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Abstract - The paper concerns the quality assurance of the 
timing properties of complex, real-time, reactive system-of-
systems.  It builds upon our previous work on run-time 
model checking of timing properties and the automatic 
white-box testing based on run-time assertion checking, 
and brings together several technologies to improve the 
predictability of the system-of-systems’ logical and timing 
behavior. The paper presents a microkernel architecture 
for evolvable system-of-systems to isolate the computations 
that are likely to change with time from the basic control 
logics that are invariant in the application domain, and a 
testing methodology that is based on formal statechart 
assertions. We demonstrate the approach with a 
conceptual design of a ballistic missile defense battle 
management software. 

Keywords: White-box testing, design by contract, 
statechart assertions, formal specification, run-time 
execution monitoring. 

1 Introduction 
Large systems-of-systems (SoSs), like the network-

centric C4 systems and the global ballistic missile defense 
systems (BMDS), are typically large, heterogeneous and 
distributed. Each SoS is made up of a federation of existing 
and developing systems to provide an enhanced capability 
greater than that of any of the individual systems within the 
system-of-systems. The individual systems making up of a 
SoS (i.e., the component systems) are often developed for a 
different context and subjected to a different set of 
constraints than those of the system-of-systems. When 
assembled together as a SoS, these component systems are 
expected to work together to provide additional services 
beyond what they were originally designed to do.   

Many of the SoSs are real-time, reactive systems. 
These systems are very complex and yet have to be highly 
dependable. Quality assurance is a dominant issue for these 

real-time, mission critical SoSs. Some of the component 
systems have to continuously interact with their 
environment under tight timing constraints. Both the inputs 
and outputs of these component systems must satisfy new 
timing constraints imposed by the SoS requirements, which 
may not be present in the original functional requirements 
of the component systems. The consequences of these 
component systems, like the ballistic missile defense battle 
management software, missing their timing requirements 
(i.e. not performing its intended function in a timely 
fashion) could be the loss of thousands or perhaps tens of 
thousands of innocent lives. Clearly, such system must be 
of the highest quality.  Hence, in addition to the typical 
interoperability problem that may exist among the legacy 
components, the SoS developers now have the difficult task 
of verifying the correctness of the SoS’s timing behavior. 
Moreover, the individual component systems and the SoS 
as a whole are likely to constantly evolve with time. 
Traditional testing methods that rely on hand-crafted test 
codes are too tedious and time-consuming to cope with the 
frequent changes in SoS code.  

This paper addresses the need to verify the timing 
properties of real-time, reactive SoSs. It presents a testing 
methodology that builds upon our previous work on run-
time model checking of timing properties and the automatic 
white-box testing based on run-time assertion checking [4]. 
Run-time Execution Monitoring of formal specification 
assertions (REM) is a class of methods for tracking the 
temporal behavior, often in the form of formal specification 
assertions, of an underlying application. REM methods 
range from simple print-statement logging methods to run-
time tracking of complex formal requirements (e.g., written 
in temporal logic or as statechart assertions) for verification 
purposes. NASA used REM for the verification of flight 
code for the Deep Impact project [8]. In [7], we showed 
that the use of run-time monitoring and verification of 
temporal assertions, in tandem with rapid prototyping, 
helps debug the requirements and identify errors earlier in 
the design process. Recently, REM has been adopted by the 
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U.S. Ballistic Missile Defense System project as the 
primary verification method for the new BMDS battle 
manager because of its ability to scale, and its support for 
temporal assertions that include real-time and time series 
constraints [2].  

The rest of the paper is organized as follows. Section 
2 provides an overview of the StateRover statechart 
assertion formalism [6]. Section 3 presents a microkernel 
architecture for the real-time, reactive SoS and describes 
the process for testing such systems. Section 4 presents a 
discussion on the approach and draws some conclusions. 

2 The StateRover Statechart 
Assertions 
Harel Statecharts [10] are commonly used in the 

design analysis phase of an object oriented UML based 
design methodology to specify the dynamic behavior of 
complex reactive systems. In [5, 6], Drusinsky presented a 
new formalism that combines UML-based prototyping, 
UML-based formal specifications, run-time monitoring, 
and execution-based model checking. The new formalism 
is supported by StateRover, a commercially available tool 
from the Time Rover Inc. StateRover provides support for  
design entry, code generation, and visual debug animation 
for UML statecharts combined with flowcharts. The new 
formalism and tool allow system designers to embed 
deterministic and non-deterministic statechart assertions in 
statechart designs and execute the assertions in tandem 
with their primary UML statechart to provide run-time 
monitoring and run-time recovery from assertion failures. 

2.1 A statechart example 

Figure 1. Track processing module statechart  

For example, Figure 1 shows a design of the 
simplified track processing module of a missile defense 
battle manager. It consists of three concurrent threads, 
MonitorTracks, ClassifyTracks and CorrelateTracks. The 
MonitorTracks thread places all incoming track data into 
the Track Data Store, and forwards them to the 
ClassifyTracks thread for classification. The ClassifyTracks

thread retrieves the track data from the Track Data Store 
one at a time, invokes the classify() method of a Classifier 
component to determine the track’s classification, and 
places the classified track in the Classified Track Data 
Store for further processing. The CorrelateTracks thread 
retrieves the track data from the Classified Track Data 
Store one at a time and invokes the correlate() method of a 
Correlator component to update the Correlated Track 
database.  

2.2 Statechart assertions 
Studies have suggested that the process of specifying 

requirements formally enables developers to gain a deeper 
understanding of the system being specified, and to 
uncover requirements flaws, inconsistencies, ambiguities 
and incompletenesses [9].  StateRover uses deterministic 
and non-deterministic statecharts as assertions for timing 
properties as well as correct ordering and sequencing of 
events and responses. For example, Figures 2 and 3 show 
the statechart assertions for the following requirements. 

Assertion 1:  
 The time spent for classifying a track must not exceed 1 

second. 

Figure 2. Assertion1 Statechart 

Assertion 2:  
 Whenever the track count (cnt) exceeds 75% of the 

MaxCount, cnt must be reduced back to 50% of the 
MaxCount within 1 minute and must remain at or below 
50% of the MaxCount for at least 10 minutes.  
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Figure 3. Assertion2 Statechart 

Figure 4. Track processing module statechart  
with embedded statechart assertions 

Figure 4 shows the combined ProcessTracks 
statechart with embedded statechart assertions, where the 
Assertion statecharts shown in Figures 2 and 3 now 
becomes sub-statecharts of the ProcessTracks statechart.  In 
addition, an unlabeled transition from the Assertion1
substatechart to the decision box “isState(CorrelatorIdel)” 
in the ClassifyTracks thread is added to enable run-time 
recovery. Whenever the assertion 1 fails because the 
classify() method exceeds its execution time limit,  the 
Assertion1 substatechart reaches the terminal state (T) and 
will therefore cause the unlabeled transition out of 
Assertion1 to fire, forcing the ClassifyTracks thread to 
abort the on-going classify() operation and use a simple 
table-lookup to get a rough classification of the trkObj.

2.3 Target code generation 
The StateRover’s code generator generates one Java 

controller class for each statechart file. In our example, we 
have three statechart diagram files, with the ProcessTracks 
statechart in the first file and the Assertion1 and Assertion2
substatecharts in the second and third files. The 
StateRover’s code generator automatically connects the 

three statecharts objects resulting in an executable track 
processing module.  The controller class consists of a set of 
event handlers (one per transition event), the central event 
dispatcher execTReventDispatcher, and the source code for 
local variable declarations and methods supplied by the 
users via the dialog boxes of StateRover’s statechart editor. 
In addition, the code generator also generates a Java 
interface, named ProcessTracksIF, to allow the test drivers 
or other systems from the external environment to interact 
with the track processing module. 

2.4 Testing of generated code 
The generated code is designed to work with the JUnit 

Test Framework. Use Case scenarios used by the system 
designers to identify user needs and system requirements 
are hand-coded as JUnit test cases and exercised against the 
generated statechart code.  For example, the following test 
case describes a scenario in which ProcessTracks receives 
one track per second for 100 seconds. 

import junit.framework.*; 

public class TestProcessTracks1 extends TestCase { 
  private ProcessTracks proc = null; 

  public TestProcessTracks1(String name) { 
    super(name); 
  } 

  protected void setUp() throws Exception { 
    super.setUp(); 
    proc = new ProcessTracks (); 
  } 

  protected void tearDown() throws Exception { 
    proc = null; 
    super.tearDown(); 
  } 

  // Test Scenario: 
  public void testExecTReventDiapatcher() { 
    proc.setTime(0); //set clock to 0 sec 
    for (i=1;i<=100;i++) { 
      //generates a random track 
      Track obj = genTrack();

      //send track to ProcessTracks 
      proc.putTrack(obj); 

      //advance clock by 1 sec 
      proc.incrTime(1);
    } 
    this.assertTrue(proc.isSuccess()); 
  } 

  Track genTrack(){ 
    // code for generating a random track 
    … 
  } 
}

The StateRover provides an automatic white-box test 
generator. It generates a JUnit TestCase class. Unlike hand 
written JUnit TestCase classes, this TestCase (denoted 
WBTestCase) does not capture a single scenario. Rather, it 
creates a plurality of tests for a Statechart Under Test 
(SUT). The WBTestCase create tests that consist of 
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sequences of events, timing information, and external 
objects for the SUT. 

Automatically generated tests are used in three 
primary ways: (1) to search for severe programming errors 
of the kind that induce a JUnit errors, such as 
NullPointerException, (2) to identify tests that violate 
embedded statechart assertions -- such failed assertions 
should be captured by a JUnit assertFalse() statement, using 
the isSuccess() feedback loop depicted in Figures 2 and 3, 
and (3) to identify input sequences that lead the SUT-
statechart to particular states of interest.  

3 Micro-kernel Architecture For Real-
time Reactive SoS 
In [1], Caffall observed that in many real-time, 

reactive SoSs, the basic functions of the control software 
do not change from system to system and from year to 
year. Almost exclusively changes are to the component 
systems that provide information to the control software 
and the component systems that carry out the tasks 
assigned by the control software. For example, the five 
basic functions of the battle manager of a global ballistic 
missile defense systems (detect, track, assign weapon, 
engage, assess kill) are the same for any ballistic missile 
defense systems, while the sensors used to collect 
information for the warfighters, the weapons used to 
engage threat targets, and the rules of engagement (ROEs) 
established in both the planning and the C2 functions are 
constantly changing.  Specific features within the battle-
management software will also change over time (e.g., 
discrimination algorithms, correlation algorithms, feature-
aided tracking). Furthermore, Caffall proposed to use a 
microkernel architecture to isolate those features in 
software components that can be interchanged when 
developers are prepared to introduce new components (e.g., 
new types of weapon systems) into the battle management 
software.  

A battle management kernel is similar in purpose to 
an operating system (OS) kernel in that both kernels 
manage resources shared by competing entities. The 
components in the kernel are expected to be stable com-
pared to the other components in the system-of-systems.  
For instance, device drivers tend to be updated frequently 
and therefore in principle should not be included in the OS 
kernel.  Figure 5 shows a conceptual view of the micro-
kernel proposed by Caffall. The battle management kernel 
consists of a set of processes (the control software for the 
five basic functions), a set of interfaces for the battle 
manager to interact with other component systems, and a 
set of software components to do predefined work for the 
kernel software. The software components are software 
units of composition with contractually specified interfaces 
and explicit context dependencies.  They contain the 
algorithms required to perform the computations of the 

BMDS Battle Manager. For example, the track processing 
will call upon the discrimination component to discriminate 
various benign objects from the threat ballistic missile.   
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Figure 5. Micro-kernel architecture of the  
battle manager software (From [1]) 

To increase the predictability of the dynamic behavior 
of the battle management software, Caffall proposed to 
employ the concepts of design-by-contract in the 
specification and design of the component interfaces, and 
to use temporal logic and run-time model checking to 
assure the correct behavior of the control software.            

3.1 Qualify assurance of the software 
components 
We propose to use an approach similar to the one 

proposed by Cheon [3] to create test oracles from the 
formal behavior specifications of the component interfaces 
and to employ the runtime assertion checker as the test 
oracle engine. The only difference is that almost all the 
previous work on design-by-contract focused on the logical 
behavior of the software, while we are extending the 
concept to formally specify and test timing behaviors. To 
do that, we need to introduce temporal logic and statechart 
assertions to the pre- and post-conditions of the component 
interface and to the in-line assertions of the component 
code. The temporal assertions are translated into target 
code snippets by tools like the TemporalRover [4] and 
StateRover [6] code generators and embedded in the 
component code, so that the assertion evaluator can listen 
for messages from the component software and evaluate 
corresponding temporal assertions during test executions. 

3.2 Quality assurance of the control software 
We propose to express the design of the control 

software as StateRover statecharts and express the formal 
specifications of the functional and temporal properties of 
the control software as embedded statechart assertions. The 
statecharts are converted by the StateRover’s code 
generator to target control software code, together with the 
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code that communicate with the StateRover run-time 
monitor for timing property verification. 

We use the StateRover’s automatic white box tester to 
construct a JUnit TestCase class from the statechart model 
and associated embedded assertions. The white-box test 
generator is intelligent; it generates only test scenarios that 
actually affect the statechart SUT or one of its embedded 
assertions. It is both model-based and specification-based 
because it uses information from the SUT as well as 
embedded assertions for test generation. 

3.3 Runtime Monitoring of the battle 
management kernel 
To further enhance the robustness of the battle 

manager software, we can selectively turn on the mission-
critical and safety-critical assertions and continuously 
monitor them using the TemporalRover and StateRover 
run-time monitor during the execution of the control 
software. Any violation of the assertions will be caught and 
run-time recovery code will be executed per specification of 
the statechart assertions. 

4 Discussion and Conclusion 
The paper concerns the quality assurance of the 

timing properties of complex, real-time, reactive system-of-
systems.  It brings together several technologies to improve 
the predictability of the system-of-systems’ logical and 
timing behavior.   

We increase the maintainability of a SoS with a 
microkernel architecture that isolates those computations 
that are likely to change with time from the basic control 
logics that are invariant in the application domain, and use 
formal behavior interface specifications to ensure that the 
software components will perform the intended 
computation correctly.  

We introduce the statecharts with embedded 
assertions formalism to allow system designers to embed 
the timing properties into the design model itself. System 
designers can now reason at a higher level of abstraction (at 
the state machine level instead of the programming 
language level), thus improving the understandability of the 
SoS design. 

The target code generated by StateRover is designed 
to work with the JUnit Test Framework. Use Case 
scenarios used by the system designers to identify user 
needs and system requirements can be hand-coded as JUnit 
test cases and exercised against the generated statechart 
code.   Formal specifications are best understood when 
presented with multiple views. In our approach, the 
statechart assertion provides a graphical description of the 
formal behavior, while the generated code and the scenario-

based test cases together provide an executable view of the 
expected behavior. 

The fact that individual software components all 
satisfy their contracts is not enough to guarantee that the 
integrated SoS kernel software will satisfy their timing 
constraints. The availability of StateRover’s automatic 
white box tester is essential in checking the correctness of 
the timing behavior of the integrated software. 

The JUnit test case executes a large volume of test 
runs of the statechart System Under Test (SUT). A typical 
white box test case consists of hundreds of thousands of 
runs of the SUT. The availability of the executable 
statechart assertions via run-time execution monitoring 
makes the automatic checking of test results possible and 
cost-effective. 

Finally, the ability to use the statechart assertions to 
trap exceptions during system execution and invoke run-
time recovery is another big step towards making the SoS 
more dependable. Using the methodology presented in this 
paper, a mechanism for assuring software quality assurance 
is built into the component interfaces. If for any reason a 
component fails to meet its timing requirements assertions, 
the exception handlers in the control code fire and put the 
system back into an appropriate state.  In essence this 
methodology provides a continuous Software Quality 
Assurance (SQA) audit of the system-of-systems. 
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