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Abstract

For cost-effective prototyping, system designers should
have a clear understanding of the intended use of the proto-
type under development. This paper describes a classifica-
tion of formal specification (temporal) assertions used dur-
ing system prototyping. The classification introduces two
new classes of assertions in addition to the well-known
class of test-time assertions: (i) assertions used only during
simulation, and (ii) deployable assertions integrated with
run-time control flow. Separating the formal specification
into three distinct classes allows system designers to de-
velop more effective prototypes to evaluate the different
system behaviors and constraints. A prototype of a naval
torpedo system is used to illustrate the concept.

1 Introduction

The analysis and design of complex safety-critical embed-
ded systems pose many challenges. Feasible timing and
safety requirements for these systems are difficult to formu-
late, understand, and meet without extensive prototyping.
Traditional timing analysis techniques are not effective in
evaluating time-series temporal behaviors (e.g. the maxi-
mum duration between consecutive missed deadlines must
be greater than 5 seconds). This kind of requirements can
only be evaluated through execution of the real-time sys-
tems or their prototypes. Rapid prototyping also helps sys-
tem designers formulate and evaluate safety requirements of
the system under development, by building two separate
models (one for the system under development and the
other for the environment (or equipment) under its control)
and then exercising the two models in tandem to see if the
simulation ends up in known hazardous states under normal
operating conditions and under various failure conditions
[AL].

Run-time Execution Monitoring of formal specification
assertions (REM) is class of methods of tracking the tempo-
ral behavior of an underlying application. REM methods
range from simple print-statement logging methods to run-
time tracking of complex formal requirements (e.g., written

in temporal logic) for verification purposes [D3]. Recently,
NASA used REM for the verification of flight code for the
Deep Impact project [DW]. Also recently, the U.S. Ballistic
Missile Defense System has adopted REM as the primary
verification method for the new ballistic missile battle man-
ager because of its ability to scale, and its support for tem-
poral assertions that include real-time and time series con-
straints [CDMSS]. In [DS], we showed that the use of run-
time monitoring and verification of temporal assertions, in
tandem with rapid prototyping, helps debug the require-
ments and identify errors earlier in the design process. For
cost-effective prototyping, the system designers should have
a clear understanding of the intended use of the prototype
under development.

Published REM methods typically use temporal logic as a
specification language [D2, HR]. Traditionally, run-time
verification methods have been used in later stages of the
design process, to validate and debug code that has already
been written. Correctness assertions of interest were created
for the purpose of REM-based testing or for model check-
ing, in other words they were test-time assertions. Based on
our previous research on the use of REM in rapid prototyp-
ing via modeling and simulation [DM] and in fortifying
target software’s exception-handling ability [D1], we pre-
sent in this paper two additional classes of assertions: (i)
assertions that are used only during simulation, and (ii) de-
ployable assertions integrated with the run-time control flow
of the target software. Separating the formal specification
into three distinct types allows system designers to develop
more effective prototypes to evaluate the different system
behaviors and constraints. We will illustrate these different
classes of assertions and their intended use with an example
prototype of a naval torpedo system using the OMNeT++
prototyping environment [Va] and the DBRover REM tool
[D3].

The rest of the paper is organized as follows. Section 2 pro-
vides a short introduction to temporal logic. Section 3 gives
an overview of an autonomous homing torpedo control
software prototype developed using the OMNeT++ tools.
Section 4 illustrates the different kinds of assertions using
torpedo control software example and discusses their impli-
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cations on the prototype design. Section 5 shows how these
assertions can be evaluated using the OMNeT++ prototyp-
ing environment and the DBRover REM tool, and section 6
draws the conclusion.

2 Temporal Logic

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Linear-time Tempo-
ral Logic (LTL) is an extension of propositional logic
where, in addition to the well-known propositional logic
operators, there are four future-time operators (¢-
Eventually, T-Always, U-Until, O-Next) and four dual-past
time operators. Pnueli [Pn] suggested using LTL for reason-
ing about concurrent programs. Since then, several re-
searchers have used LTL to state and measure correctness
of concurrent programs, protocols, and hardware (e.g., [MP,
Pn]). Metric Temporal Logic (MTL) was suggested by
Chang, Pnueli, and Manna as a vehicle for the verification
of real time systems [CP]. MTL extends LTL by supporting
the specification of relative-time and real-time constraints.
With MTL, all four LTL future-time operators can be char-
acterized by relative-time and real-time constraints specify-
ing the duration of the temporal operator. Temporal Logic
with Time Series constraints (MTLS) was suggested by
Drusinsky as an extension of MTL which enables temporal
specifications that assert about time-series properties such
as stability, monotonicity, and min-max values [D2]. For
example, the following automotive cruise control code with
a stability assertion (using embedded TemporalRover syn-
tax [D3]) requiring speed to be 5% stable while cruise is set
and not changed:

void cruise(boolean cruiseSet, boolean cruiseChange,
boolean cruiseOff, boolean cruiselncr, int speed) {

... /* Cruise Controller functionality */

/* TRBegin
TRAssert{ Always ({cruiseSet} =>

{speed™*0.95 < speed’ && speed’ < speed*1.05}
Until $speed$ {cruiseChange || cruiseOff})}

=> {...} // user actions

TREnd */

In the example speed is a temporal data variable, which is
associated with the Until temporal operator. This associa-
tion implies that every time the Until operator begins its
evaluation, possibly in multiple instances (due to non-
determinism), the speed value is sampled and preserved in
the speed variable of this instance of the Until; this value is
referred to as the pivot value for this Until node instance.
Future speed values used by this particular evaluation of the
Until statement are referred to using the prime notation, i.e.,
as speed’; these future instances of the speed variable are
referred to as primed values. Hence, if the speed value was

100Km/h when cruiseSet is true, then the pivot value for
speed is 100, while every subsequent speed is referred to as
speed’ and must be within 5% of the pivot speed value.

3 Autonomous Torpedo System Prototype

We shall illustrate the concepts with the real-time control
software of an autonomous homing torpedo, called KTorp.
KTorp is a submarine-launched torpedo that searches,
tracks and destroys its underwater targets. The torpedo con-
sists of five main sections (Sonar, Warhead, Battery, Con-
trol and Engine) and can operate in any sea conditions. It
has a maximum navigation time limit of 35 minutes at 30
knots, a navigation depth between 35 feet and 2500 feet,
and two search modes. A torpedo run consists of three se-
quential phases: Enable, Search and Attack. The torpedo is
in its Enable phase when it leaves its mother ship. The tor-
pedo is disarmed and its sonar is inactive, so that it will not
be able to attack its mother ship. The torpedo will follow a
straight path until it reaches its enable distance. The torpedo
then enters its Search phase and starts searching for its tar-
get with the predefined algorithm according to its search
mode. When the torpedo finds its target, it enters its Attack
phase and attacks with a predetermined specification ac-
cording to its search mode.

3.1 KTorp Prototype

The torpedo prototype was created in two phases using the
OMNeT++, an object-oriented discrete-event simulator
primarily designed for the simulation of communication
protocols, communication networks and traffic models, and
models of multiprocessor and distributed systems. Phase I
concentrates on the modeling of torpedo subsystem behav-
ior while phase II expands and refines the environment
model to capture the events and responses between the tor-
pedo and its environment. Phase II is needed for the verifi-
cation of the simulation-time and run-time assertions.

Figures 1 and 2 show the OMNeT++ model for the Phase I
KTorp prototype and its User Interface for the simulation.
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Figure 1. The Phase I KTorp OMNeT++ Model
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Figure 2. The OMNeT++ User Interface of the
Phase I KTorp Simulation

The KTorp model is made up of four modules:

1. The Environment Model module provides a simplified
model of the underwater environment, which is a com-
plex, dynamic environment that varies according to the
weather condition, seasons, and regional differences. We
assume that the environment consists of two types of
signals (target signals and false echo signals) that are de-
tectable by the transceiver device of the torpedo. The
target signals come from a real target and consist of mul-
tiple signals repeated at regular interval. The false echo
signals, although very similar to the target signals, differ
from the target signals in the number of signals and in
the frequency they are generated.

2. The Transceiver module models the transceiver device
situated in the front of the torpedo. We assume that the
device is a passive device in this model, i.e. it only re-
ceives signals. To make the simulation more realistic,
the device uses the location data from the K7orp module
to filter out input signals that are more than 1000 yards
away from the torpedo. This device has some precision
and reliability. The reliability of the device will be mod-
eled using probability based on the input parameters en-
tered by the system designer at the beginning of a simu-
lation run.

3. The Internal Event and Fault Generator module pro-
vides an abstraction of the sensors inside the torpedo: (i)
a small device called the Enabler responsible for detect-
ing that the torpedo is at the end of the Enable phase and
sending an “Enable Signal” to the control logic to arm
itself and begin its search for the target, and (ii) an Iner-
tial Measuring Unit (IMU) responsible for measuring the

distance that KTorp traveled. The Enabler uses the data
generated by the IMU to decide if the torpedo reaches
the enable distance from the mother ship.

4. The KTorp module models the control logic of the tor-
pedo.

4 Test-time, Run-time, and Simulation-
time Assertions in the Torpedo Prototype

Requirements analysts typically start their requirements
discovery process based on some scenarios involving the
system and its environment, and express their understanding
of the expected behavior or properties of the system infor-
mally with natural languages. Mission-essential and safety
critical functional and non-functional requirements are then
expressed as formal assertions to improve the requirements’
clarity and precision. System designers take the require-
ments (expressed either in natural languages or as formal
assertions) and create design artifacts of a system meeting
the requirements. They may annotate the design artifacts
with some of the assertions obtained in the requirements
phase and add new assertions to express the important
properties specific to the system being built. When the pro-
grammers map the system design to code, they may embed
some of the formal assertions in the design artifacts into the
code and may add more assertions to specify the correct
behavior of the code modules for test automation or run-
time exception detection. Depending on the intended and
potential use of these requirements, design and code asser-
tions in REM, we can classify them into the following three
different classes.

4.1 KTorp Safety Requirements and Test-time

Assertions

It is important for safety-critical systems like KTorp to be-
have properly even under abnormal or erroneous condi-
tions. Many of these safety-critical behaviors are expressed
in formal assertions intended for testing the correctness of
the design and/or implementation. The following are test-
time assertions for the torpedo.

1. If the torpedo reaches its maximum navigation time
limit (35 minutes) and still unable to find its target, the
torpedo should never explode. Therefore the power to
the warhead section must be cut and the torpedo will be
disarmed. The MTL for this assertion is:

Rule 1:  Always (launch => Eventually ._35 yin (

live => Eventually .; .. disarmed)).

2. The torpedo should never explode before it reaches its
enable-distance from the mother ship (600 yards). Let
IMUdist denote the distance traveled by the torpedo as
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computed by its IMU unit based on measured time, the
MTL for this assertion is:

Rule 2:  (Not explode) Until (IMUdist>=600).

This assertion has a simulation-time variant described
in section 4.2.

3. The torpedo should never navigate above 35 ft. The
MTL for this assertion is:

Rule 3: Always (depth > 35 ft).

4. Once the torpedo reaches a depth below 2000 ft, it
should disarm within 2 seconds. The torpedo may re-
arm once it rises back up to 2000 ft. However, if the
torpedo reaches a depth below 2500 ft, it should be
permanently disarmed within 2 seconds. MTL for these
assertions is:

Rule 4a:  Always (depth>2000 =>
Eventually < sec disarmed).

Rule 4b:  Always (depth>2500 =>

Eventually < sec (disarmed &&
Not Eventually armed)).

4.2

A simulation-time assertion is an assertion that uses infor-
mation about the environment not present in run-time. Con-
sider, for example, assertion #2 above. Distance in the tor-
pedo is computed by the IMU unit based on measured time.
It is therefore an estimated distance. The simulator on the
other hand, contains the actual distance of the torpedo from
the mother ship; we denote this distance as ActualDist.
Consequently, the following is a simulation assertion vari-
ant of assertion #2: “The torpedo should never explode if
ActualDist<600 yards”, written in MTL as

Rule 5: (Not explode) Until (ActualDist >=600).

Note that rule #5 is an example of an assertion about the
raw requirements, while rule #2 is an example of an asser-
tion about the design that uses a particular algorithm to es-
timate distance traveled based on time. Both rules are active
during simulation. By choosing a less accurate algorithm for
the IMU unit, we have recreated a simulation scenario
where rule #5 fails and rule #2 succeeds. Such a scenario
identifies an issue that would probably not have been de-
tected during testing using only information available to the
torpedo software: there was a potential for the torpedo ex-
ploding while not sufficiently far from the mother ship. The
discovery will cause the system designer to set tighter con-
straints on the accuracy of the IMU software.

KTorp Simulation-time Assertions

4.3

Run-time assertions are assertions that are integrated with
the run-time control flow of the application. Consider for

KTorp Run-time Assertions

example, if the torpedo toggles between 2100 ft and 2300 ft
for 3 times or more within a 60-second interval then it is
prudent to assume that there is something suspicious about
the torpedo’s behavior. Consequently, the torpedo should be
permanently disarmed. The formal assertion (using the
time-series constraints of [D2]) is:

Rule 6:  Not Eventually $time$ Repeatedsr
depth<=2100 && Next (depth>2300 &&

time’<time+60).

An action associated with the failure of this assertion will
permanently disarm the torpedo. Rule 6 is an example of a
requirements assertion that finds its way into the target
code. Assume that we implement the system in Java. The
exception handling with temporal logic will be done as fol-
lows.

(1) Express the assertion using embedded TemporalRover
syntax [D3]:

/* TRBegin
TRAssert {Not Eventually $time$ Repeated_>2_ (
depth<=2100 && Next (depth>2300 &&
time'<time+60)) }
=> {8 // empty success action
throw new MyException("Rule 6 failed"); $3}
TREnd */

(2) In the target Java code at the location requiring run-time
checking, wrap the assertion inside a try block and in the
catch block do:

catch (MyException e) {
... recovery action to disarm the torpedo

/

(3) Implement the desired exception handling routines in
the class MyException.

4.4 Implications of Assertion Classification on

Prototyping

Testing is a time- and effort-consuming process. Correct
formal specification of system requirements (simulation-
time assertions) and assertions describing the correct behav-
ior of control flow (test-time assertions) are essential to test
automation. The use of REM, in tandem with rapid proto-
typing, provides an effective means to validate the correct-
ness of the formal specifications as well as the system de-
sign.

Test-time assertions help develop built-in test cases in the
design and implementation of the system prototype, and can
be embedded in the prototype as probes (code snippets) to
support REM. The effectiveness of these lightweight formal
methods depends heavily on the designer’s ability to under-
stand the requirements and to express them correctly as a
formal specification. Prototyping allows designers to valida-
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tion these test-time assertions early in the development
process.

The validation of system behavior requires the development
of executable environment models to exercise the system
prototype under realistic scenarios. Simulation-time asser-
tions hold the key in deriving the requirements for these
environment models. Moreover, the environment may need
to undergo constant changes to cope with the evolution of
the prototype. Rapid system prototyping allows the con-
struction and modification of these executable environment
models rapidly, accurately, and cheaply.

Run-time assertions help increase the robustness of the sys-
tem software by armor-plating them against any unexpected
behaviors. For example, we can fortify the software’s ex-
ception-handling ability via runtime monitoring of temporal
assertions, where formal specifications are translated by a
code generator into C, C++, or Java statements to be de-
ployed for catching exceptions in the final product during
runtime [D1]. The effectiveness of the run-time assertions
can only be validated via prototyping, where system design-
ers can inject faults into the system prototype and abnor-
malities into the operating environment to test the effective-
ness of the exception handlers.

5 Runtime Monitoring and Checking of
the Assertions

To analyze the safety requirements involving the torpedo in
the context of various actors in its environment, we added a
DBRover Connector module and further refined the Envi-
ronment Model module, resulting in the OMNeT++ simula-
tion model shown in Figure 3, with the User Interface
shown in Figure 4.
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Figure 3. The Phase II KTorp OMNeT++ Model
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Figure 4. The OMNeT++ User Interface of the
Phase II KTorp Simulation

The new environment model allows the system designer to
evaluate the correctness of the transceiver algorithms in
discerning signals from the three separate modules which
model the Mother Ship, the Target and the Noise of the
environment, and the safety requirements involving the lo-
cations, headings and speeds of the torpedo, the mother ship
and the target.

The DBRover Connector module receives the IMUdist val-
ues from the Internal Event and Fault Generator module
and the depth values as well as the arm and explode status
from the KTorp module, executes the code snippets gener-
ated by DBRover to evaluate the Boolean conditions of the
rule segments and sends the result to the DBRover Run-
time Monitor for real-time temporal rule verification (Fig-
ure 5). It also uses the feedback from DBRover to perma-
nently disarm the torpedo if Rule 6 is violated.

We also modified the internal code of Internal Event and
Fault Generator and the KTorp modules to provide the op-
tion of random fault generation based on the input parame-
ters entered by the system designer at the beginning of a
simulation run.

5 H'l'l"

Proceedings of the 16th International Workshop on Rapid System Prototyping (RSP’05) COMPUTER
1074-6005/05 $20.00 © 2005 IEEE SOCIETY

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:07 from IEEE Xplore. Restrictions apply.



OMNeT++
Simulation
System

DBRover

Verification
Result Viewe
A

OMNeT++ GUI

DBRover I
Connector

Transceiver

Mother Ship

OMNeT++
Simulation Kernel

based on current

and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright annotations
thereon.

[CDMSS] D. Caffall, T. Cook, D. Drusinsky, B. Michael, M.

‘
]
T e
Target It ~
;/ Socket \\ ‘| II/ DBRover \\I References
Internal Event I communication ! | 1 generates 1
and Fault b of Boolean bl uueffalse |
Generator ! proposition | | l\ noification | [AL] B. M. Atchison and P. Lindsay, “A Safety Validation of
| OMNeT++ Simulation N values ) !‘ NIEEE. Embedded Control Software using Z Animation”, Proc. 5" IEEE
oot International Symposium on High Assurance Systems Engineer-
DBR .
{ evaluaes the | ing, Albuquerque, NM, Nov. 2000, pp. 228-237
: temporal rule :
I I
\

!
'\ cycle values ,
~_ 2

Figure 5. Architecture of the integrated OMNeT++ Simulator /
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6 Conclusions

While formal specification assertions are becoming increas-
ingly popular, they are typically used only in two configura-
tions: (i) for testing, using propositional or temporal asser-
tions, and (ii) in run-time, using propositional assertions
(e.g., using the Java assertion feature). In this paper we
showed the benefit of identifying temporal assertions for
run-time and simulation time purposes. In particular, simu-
lation-time assertions are very useful for the development of
the executable environment model, which is quite often
neglected in traditional prototyping. Run-time assertions,
together with run-time monitoring and exception handling,
help increase the robustness of the system under develop-
ment. Prototyping is essential for testing the effectiveness of
the run-time assertions. We also use a simple prototype to
show how to instrument a simulation environment to sup-
port the evaluation of the temporal assertions as well as the
system design.

This paper also highlights the need for new prototype use-
cases pertaining to the above-mentioned classification. For
example, prototypes used with simulation assertions will
often be used to force catastrophic behavior of the kind only
available in simulation mode. Similarly, prototypes used
with run-time assertions will often be used under illegal
contractual circumstances, forcing assertion-based flow-
control recovery.
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