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Abstract 

This paper addresses the need for armor-plating Harel 
Statechart design specifications of real-time systems with 
safety requirements (which are commonly written in tempo-
ral logic) using a new visual specification language named 
TLCharts. TLCharts combine the visual and intuitive ap-
peal of non-deterministic Harel Statecharts with formal 
specifications written in Linear-time (Metric) Temporal 
Logic. We demonstrate such armor-plating with a specifi-
cation of the safety-critical computer assisted resuscitation 
algorithm (CARA) software for a casualty intravenous fluid 
infusion pump. 

1 Introduction 

The Harel Statecharts notation is a graphical specification 
language that extends finite state diagrams with hierarchy 
(state nesting), concurrence, and history states [Ha]. Harel 
Statecharts are commonly used for design analysis and im-
plementation; for example, Brugge suggests using state-
charts in the design analysis phase of an object oriented 
UML based design methodology to specify the dynamic 
behavior complex reactive systems [Br]. Statecharts are 
typically used in their deterministic form. However, theo-
retical results [DH] show that non-deterministic statecharts 
are exponentially more succinct than deterministic Harel 
Statecharts. 
While statecharts can effectively specify what a system 
should do (positive information), they tend to be less effec-
tive for the specification of safety requirements (i.e., nega-
tive information about what a system must not do).  Hence, 
researchers have attempted to augment statechart specifica-
tions with other formalisms like process algebra [PB], sym-
bolic timing diagrams [LN] and temporal logic [GH], and 
demonstrated formal proofs for certain properties of the 
Statechart design. This is typically done using two separate 
formalisms (e.g., statecharts and temporal logic) joint by 
tool cooperation or proof techniques. The major problem 
with such approaches is that the lack of a unified formalism 

requires users to work with two models, with no guarantee 
that the correctness of one implies the correctness of the 
other. 
This paper describes TLCharts, a hybrid visual specifica-
tion language that combines the visual and intuitive appeal 
of non-deterministic Harel Statecharts with formal specifi-
cations written in Linear-time (Metric) Temporal Logic. 
TLCharts differ from the augmentation approach described 
earlier in that they combine two formalisms into a single 
coherent language with simple semantics. The interlingua 
semantics of TLCharts have been published in [D3, D4]. 
The new demand for high performance and intelligent 
automobiles, aircrafts and autonomous robots has pushed 
the complexities of embedded systems to a new level. 
These systems now need to interact closely with other em-
bedded systems and function under much tighter timing and 
control constraints. The need to interact closely with their 
environment also makes the understanding and satisfaction 
of their safety requirements a number one priority.  We 
need to increase the robustness of these software by armor-
plating them against any unexpected behaviors. In [D1], 
Drusinsky proposed one form of armor-plating that fortifies 
the software’s exception-handling ability via runtime moni-
toring of temporal assertions, where formal specifications 
are translated by a code generator into C, C++, or Java 
statements to be deployed for catching exceptions in the 
final product during runtime. In this paper, we describe 
another form of armor-plating via over specification of 
design. We propose using TLCharts to armor-plate Harel 
Statechart design specifications of real-time systems with 
safety requirements, where an existing statechart, possibly 
correct and complete, is augmented with additional, possi-
bly redundant, transitions annotated with temporal logic 
conditions. These additional transitions induce over speci-
fication with multiple computations potentially enabled by 
a given input sequence. While such redundancy is undesir-
able for implementation purposes, a TLChart is a formal 
specification. As such, this over specification is a form of 
armor-plating which increases the level of assurance in the 
correctness of the specification. These TLChart specifica-
tions can then be translated into target code to support the 
run-time monitoring of the resultant software.  
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The rest of the paper is organized as follows. Section 2 
provides an overview of temporal logic followed by an 
introduction to TLCharts. Section 3 presents a statechart 
design example of the safety-critical computer assisted re-
suscitation algorithm (CARA) software for a casualty intra-
venous fluid infusion pump. Section 4 illustrates armor-
plating the specification using TLCharts. Section 5 presents 
a discussion on the approach and draws the conclusion. 

2 Temporal Logic and TLCharts 

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Linear-time Tempo-
ral Logic (LTL) is an extension of propositional logic 
where, in addition to the well-known propositional logic 
operators, there are four future-time operators (◊-
Eventually, �-Always, U-Until, Ο-Next) and four dual-past 
time operators. Pnueli [Pn] suggested using LTL for rea-
soning about concurrent programs. Since then, several re-
searchers have used LTL to state and measure correctness 
of concurrent programs, protocols, and hardware (e.g., 
[MP, Pn]). Metric Temporal Logic (MTL) was suggested 
by Chang, Pnueli, and Manna as a vehicle for the verifica-
tion of real time systems [CP]. MTL extends LTL by sup-
porting the specification of relative-time and real-time con-
straints. With MTL, all four LTL future-time operators can 
be characterized by relative-time and real-time constraints 
specifying the duration of the temporal operator. Temporal 
Logic with Time Series constraints (MTLS) was suggested 
by Drusinsky as an extension of MTL which enables tem-
poral specifications that assert about time-series properties 
such as stability, monotonicity, and min-max values [D2]. 
In [DS], we showed that the use of run-time monitoring and 
verification of MTLS assertions, in tandem with rapid pro-
totyping, helps debug the requirements and identify errors 
earlier in the design process. 
Drusinsky recently suggested TLCharts as hybrid of Harel 
Statecharts and temporal logic [D3, D4]. TLCharts visually 
and intuitively resemble Harel Statecharts while enabling 
non-determinism, negation and temporal-logic conditioned 
transitions. This is useful for specifying abstract non-
deterministic temporal properties inside a statechart specifi-
cation.  
TLCharts enable temporal conditions (guards) along Harel 
Statechart transitions. Like a statechart, a TLChart proc-
esses an input sequence one symbol at a time and performs 
one or more state transitions per concurrent statechart 
thread every cycle. In addition, a TLChart considers the 
remaining input sequence as a model for the temporal logic 
guard. Similarly, when using past-time temporal logic, the 
input sequence already processed is considered as a model 
for the past. The Boolean evaluation of this guard is then 
imposed (via conjunction) onto the ordinary Harel State-

chart condition thereby augmenting the statechart’s behav-
ior. Using a similar approach regular expressions can be 
used instead of temporal logic. TLCharts specify good (or 
bad) behavior using the notion of Good and Error states. 
Computations that end in Good states are accepted while 
those that end in Error states are rejected. TLCharts seman-
tics enable non-deterministic specifications. A priority 
scheme performs resolution of accepted vs. rejected com-
putation in case conflicts due to non-determinism.   
Figure 3 shows a TLChart that is the armor-plated version 
of the statechart of Figure 2, which will be explained in 
details in Section 4. We refer the reader to [D3, D4] for a 
more complete discussion of TLCharts.  

3 The CARA Software 

CARA is a safety-critical software developed by the Walter 
Reed Army Institute of Research to improve life support 
for trauma cases and military casualties [W1, W2, W3]; it 
has been used as a case study by several software engineer-
ing research groups [AA, LS]. CARA’s mission is to moni-
tor a patient’s blood pressure and to automatically adminis-
ter intravenous (IV) fluids via computer-controlled pump at 
levels required to restore intravascular volume and blood 
pressure.  
The main responsibilities of the CARA system include: 

1. To monitor a patient’s blood pressure. 
2. To control a high-output patient resuscitation infu-

sion pump. 
3. To display (to a human caregiver) vital informa-

tion about the patient and the system. 
4. To log all data. 
5. To alarm the caregiver during emergency situa-

tions. 
We will use CARA to demonstrate an application of 
TLChart as a vehicle for armor-plating Harel Statechart 
design specifications of safety critical real-time systems. 
We have extracted from [W3] a subset of requirements that 
corresponds to: (i) infusion pump functionality and (ii) 
blood pressure monitoring. We have developed a Harel 
Statechart design for the expected behavior of the CARA 
software. For space and simplicity reasons we have ex-
cluded those requirements pertaining to message display 
and logging. 
Figure 1 shows the top level of the statechart for CARA 
software. It consists of two simple states, Start and PwrOn, 
as well as a composite state named PumpControl, illus-
trated in Figure 2, which consists of five concurrent control 
threads.  
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CARA monitors the pump connector on the Life Support 
for Trauma and Transport (LSTAT) to determine when a 
pump is powered on and plugged in. Once the pump is 
plugged in, CARA continuously checks for continuity on 
all wires going to the pump, as shown in the Line compo-
nent in Figure 2.  Logic level input signals (representing 
continuity, occlusion, air in IV line) occur as interrupt sig-
nals whenever the state of a corresponding signal changes; 
they are represented in Figure 2 as guarded conditions dis-
con, occ and !airOk. If discon or occ becomes true or if 
!airOk remains true for 10 seconds, CARA will sound a 
level 1 alarm and terminate auto-control if it is in auto-
control mode. 
After the pump is plugged in, a clock interrupt triggers an 
event at precise five-second intervals signaling the neces-
sity to check the back EMF, display the updated flow rate, 
and check the impedance; these activities are shown in the 
CheckFlow component in Figure 2. The guarded condition 
badBackEmf is set whenever the back EMF reading is zero 
or cannot be obtained, and the condition badImp is set 
whenever the impedance of the IV fluid is outside the toler-
ance. CARA will sound a level 1 alarm if badBackEmf or 
badImp becomes true, and will terminate auto-control if it 
is in auto-control mode. 
When CARA determines that (i) the pump is plugged in 
and not stopped, (ii) an IV fluid with an impedance within 
tolerance is in place and (iii) the occlusion line is clear, it 
shows a “CARA Status OK” message indicating that 
CARA is ready to start auto-control and displays the “Start 
Auto-control” button. It then transitions into the AutoReady 
state of the Mode component in Figure 2. 
When the “Start Auto-control” button is pressed, CARA 
concurrently enters the Auto state of the Mode component 
and the InitialCuffBp state of the Control component in 
Figure 2. Once inside the Auto state, CARA will attempt to 
use blood pressure from various sources as the input for the 
CARA algorithm to control the pump. For simplicity, we 
use only two blood pressure sources in this version of the 
prototype - an arterial line sensor and a cuff pressure sen-
sor. The arterial line sensor is an active device that updates 
its value once every second. The cuff pressure sensor is a 
passive device that is inflated on demand under the control 
of CARA to measure the patient’s blood pressure. CARA is 

required to prefer the arterial line blood pressure over the 
cuff pressure for purposes of pump control.  
As CARA enters the InitialCuffBp state, it initializes the 
pump at a default flow rate of 4 liters/hr and inflates the 
cuff attempting to obtain the patient’s blood pressure. If 
cuff pressures are not available, it will sound a level 1 
alarm, display the override “yes” and “no” choice buttons, 
and enter the FirstOverride state. Pressing the “alarm re-
set” button will reset the alarm and reattempt to inflate the 
cuff. Pressing the "no" button will reset the alarm and re-
turn to manual mode. Pressing the override “yes” button 
will reset the alarm, force CARA to enter the Uncorrobo-
rateALine state and use the uncorroborated arterial line 
pressure for control. If cuff pressure is not available and 
there are no other blood pressures sources available, CARA 
will revert to manual mode and sound a level 1 alarm. 
Whenever the cuff pressure is available while CARA is in 
the InitialCuffBp state, CARA enters the Corroborating 
state and begins blood pressure source corroboration. 
CARA uses cuff pressure for control during arterial line 
corroboration. The arterial line pressure is compared to a 
corresponding cuff pressure. If arterial line pressure is 
within 10% of the corresponding cuff pressure then CARA 
enters the CorroboratedALine state and the arterial line is 
corroborated and will be used for control. If the arterial line 
pressure is not within 10% of the corresponding cuff pres-
sure then two more cuff readings must be taken and com-
pared against the corresponding arterial line readings, as 
performed in the states SecondAttempt and ThirdAttempt. If 
both arterial line readings are within 10% of the corre-
sponding cuff readings, the arterial line is considered as 
corroborated and should be used for control. If one or more 
of the arterial line pressure readings are not within 10% of 
the corresponding cuff readings then an override dialog box 
is displayed as CARA enters the SecondOverride state. If 
the user presses the “yes” override button then the uncor-
roborated arterial line pressure is used for control. If the 
override “no” button is pressed, CARA enters the CuffCon-
trol state and uses the cuff pressure for control. While un-
der the cuff pressure control, uncorroborated arterial line 
pressures will be compared to each cuff reading in the On-
GoingCor state. If the arterial line readings are within 10% 
of the cuff readings, CARA will automatically switch over 
to the arterial line for control. Override dialog boxes are not 
displayed during these subsequent corroboration attempts.  
While under arterial line pressure control, CARA re-
corroborates the blood pressure control source against the 
cuff every 30 minutes. Any active corroboration attempt 
must be completed before the periodic 30-minute re-
corroboration can begin. If the cuff pressure is not available 
for re-calibration, CARA will sound a level 1 alarm. 
 

Figure 1. Top Level Statechart of the CARA software

Start PwrOn
[powerOn]

[!powerOn]

[plugIn]
[!plugIn]

PumpControl
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Figure 2. Components of the PumpControl state 

[cuffBP = 0 && !unCor] /
alarmOn(noCuff)

[override] / toALine, 
startTimer(cor),
 unCor := TRUE

ControlControlIdle
entry: toManual

InitialCuffBp
entry: getCuffBp

[in Auto] /
setFlowRate(default)

FirstOverride
entry: display(ALineOverride)

exit: alarmOff(no1stCuff)

[cuffBp = 0] /
alarmOn(no1stCuff),

[!override]

Uncorroborated
ALine

[override] / toALine,
startTimer(cor), unCor := TRUE

alarmReset 

Corroborating
entry: toCuff

 [cuffBp > 0]

SecondAttempt
entry: getCuffBp

Corroborated
Aline

tm(cor) / getCuffBp,
 resetTimer(cor),

[newALineBp] /
updateFlowRate

[newALineBp] /
updateFlowRate

[cuffBp > 0 && aLineStable] /
toALine, startTimer(cor)

LoseCorroborated
ALine

LoseUncorroborated
ALine

[lossALine] /
startTimer(aLine2)

[lossALine] /
startTimer(aLine2) [newALineBp] /

updateFlowRate,
resetTimer(aLine2)

[aLineBp = 0] /
alarmOn(noBpSrc)

tm(cor) / toCuff, 
getCuffBp,

resetTimer(cor)
[newALineBp] /
updateFlowRate,

resetTimer(aLine2)

SecondOverride
entry: display(ALIneOverride)

[cuffBp > 0 &&
 !aLINEStable]

ThirdAttempt
entry: getCuffBp

[cuffBp > 0 &&
 aLineStable]

[cuffBp > 0 && 
aLineStable] /

toALine, 
startTimer(cor)

[cuffBp = 0 && unCor] /
toALine, startTimer(cor)

[cuffBp > 0 && !aLineStable 
&& unCor] /

toALine, starTimer(cor)

CuffControl
entry: setTimer(cuff)[!override]

[aLineStable] /
toALine, 

startTimer(cor)

tm(aLine2) /
alarmOn(aLine2),
toCuff, getCuffBp

CheckCuff
entry: setTimer(cuff)

tm(cuff) /
getCuffBP, 

resetTimer(cuff)

[validCuffBp] /
updateFlowRate[invalideCuffBp] /

getCuffBP,
alarmOn(noCuff)

CheckCuff2

[invalideCuffBp] /
alarmOn(cuff2) [validCuffBp] /

updateFlowRate,
alarmOff(noCuff)

[cuffBp = 0
&& unCor] /

toALine,
startTimer(cor)

OnGoingCor

[!aLineStable]

CheckFlow

WaitCheckFlow
entry: startTimer(emf)

PollLine
entry: checkEmf,
checkImpedance,
computeFlowRateresetTimer(emf)

tm(emf)

CheckALine

MonitorALine
entry: resetTimer(aLine),

startTimer(aLine)

tm(aLine) /
lossALine := TRUE
alarmOn(aLine)

[newALineBp] / 
updateALineBp,

[lossALine] alarmOff(aLine),
 lossALine := FALSE

Mode
Manual

AutoReady
entry: displayStartButton

startAutoButtonPressed

[!badLine && airOk] 
toManual

stopAutoButtonPressedAndConfirmed

toManual
CuffCntl

ALineCntl

toALine
toCuff

Auto[badLine]

badLine = occ || discon 
        || badImp || badBackEmf

H

LineFault
entry: toManual,

alarmOn(lineFault)

Normal
entry: alarmOff(lineFault)

LowAirOk
entry: startTimer(airLock)
exit: resetTimer(airLock)

[!badLine && airOk] 

[badLine] 

[!airOk]

tm(airLock) 

[airOk]
Line

tm(aLine2) /
alarmOn(aLine2)

[cuffBp > 0 && !aLineStable && !unCor]

CorAgain

[cuffBP = 0 &&
 !unCor] /

alarmOn(noCuff)
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Once a valid blood pressure has been established, CARA 
calculates a voltage to drive the pump and will readjust the 
voltage after each blood pressure reading. When the cuff 
pressure is being used for control, CARA sets a cuff read-
ing frequency based on a table below. If the cuff is already 
inflating for some other reason when the time arrives for 
another reading, an additional cuff reading does not need to 
be requested. 

BP ≤ 60 (60, 70] (70, 90] > 90  
Freq 1 min 2 min 5 min 10 min 

While under the arterial line pressure control, if the arterial 
line signal is lost for more than 1 minute, CARA sounds a 
level 1 alarm and enters the LoseCorroboratedALine state. 
If the arterial line signal is lost for more than 3 minutes, a 
level 2 alarm sounds. If only the cuff pressure is being used 
and an expected blood pressure reading is invalid (i.e. out-
side the 40-150 mmHg range), CARA sounds a level 1 
alarm and enters the CheckCuff2 state. It then initiates an-
other request for a cuff pressure.  If this pressure is invalid, 
CARA sounds a level 2 alarm and reverts back to manual 
mode. 
While in auto-control mode, a “Terminate Auto-control” 
button will be made available. Pressing this button will 
activates “yes” and “no” confirmation buttons. The “yes” 
button causes CARA to revert back to manual mode. The 
“no” button causes CARA to return to the auto-control 
mode. 

4 Armor-plated TLChart for CARA 

The safe operation of CARA depends on the timely detec-
tion of abnormal situations in the pump lines and the pa-
tient’s blood pressure. In addition to deciding on automatic 
or manual pump control according to the run time changing 
of the patient’s blood pressure value, CARA must alert the 
caregivers to intervene in emergency situations via a set of 
alarms. The assumption is that the caregivers know what 
they are doing and will correct the situations (like loss of 
pump line signals or patient’s blood pressure) before re-
starting the auto-control process. The fact that “CARA 
should not start the auto-control process before the emer-
gency situation is corrected” is an example of the safety 
requirements that should be included in the specification of 
the system’s statechart to ensure the safe operation of the 
software. In this section, we show how this can be done 
using TLCharts. 
Figure 3 is an armor-plated TLChart version of the state-
charts of Figure 2. In this TLChart, all states other than the 
Error state are good states. Computations that end in the 
Error state indicate undesirable behavior, such as the tran-
sitions labeled as Type 1 or Type 2.  In Figure 3, the gray 
transitions are those that exist in the statechart shown in 

Figure 2 while the black transitions are the newly added 
armor-plating transitions, which are annotated with tempo-
ral logic conditions (denoted as temporal guards). Tempo-
ral guards are marked by curly braces while conventional 
propositional guards are marked by square brackets. Note 
that a transition can be annotated by both temporal and 
propositional (conventional) guards.  
Consider armor-plating transition  
  UncorroboratedALine → ControlIdle;  
it is annotated with the temporal guard {�>3 minlossALine}. 
This transition reads as follows: if the present state at time t 
is UncorroboratedALine and lossALine is true for more 
than three minutes into the future then transition (on the 
cycle following t) to state ControlIdle. In other words, tem-
poral guards make present time decisions by looking into 
the future and the past; see the interlingua, automata-based 
semantics in [D4]. While not directly useful as a model for 
a real-time controller, such a model makes sense in a speci-
fication and verification context and provides the basis for 
run-time model checking of the software [D5].  
Armor-plating is achieved by superimposing new Error 
states as well as additional armor-plating transitions on top 
of the statechart specification. In Figure 3, we have added 
three types of armor-plating transitions, as follows: 
• Type 1 transitions behave like conventional temporal 

logic assertions; they make a high-level temporal logic 
assertion about the statechart (or most of it), such as 

 �>10sec!air_ok  =>!( ◊ [10sec,12sec] lineFaultAlarmOn) 
in Figure 3, which states that it is an error if !airOk is 
true for more than ten seconds in any sub-state of 
PumpControl and lineFaultAlarmOn does not become 
true within the next two seconds. 

• Type 2 transitions are anchored in specific states (e.g., 
the Manual state in Figure 3) and therefore make con-
ditional assertions about expected behavior when the 
statechart visits that particular state. The transition 
from the Manual state with the assertion 

{(in Auto) Before (allAlarmsOff && 
   airOk &&!badLine)} 

states that it is an error to enter the Auto state before all 
alarms are off, badLine is reset to false and airOk is set 
to true; while the transition from the LoseCorroborate-
dALine state with the assertion 

{(in OnGoingCor) Before 
     ((in Manual) && aLine2AlarmOff)} 

states that once CARA enters the LoseCorroborate-
dALine state, it is an error to corroborate the arterial 
line blood pressure in the OnGoingCor state without 
first going into the Manual state and turning off the 
aLine2Alarm. 
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[cuffBP = 0 && !unCor] /
alarmOn(noCuff)

[override] / toALine, 
startTimer(cor),
 unCor := TRUE

ControlControlIdle
entry: toManual

InitialCuffBp
entry: getCuffBp

[in Auto] /
setFlowRate(default)

FirstOverride
entry: display(ALineOverride)

exit: alarmOff(no1stCuff)

[cuffBp = 0] /
alarmOn(no1stCuff),

[!override]

Uncorroborated
ALine

[override] / toALine,
startTimer(cor), unCor := TRUE

alarmReset 

Corroborating
entry: toCuff

 [cuffBp > 0]

SecondAttempt
entry: getCuffBp

Corroborated
Aline

tm(cor) / getCuffBp,
 resetTimer(cor),

[newALineBp] /
updateFlowRate

[newALineBp] /
updateFlowRate

[cuffBp > 0 && aLineStable] /
toALine, startTimer(cor)

LoseCorroborated
ALine

LoseUncorroborated
ALine

[lossALine] /
startTimer(aLine2)

[lossALine] /
startTimer(aLine2) [newALineBp] /

updateFlowRate,
resetTimer(aLine2)

[aLineBp = 0] /
alarmOn(noBpSrc)

tm(cor) / toCuff, 
getCuffBp,

resetTimer(cor)
[newALineBp] /
updateFlowRate,

resetTimer(aLine2)

SecondOverride
entry: display(ALIneOverride)

[cuffBp > 0 &&
 !aLINEStable]

ThirdAttempt
entry: getCuffBp

[cuffBp > 0 &&
 aLineStable]

[cuffBp > 0 && 
aLineStable] /

toALine, 
startTimer(cor)

[cuffBp = 0 && unCor] /
toALine, startTimer(cor)

[cuffBp > 0 && !aLineStable 
&& unCor] /

toALine, starTimer(cor)

CuffControl
entry: setTimer(cuff)[!override]

[aLineStable] /
toALine, 

startTimer(cor)
tm(aLine2) /

alarmOn(aLine2),
toCuff, getCuffBp

CheckCuff
entry: setTimer(cuff)

tm(cuff) /
getCuffBP, 

resetTimer(cuff)

[validCuffBp] /
updateFlowRate[invalideCuffBp] /

getCuffBP,
alarmOn(noCuff)

CheckCuff2

[invalideCuffBp] /
alarmOn(cuff2)

[validCuffBp] /
updateFlowRate,
alarmOff(noCuff)

[cuffBp = 0
&& unCor] /

toALine,
startTimer(cor)

OnGoingCor

[!aLineStable]

CheckFlow

WaitCheckFlow
entry: startTimer(emf)

PollLine
entry: checkEmf,
checkImpedance,
computeFlowRateresetTimer(emf)

tm(emf)

CheckALine

MonitorALine
entry: resetTimer(aLine),

startTimer(aLine)

tm(aLine) /
lossALine := TRUE
alarmOn(aLine)

[newALineBp] / 
updateALineBp,

[lossALine] alarmOff(aLine),
 lossALine := FALSE

Mode
Manual

AutoReady
entry: displayStartButton

startAutoButtonPressed

[!badLine && airOk] 
toManual

stopAutoButtonPressedAndConfirmed

toManual
CuffCntl

ALineCntl

toALine
toCuff

Auto[badLine]

badLine = occ || discon 
        || badImp || badBackEmf

H

LineFault
entry: toManual,

alarmOn(lineFault)

Normal
entry: alarmOff(lineFault)

LowAirOk
entry: startTimer(airLock)
exit: resetTimer(airLock)

[!badLine && airOk] 

[badLine] 

[!airOk]

tm(airLock) 

[airOk]
Line

tm(aLine2) /
alarmOn(aLine2)

[cuffBp > 0 && !aLineStable && !unCor]

CorAgain

[cuffBP = 0 &&
 !unCor] /

alarmOn(noCuff)

Error

{[]>10sec!airOK => !(<>[10sec,12sec]lineFaultAlarmOn}

Type 1

{(in Auto) Before (allAlarmsOff && airOk && !badLine)}

Type 2

{[]>3minlossALine}

{Repeated3, 10min (in LoseCorroboratedALine)
   &&  Repeated3, 10min (in CorroboratedALine)}

Type 3a

Type 3b

{(in OnGoingCor) Before
((in Manual) && 

aLine2AlarmOff)} 

Figure 3. Armor-plated TLChart 
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Type 3 transitions are completely integrated into the state-
chart’s transition function, i.e., they do not lead to an Error 
state, such as forcing a transition into state ControlIdle 
whenever lossALine is true for more than three minutes.  
Note how, in Figure 3, we distinguish between Type 3a and 
Type 3b transitions. Type 3b transitions are similar to Type 
3a but use the LTL until operator, nested temporal logic, or 
counting operators as guards. (Note that p Before q is an 
abbreviation for the LTL formula !q Until p.) The transition 
from CorroboratedALine → Corroborating with the asser-
tion 

Repeated≥3, ≤10min (in LoseCorroboratedALine)  
&& Repeated≥3, ≤10min (in CorroboratedALine) 

forces CARA to re-corroborate the arterial line blood pres-
sure whenever it loses the arterial line pressure 3 or more 
times within a 10-minute interval while using corroborated 
arterial line pressure to control the pump. The assertion 
uses the counting operators that were described in [D5]. 
These operators are more readable than their equivalent 
pure-LTL representation that uses a nesting of until opera-
tors. Moreover, as discussed in Section 5, the translation of 
the notation LTL until operator into a pure statechart nota-
tion is non-trivial. 

5 Discussion and Conclusion 

The inclusion of safety requirements in design specifica-
tions helps highlight what the system must not do, which if 
overlooked, will lead to unsafe operations of the software. 
TLCharts offer an opportunity for armor-plating specifica-
tions using over-specification, namely by adding temporal 
conditions to an otherwise fully specified design. The 
TLCharts also provide the basis for armor-plating run-time 
applications. Following ideas suggested by Drusinsky in 
[D1], armor plating is accomplished using run-time moni-
toring of LTL and MTL assertions combined with excep-
tion handling. This was done with tools like Temporal-
Rover code generator, that converts temporal into code 
snippets to be embedded in the target software for run-time 
verification [D5], thus providing further protection against 
unsafe behaviors of the reactive systems. TLCharts offer an 
opportunity for better run-time armor plating because 
TLChart armor plating transitions (such as the transitions of 
Figure 3) are tightly integrated with the statechart transition 
function. Currently, we have to translate TLChart specifica-
tions to temporal assertions manually and then use the 
DBRover's TLChart support to generate the run-time moni-
tor code. We are working on the development of TLChart 
interactive development environment (IDE), code genera-
tor, and model checking related tools. The code generator 
will integrate known code generation techniques for deter-

ministic statecharts [D6] with tools for run-time monitoring 
of temporal logic (DBRover and Temporal Rover) [D5].  
TLCharts enable a coherent uniform formalism for a hybrid 
of statecharts and temporal logic. A similar hybrid can sup-
port statecharts and regular expressions. We believe that 
such a hybrid language is preferable over having two sepa-
rate languages (temporal logic and statecharts) with asser-
tions written in one language and used for armor-plating 
the other language.  The former integration is a language 
level integration while the latter is a tool level integration. 
TLCharts are expressive extension of statecharts. While 
simple temporal logic formulae like �p and ◊p, where p is 
propositional (i.e., non-temporal), have simple equivalent 
statechart representations, the following two kinds of tem-
poral logic guards are harder to express as statecharts: 
1. Temporal logic guards that contain the until operator. 

An example of such a guard is the transition marked as 
Type 3b, in Figure 3. We also refer the user to [D3] for 
other examples.  

2. Temporal logic guards with nested temporal operators, 
such as �<10 (p => ◊<5q). Typically, every level of nest-
ing requires a concurrent thread in the equivalent state-
chart. 
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