

import junit.framework.*;

public class TestProcessTracks1 extends TestCase {
 private ProcessTracks proc = null;

 public TestProcessTracks1(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();
 proc = new ProcessTracks ();
 }

 protected void tearDown() throws Exception {
 proc = null;
 super.tearDown();
 }

 // Test Scenario:
 public void testExecTReventDiapatcher() {
 proc.setTime(0); //set clock to 0 sec
 for (i=1;i<=100;i++) {
 //generates a random track
 Track obj = genTrack();

 //send track to ProcessTracks
 proc.putTrack(obj);

 //advance clock by 1 sec
 proc.incrTime(1);
 }
 this.assertTrue(proc.isSuccess());
 }

 Track genTrack(){
 // code for generating a random track
 …
 }
}

The StateRover provides an automatic white-box test
generator. It generates a JUnit TestCase class. Unlike hand
written JUnit TestCase classes, this TestCase (denoted
WBTestCase) does not capture a single scenario. Rather, it
creates a plurality of tests for a Statechart Under Test
(SUT). The WBTestCase create tests that consist of

226

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

sequences of events, timing information, and external
objects for the SUT.

Automatically generated tests are used in three
primary ways: (1) to search for severe programming errors
of the kind that induce a JUnit errors, such as
NullPointerException, (2) to identify tests that violate
embedded statechart assertions -- such failed assertions
should be captured by a JUnit assertFalse() statement, using
the isSuccess() feedback loop depicted in Figures 2 and 3,
and (3) to identify input sequences that lead the SUT-
statechart to particular states of interest.

3 Micro-kernel Architecture For Real-
time Reactive SoS
In [1], Caffall observed that in many real-time,

reactive SoSs, the basic functions of the control software
do not change from system to system and from year to
year. Almost exclusively changes are to the component
systems that provide information to the control software
and the component systems that carry out the tasks
assigned by the control software. For example, the five
basic functions of the battle manager of a global ballistic
missile defense systems (detect, track, assign weapon,
engage, assess kill) are the same for any ballistic missile
defense systems, while the sensors used to collect
information for the warfighters, the weapons used to
engage threat targets, and the rules of engagement (ROEs)
established in both the planning and the C2 functions are
constantly changing. Specific features within the battle-
management software will also change over time (e.g.,
discrimination algorithms, correlation algorithms, feature-
aided tracking). Furthermore, Caffall proposed to use a
microkernel architecture to isolate those features in
software components that can be interchanged when
developers are prepared to introduce new components (e.g.,
new types of weapon systems) into the battle management
software.

A battle management kernel is similar in purpose to
an operating system (OS) kernel in that both kernels
manage resources shared by competing entities. The
components in the kernel are expected to be stable com-
pared to the other components in the system-of-systems.
For instance, device drivers tend to be updated frequently
and therefore in principle should not be included in the OS
kernel. Figure 5 shows a conceptual view of the micro-
kernel proposed by Caffall. The battle management kernel
consists of a set of processes (the control software for the
five basic functions), a set of interfaces for the battle
manager to interact with other component systems, and a
set of software components to do predefined work for the
kernel software. The software components are software
units of composition with contractually specified interfaces
and explicit context dependencies. They contain the
algorithms required to perform the computations of the

BMDS Battle Manager. For example, the track processing
will call upon the discrimination component to discriminate
various benign objects from the threat ballistic missile.

Weapon
Assignment

Track
Processing

Distributed
Processing

Weapon
Assignment

Track
Processing

Distributed
Processing

KERNEL

Discriminate
Features

Correlate
Tracks

Weapon
Target
Pairing

Discriminate
Features

Correlate
Tracks

Weapon
Target
Pairing

COMPONENTS

SensorC2 WeaponSensorC2 Weapon

INTERFACES

Figure 5. Micro-kernel architecture of the
battle manager software (From [1])

To increase the predictability of the dynamic behavior
of the battle management software, Caffall proposed to
employ the concepts of design-by-contract in the
specification and design of the component interfaces, and
to use temporal logic and run-time model checking to
assure the correct behavior of the control software.

3.1 Qualify assurance of the software
components
We propose to use an approach similar to the one

proposed by Cheon [3] to create test oracles from the
formal behavior specifications of the component interfaces
and to employ the runtime assertion checker as the test
oracle engine. The only difference is that almost all the
previous work on design-by-contract focused on the logical
behavior of the software, while we are extending the
concept to formally specify and test timing behaviors. To
do that, we need to introduce temporal logic and statechart
assertions to the pre- and post-conditions of the component
interface and to the in-line assertions of the component
code. The temporal assertions are translated into target
code snippets by tools like the TemporalRover [4] and
StateRover [6] code generators and embedded in the
component code, so that the assertion evaluator can listen
for messages from the component software and evaluate
corresponding temporal assertions during test executions.

3.2 Quality assurance of the control software
We propose to express the design of the control

software as StateRover statecharts and express the formal
specifications of the functional and temporal properties of
the control software as embedded statechart assertions. The
statecharts are converted by the StateRover’s code
generator to target control software code, together with the

227

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

code that communicate with the StateRover run-time
monitor for timing property verification.

We use the StateRover’s automatic white box tester to
construct a JUnit TestCase class from the statechart model
and associated embedded assertions. The white-box test
generator is intelligent; it generates only test scenarios that
actually affect the statechart SUT or one of its embedded
assertions. It is both model-based and specification-based
because it uses information from the SUT as well as
embedded assertions for test generation.

3.3 Runtime Monitoring of the battle
management kernel
To further enhance the robustness of the battle

manager software, we can selectively turn on the mission-
critical and safety-critical assertions and continuously
monitor them using the TemporalRover and StateRover
run-time monitor during the execution of the control
software. Any violation of the assertions will be caught and
run-time recovery code will be executed per specification of
the statechart assertions.

4 Discussion and Conclusion
The paper concerns the quality assurance of the

timing properties of complex, real-time, reactive system-of-
systems. It brings together several technologies to improve
the predictability of the system-of-systems’ logical and
timing behavior.

We increase the maintainability of a SoS with a
microkernel architecture that isolates those computations
that are likely to change with time from the basic control
logics that are invariant in the application domain, and use
formal behavior interface specifications to ensure that the
software components will perform the intended
computation correctly.

We introduce the statecharts with embedded
assertions formalism to allow system designers to embed
the timing properties into the design model itself. System
designers can now reason at a higher level of abstraction (at
the state machine level instead of the programming
language level), thus improving the understandability of the
SoS design.

The target code generated by StateRover is designed
to work with the JUnit Test Framework. Use Case
scenarios used by the system designers to identify user
needs and system requirements can be hand-coded as JUnit
test cases and exercised against the generated statechart
code. Formal specifications are best understood when
presented with multiple views. In our approach, the
statechart assertion provides a graphical description of the
formal behavior, while the generated code and the scenario-

based test cases together provide an executable view of the
expected behavior.

The fact that individual software components all
satisfy their contracts is not enough to guarantee that the
integrated SoS kernel software will satisfy their timing
constraints. The availability of StateRover’s automatic
white box tester is essential in checking the correctness of
the timing behavior of the integrated software.

The JUnit test case executes a large volume of test
runs of the statechart System Under Test (SUT). A typical
white box test case consists of hundreds of thousands of
runs of the SUT. The availability of the executable
statechart assertions via run-time execution monitoring
makes the automatic checking of test results possible and
cost-effective.

Finally, the ability to use the statechart assertions to
trap exceptions during system execution and invoke run-
time recovery is another big step towards making the SoS
more dependable. Using the methodology presented in this
paper, a mechanism for assuring software quality assurance
is built into the component interfaces. If for any reason a
component fails to meet its timing requirements assertions,
the exception handlers in the control code fire and put the
system back into an appropriate state. In essence this
methodology provides a continuous Software Quality
Assurance (SQA) audit of the system-of-systems.

Acknowledgement
The research reported in this article was funded in

part by a grant from the U.S. Missile Defense Agency. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the U.S. Government. The U.S.
Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any
copyright annotations thereon.

References
[1] D.S. Caffall, Developing Dependable Software For A
System-Of-Systems, Doctoral Dissertation, Naval
Postgraduate School, Monterey, CA, March 2005.

[2] D. Caffall, T. Cook, D. Drusinsky, B. Michael, M.
Shing and N. Sklavounos, Formal Specification and Run-
time Monitoring within the Ballistic Missile Defense
Project, Tech. Report NPS-CS-05-007, Naval Postgraduate
School, Monterey, California, June 2005.

[3] Y. Cheon, A Runtime Assertion Checker for the Java
Modeling Language, Tech Report #03-09, Department of

228

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

Computer Science, Iowa State University, Ames, Iowa,
April 2003.

[4] D. Drusinsky, “The Temporal Rover and ATG Rover”,
Lecture Notes in Computer Science. 1885 (Proc. Spin2000
Workshop), pp. 323-329, Berlin: Springer-Verlag, 2000.

[5] D. Drusinsky, “Semantics and Runtime Monitoring of
TLCharts: Statechart Automata with Temporal Logic
Conditioned Transitions”, Proc. 4th Runtime Verification
Workshop (RV’04), 2004, Invited paper.

[6] D. Drusinsky, Modeling and Verification Using UML
Statecharts A Working Guide to Reactive System Design,
Runtime Monitoring and Execution-based Model Checking,
Elsevier, 2006, ISBN 0-7506-7949-2.

[7] D. Drusinsky and M. Shing, “Verification of Timing
Properties in Rapid System Prototyping”, Proc.14th IEEE

International Workshop in Rapid Systems Prototyping, pp.
47-53, 9-11 June 2003.

[8] D. Drusinsky and G. Watney, “Applying run-time
monitoring to the Deep-Impact Fault Protection Engine”,
Proc. 28th NASA Goddard Software Engineering
Workshop, IEEE, pp. 127-133, Dec. 2003.

[9] S. Easterbrook, R. Lutz, R. Covington, J. Kely, Y.
Ampo and D. Hamilton, “Experiences using lightweight
formal methods for requirements modeling”, IEEE
Transactions on Software Engineering, 24(1), pp. 4-11, Jan
1998.

[10] D. Harel, “A Visual Formalism for Complex
Systems”, Science of Computer Programming, 8, pp. 231-
274, 1987.

229

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:02 from IEEE Xplore. Restrictions apply.

