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Abstract 
This paper describes a model checking technique and tool for UML Statecharts based on 
automatic white box test-generation combined with automatic run-time monitoring of statechart 
assertions. The white box test generator is an automatically generated JUnit TestCase, which 
generates sequences of events, conditions, and input data for the System Under Test (SUT). It 
generates test sequences while observing the SUT’s state, knowing the input events, conditions, 
and data objects that potentially affect the SUT’s next state. The white box tester then chooses 
one of those events, conditions, and data objects, and fires the SUT, which in turn fires an 
embedded assertion for run-time monitoring. This combination of white box testing with 
assertion monitoring constitutes automatic model checking. The white-box tes-generator is also 
specification based in that the white box can be specified to be requirement assertions. 

Harel Statecharts and Statechart Specifications 
Harel statecharts have been described in numerous papers and books since first published by 
Harel [Ha] and later incorporated into the OMT methodology and eventually into the UML 
standard, (e.g. [Br, RB]). Statecharts extend finite state diagrams with hierarchy (state nesting), 
concurrence, and history states. Harel Statecharts are typically used for design analysis and 
modeling; for example, Brugge suggests using statecharts in the design analysis phase of an 
object oriented UML based design methodology [Br]. The tools described in this paper rely on 
an automata theoretic semantics for statecharts described in [D3].  

The StateRover tool described in this paper is a code generator and visual debug animator for 
UML statecharts extended with features such as mixed flowcharts and statecharts, substatecharts, 
and critical regions. In addition, the StateRover supports run-time monitoring by providing a 
code generator for deterministic and non-deterministic Harel statecharts assertions as well as 
temporal logic assertions.  

In [D3] Drusinsky described TLCharts, a hybrid of non-deterministic Harel statecharts and 
temporal logic conditions on statechart transitions and as statechart actions. The StateRover tool 
provides support for a subset of the TLCharts specification language where temporal logic 
assertions can only be specified in states and not as statechart transition guards.  

Run-time Monitoring and Run-time Execution Recovery  
Run-time Execution Monitoring (REM) is class of methods of tracking the temporal behavior of 
an underlying application. REM methods range from simple print-statement logging methods to 
run-time tracking of complex formal requirements (e.g., written in temporal logic) for 
verification purposes. Recently, NASA used REM for the verification of flight code for the Deep 
Impact project [DG]. The U.S. Missile Defense Agency (MDA) is currently applying REM to 
the verification of a new Ballistic Missile Defense System [Ca]. Published REM methods 
typically use temporal logic, Metric Temporal Logic (MTL), and regular expressions as a 
specification language [D1]. The StateRover tool described in this paper uses non-deterministic 
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statecharts as a primary specification language but also enables the annotation of states with 
MTL assertions.  

Run-time Execution Recovery (RER) from violations of formal requirement is a technique that 
integrates REM and the Monitored System (MS) in a closed loop so that the system, once 
notified of a formal specification violation, throws an exception and manages this exception in a 
predetermined manner. In [D2] Drusinsky describes a RER technique based on the 
heterogeneous coupling of REM and source code Java exception handling. This method uses a 
two layered approach where the REM tool manages specification and monitoring while recovery 
is performed using Java exception handling. In contrast, our technique uses statecharts as a single 
medium for specification, monitoring and recovery.  

The white-box testing approach described in this paper combines automatic test generation with 
run-time monitoring of correctness properties described using deterministic and non-
deterministic statechart assertions. 

Statechart Assertions 

 A statechart assertion is a statechart embedded as a sub-statechart inside a primary statechart. 
For example, Fig. 1 illustrates an assertion statechart Assertion1 embedded within a primary 
Traffic Light Controller (TLC) statechart. Assertion1 of Fig. 1b asserts that whenever event Q, 
then eventually, within time T, event E will occur. While Assertion1 is generic, it is used inside 
the TLC as: whenever newCar, then eventually, within time T, primary TLC will be in state 
CameraOn.  The StateRover automatically implements this mapping between the assertions 
event name space and the primary statechart event name space. 
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Figure 1. A statechart TLC model with a statechart assertion 
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StateRover assertion statecharts always implement the (Java) ITRAssertion interface and primary 
statecharts with statechart assertions always implement the ITRPrimary interface. Using this 
interface mechanism, it is possible to refer to an unknown primary statechart within the assertion. 
For example, an assertion can assert about, and use, real-time measurements from an unknown 
primary statechart using the primary.getTime() method, where getTime() is part of the 
ITRPrimary interface. Similarly, a primary statechart can always refer to the assertion’s 
isSuccess() method because this method is in the ITRAssertion contract interface. This method 
informs the primary about the success of the assertion. Moreover, the StateRover code generator 
will automatically construct an isSuccess() method for the primary; JUnit test suites for the 
primary can therefore assert about the outcome of the primary’s isSuccess() method. 

A statechart assertion has a natural scope defined by the primary statechart. Consider for 
example, Assertion1 of Fig. 1.  It is evident from the diagram that Assertion1 is only active while 
the primary statechart is in the Red state. Assertion1 has no effect when the primary transitions to 
the Green state and is reconstructed again when the primary returns to the Red state.  Hence, 
statechart assertion are easily chopped and restarted, something that is not so easily done with 
other formalisms such as LTL [EFHL]. 

The StateRover tool provides a code generator for primary UML statecharts with embedded 
statechart assertions, such as the TLC of Fig. 1. This generated code, when executed, provides 
REM for the primary, namely, while the primary TLC statechart is executing its embedded 
assertions are also executing and monitoring its correctness. 

The StateRover supports code generation for deterministic and non-deterministic statechart 
assertions. Non-deterministic statechart assertions are described in an accompanying paper [D4]. 

The following list summarizes the advantages of statechart assertions over temporal logic 
assertions: 

• Visual, appeal, mostly familiar. 

• More descriptive than LTL. 

• Parameterized, reusable. 

• Single layer exception handling available ([D4]).  

• Single tool for UML statechart modeling and assertion development. 

• Simple rule chaining technique [D4]. 

• Natural encapsulation of assertions within primary statecharts via Java. 

• Simple communication between primary code and assertion code. 

Model Checking and White Box Test Generation  
Classical Model Checking (MC) is the process of automatically verifying the correctness of a 
correctness assertion in the context of a given model, or program. Classical MC techniques are 
typically algorithmic where the model is not actually executed, but rather analyzed in some 
manner. 

With the advent of NASA’s  Java Path Finder (JFP) [HP], the definition of MC of software has  
been expanded to include the combination of automatic test generation with run-time monitoring. 
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JPF repeatedly executes the Java program under test, using a custom JVM.  A user constructed 
test generation program, written in a JPF extension of Java, is used to specify the test suite. 
Hence, JPF can be viewed as an automatic black-box test generator. The debate whether this 
kind of MC is should be considered as MC rather than advanced testing is still on going.  

The StateRover’s automatic white box tester constructs a JUnit TestCase class from a given 
statechart model and associated embedded assertions, such as the TLC of Fig. 1.  The JUnit test 
case executes a plurality of test runs of the statechart System Under Test (SUT). A typical white 
box test case consists of hundreds of thousands of runs of the SUT. Each test run consists of 
executing the SUT under a unique scenario developed by the white box tester, a scenario defined 
by a sequence of events, conditions, data objects, and simulated time delays, all driven from the 
white box statechart model and its associated assertions. 

To illustrate the process consider the TLC of Fig 1a and its associated assertion of Fig. 1b. When 
the TLC is in its default state Green, it can only respond to one potential event namely, the 
timeout event. Note that at this time the assertion is not active because it is embedded in the Red 
state. Hence,  the white box test generator emits the timeout event to the TLC SUT. When in the 
state configuration <On, C_0>, there are three events the SUT can react to: newCar, newTruck, 
and timeout. Meanwhile, the assertion, being in state Init, can only react to event Q which is 
mapped to newCar. The tester therefore generates one of the events newCar, newTruck, or 
timeout. It does so by using one of two algorithms: stochastic or deterministic. The stochastic 
algorithm determines the next event to emit using Java Random number generation. The 
deterministic algorithm determines the next event to emit in an orderly brute force manner, 
assuring exploration of all possibilities.  

The underlying assumption behind this white box event generation technique is that events 
matter only if they are sensed by the SUT or sensed by an assertion. If an event does not affect 
the SUT or any assertion then it is considered redundant and not worth exploring. The only 
exception to this rule occurs when the SUT or the assertion have Do actions, i.e., actions that are 
performed as long as the statechart stutters in a given state. In this case the white box tester emits 
a special redundant event. 

The white box tester explores a space induced by following SUT artifacts: events, transition 
guard conditions, data objects used by the SUT, and simulated time delays used by the built in 
timeoutFire event.  

A well known issue with finite state machine and statechart testing involves the existence of 
loops. A statechart SUT that contains a loop has infinitely many potential tests. The StateRover 
test generator therefore requests that the user specify the max number of loop traversals 
permitted in a test. The user also specifies the max number of test runs within a white box test, 
and the maximal length of each test. Note that the number of potential tests is in general 
exponential with the permitted length of tests.  

Each test run in a white box test is uniquely identified by an identification number (ID).  This ID 
can be used later to automatically reconstruct a particular test without manually coding it. For 
example, once the user is informed that test-run #71 violates Assertion1 s/he can re-run that test-
run for debugging purposes using the StateRover’s debug animation feature. In addition, when in 
this single-test mode, the tester displays information about the particular settings for this test-run. 
This process is illustrated in Listing 1, which lists printout from a white box test for the TLC 
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(Fig. 1) SUT, specified to explore the SUT while avoiding loops, i.e., to explore all simple paths 
in the SUT, and Listing 2, which runs a particular test (ID 0_0_1_4_5) in a single-test mode: 

 
13-failed tests (seed numbers):9, 10, 34, 40, 44, 50, 51, 54, 71, 80, 83, 89, 96 
State visitation coverage:   
All states were visited! 
 
Failed assertions:  
Assertion1 
 
Number of test runs discovered:42 
 
This covers ALL possible events sequences which induce paths with No. of loops:1 
(simple paths), stutter=0 
F 
Time: 1.843 
There was 1 failure: 
1) testExecTReventDispatcher(TestPrimaryTLC6)junit.framework.AssertionFailedError 
 at TestPrimaryTLC6.testExecTReventDispatcher(TestPrimaryTLC6.java:235) 
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) 
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) 
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) 
 at TestSuite1.main(TestSuite1.java:23) 
FAILURES!!! 
Tests run: 1,  Failures: 1,  Errors: 0 
 

Listing 1. White box tester via JUnit output for the TLC SUT. 
 
============= Seed: 71================ 
---> Cycle: 0 
        Time increment = 7 
        Event = start 
---> Cycle: 1 
        Time increment = 5 
        Event = timeout 
---> Cycle: 2 
        Time increment = 2 
        Event = newCar 
---> Cycle: 3 
        Time increment = 9 
        Event = newTruck 
---> Cycle: 4 
        Time increment = 7 
        Event = newCar 
        Diamond Boolean value: nCnt > 3 = false 
---> Cycle: 5 
        Time increment = 7 
        Event = eventTRfire() 
F 
Time: 0.141 
There was 1 failure: 
1) testExecTReventDispatcher(TestPrimaryTLC6)junit.framework.AssertionFailedError 
 at TestPrimaryTLC6.testExecTReventDispatcher(TestPrimaryTLC6.java:328) 
 at TestPrimaryTLC6.testExecTReventDispatcher(TestPrimaryTLC6.java:160) 
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) 
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) 
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) 

 331

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:06 from IEEE Xplore.  Restrictions apply.



 

 at TestSuite1.main(TestSuite1.java:23) 
FAILURES!!! 
Tests run: 1,  Failures: 1,  Errors: 0 
 
Listing 2. A single test mode execution of the tester for test ID  71. 
 

The output from a white box test consists of the following information: 

1. ID’s of test runs that violated assertions. 

2. ID’s of test runs that reached certain, user specified, states. 

3. States never reached during any test run. 

4. The number of state configurations reached during all test runs vs. the number of state 
configurations in the SUT. 

5. Estimated percentage of all possible tests (with a giving looping constant) covered by the 
current test. 
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