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Integrating formal assertions into the modeling, implementation, and testing of statechart-based 
designs can enhance a system’s robustness by providing runtime monitoring and recovery from 
assertion failures. 

Formal specifications and lightweight formal methods help improve requirements specifications’ clarity 
and precision.1 Formally specifying requirements enables developers to gain a deeper understanding 
of the system being specified and to uncover requirement flaws, inconsistencies, ambiguities, and 
deficiencies.2 Unfortunately, formal methods users often discover late in the development process that 
their formal requirements are incorrect, making this approach much less effective. 

Runtime execution monitoring is a class of methods for tracking an underlying application’s temporal 
behavior, often expressed in the form of formal specification assertions. REM methods range from 
simple print-statement logging to runtime tracking of complex formal requirements (such as 
requirements written in temporal logic) for verification purposes. Using runtime monitoring and 
verification of temporal assertions in tandem with rapid prototyping helps debug the requirements and 
identify errors earlier in the design process.3 NASA used REM to verify flight code for the Deep Impact 
project.4 Recently, the US Ballistic Missile Defense System project adopted REM as the primary 
verification method for its new ballistic missile battle manager because of REM’s ability to scale and its 
support for temporal assertions that include real-time and time-series constraints.5

System designers often use Harel statecharts for design analysis and implementation.6 Bernd Bruegge 
and Allen Dutoit, for example, suggest using statecharts in the design-analysis phase of an object-
oriented UML-based design methodology to specify dynamic behavior of complex reactive systems.7

Although statecharts can effectively specify what a system should do (positive information), they’re 
generally less effective for specifying safety requirements (that is, negative information about what a 
system must not do). Hence, researchers have attempted to augment statechart specifications with 
other formalisms such as process algebra,8 symbolic timing diagrams,9 and temporal logic10 and to 
demonstrate their designs’ correctness with formal methods (for example, theorem proofing, static 
model checking, or execution-based model checking) on the corresponding assertions. In such 
approaches, however, the lack of a unified formalism requires users to work with two models, with no 
guarantee that one model’s correctness implies the other’s. 

In earlier work, Drusinsky presented statechart assertions, a new formalism that combines UML-based 
prototyping, UML-based formal specifications, runtime monitoring, and execution-based model 
checking.11,12 Unlike the text-based temporal assertions, statechart assertions are visual, intuitive, and 
resemble statechart design models. For example, statechart assertions are event driven like statechart 
models, whereas other specification languages, such as temporal logic, are purely propositional. 
Moreover, statechart assertions are Turing equivalent and are therefore significantly more expressive 
than temporal logic. StateRover, a commercially available tool for UML statechart design entry, code 
generation, and visual debug animation, supports this new formalism. The new formalism and tool let 
system designers embed deterministic and nondeterministic statechart assertions in statechart 
designs and execute the assertions in tandem with their primary UML statechart to provide runtime 
monitoring and recovery from assertion failures. Here, we focus on the correct development and early 
use of statechart assertions in rapid system prototyping. 
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The CARA statechart design 
The Walter Reed Army Institute of Research developed the safety-critical computer-assisted resuscitation 
algorithm software to improve life support for trauma cases and military casualties. Several software 
engineering research groups have used CARA as a case study.13,14 CARA aims to monitor a patient’s blood 
pressure and to automatically administer intravenous fluids via a computer-controlled pump at levels 
required to restore intravascular volume and blood pressure. 

Prototype

The top-level statechart of the CARA software (figure 1) consists of three concurrent threads: Main,
MonitorPlugIn, and MonitorOcclusion. The Main thread’s top-level statechart consists of two states: Manual
and SoftwareControl, a composite state consisting of the AutoReady, AutoControl, and AutoFail substates. 

Figure 1. Top-level page of the computer-assisted resuscitation algorithm (CARA) 
statechart. 

CARA monitors the pump connector on the life support for trauma and transport (LSTAT) unit to determine 
when a pump is powered on and plugged in. When CARA determines that the pump is plugged in and the 
occlusion line is clear, it transitions to the AutoReady state. 

CARA will transition back to the Manual state if it receives an unplug or occTrue signal from the environment 
while it’s in the AutoReady state. If CARA receives the start_control(desired_bp) message from the 
environment while it’s in the AutoReady state, it will enter the AutoControl state. While in this state, CARA 
continuously checks for continuity on all wires going to the pump. It will sound a level-one alarm and enter 
the AutoFail state if it receives unplug or occTrue signals from the environment. 

The refined details of the AutoControl state are available in another portion (page) of the diagram file 
(see figure 2). AutoControl consists of three concurrent threads. A clock interrupt triggers an event at 
precise five-second intervals, signaling the necessity to check the back electromotive force (EMF) 
voltage, as shown in the MonitorEMF component in figure 2. It sounds a level-one alarm and transitions 
to the AutoFail state via the page connection C1 whenever the back EMF reading is zero or unavailable. 
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Figure 2. AutoControl substate of the CARA statechart. 

CARA attempts to use blood pressure information from various sources as the input for the CARA 
software to control the pump. For simplicity, we use only one blood pressure source in this version of 
the prototype—an arterial line sensor, which is an active device with a 1-Hz sampling rate. CARA 
adjusts the patient’s blood pressure by regulating the voltage driving the pump on the basis of the 
newest blood pressure reading, taken once every second. CARA will signal a lowBPAlarm if the reading 
is below a preset minimum critical value and will maintain a keep-vein-open rate at or above the 
threshold of four milliliters per minute when the blood pressure reaches desiredBP.

While under the arterial line pressure control, if CARA loses the arterial line signal for more than one 
minute, it will sound a level-one alarm and enter the ControlPump component’s LoseBP state, as figure 
2 shows. If it loses the arterial line signal for another two minutes, a level-two alarm will sound, and 
CARA will transition to the AutoFail state via the page connection C2. 

While in the SoftwareControl state, a reset event from the external environment will cause CARA to 
reset its alarms and transition back to the Manual state. 

Target code generation and testing 

The StateRover’s code generator produces one Java controller class for each statechart file. Our case 
study uses one statechart diagram file consisting of two pages, with the top-level statechart in the 
first page (figure 1) and the AutoControl substatechart in the second (figure 2). The StateRover’s 
code generator automatically connects the two statecharts into a single statechart and generates a 
single CARA class for the executable prototype. The controller class consists of a set of event handlers 
(one per transition event), the central event dispatcher execTReventDispatcher, and the source code 
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of the local variable declarations and methods supplied by users via the StateRover’s statechart editor 
dialog boxes. The code generator also produces a Java interface, CARAIF, to let external environment 
test drivers or other systems interact with the CARA prototype. 

The StateRover’s vanilla code generator implements statechart orthogonality using a fixed order of 
transition traversal. For example, the occTrue() event handler will realize the three orthogonal occTrue()
transitions in figure 1 (two in the Main thread and one in the MonitorOcclusion thread) as three if-blocks. 
The order of these if-blocks induces a fixed firing order for corresponding transitions. In addition to the 
vanilla code generator, the StateRover has a concurrent code generator that generates multithreaded Java 
code for statecharts with Harel concurrence. 

The generated code works with the JUnit test framework.15 System designers hand-code use-case 
scenarios for identifying user and system requirements as JUnit test cases and exercise them against the 
generated statechart code. For example, the test case in figure 3 describes a scenario in which CARA 
enters the AutoControl state after receiving the events plugIn(), occFalse(), and startControl(), and 
eventually ends up in the AutoFail state after receiving the events BPEvent(), BPEvent(), and occTrue().

import junit.framework.*; 

public class TestCARA1 extends TestCase { 

 private CARA cara = null; 

 public TestCara1(String name) { 

  super(name); 

 } 

 protected void setUp() throws Exception { 

  super.setUp(); 

  cara = new CARA(); 

 } 

 protected void tearDown() throws Exception { 

  cara = null; 

  super.tearDown(); 

 } 

 // Test Scenario: 

 public void testExecTReventDispatcher() { 

  cara.plugIn(); 

  cara.occFalse(); 

  cara.incrTime(30); //advance clock to 30s 

  this.assertTrue(cara.isState(“AutoReady”)); 

  cara.startControl(70); 

  cara.incrTime(70); //advance clock to 100s 

  cara.BPEvent(50); 

  cara.incrTime(50); //advance clock to 150s 

  cara.BPEvent(52); 

  cara.incrTime(50); //advance clock to 200s 

  cara.occTrue(); 

  this.assertTrue(cara.isState(“AutoFail”)); 

 } 

}

Figure 3. A test case describing a scenario in which CARA enters the AutoControl and 
AutoFail states after receiving specified events. 
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Developing and validating the statechart assertion 
Typically, system modelers create formal specifications from a conceptual requirement as 
understood by the primary modeler. Regardless of the formal notation or method used, system 
modelers typically begin requirements discovery using some scenarios involving the system and its 
environment. They express their understanding of the system’s expected behavior or properties 
informally using natural language. For example, consider a scenario in which the CARA software 
must keep the IV line open while it’s under CARA’s control. We first express the requirements in 
English: 

Whenever CARA receives the startControl() event, it must, within one minute, generate a 
control voltage that is greater than or equal to the keep-vein-open (KVO) voltage. 
Thereafter, the voltage level condition should be examined once every second and 
sustained until the reset() event is received. 

We then translate the English statement into the statechart assertion in figure 4, where the 
assertion will reach the error flowchart box whenever it violates the requirement. 

Figure 4. The assertion statechart. 

Users must validate their assertions’ correctness early in the software development process. 
Otherwise, as we mentioned earlier, they might discover late in the development process that the 
assertions are incorrect and don’t work as intended. Possible reasons for incorrect assertions include 

incorrect translation of the natural language specification to a formal specification; 
incorrect translation of the requirement, as understood by the modeler, to natural language; 
and
incorrect cognitive understanding of the requirement, which typically occurs when the 
requirement was driven from the use case’s main success scenario, with insufficient 
investigation of other scenarios. 

We propose the iterative process for assertion development shown in figure 5. 
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Figure 5. Iterative process for assertion development. 

We first test the behavior of the assertion described by the statechart in figure 4 with the scenario in 
figure 6. 

import junit.framework.*; 

public class TestAssertion extends TestCase { 

 private Assertion1 assert1 = null; 

 public TestAssertion(String name) { 

  super(name); 

 } 

 protected void setUp() throws Exception { 

  super.setUp(); 

  assert1 = new Assertion1 (); 

 } 

 protected void tearDown() throws Exception { 

  assert1 = null; 

  super.tearDown(); 

 } 

 // Assertion 1, Test Scenario 1 

 public void testExecTReventDispatcher() { 

  assert1.startControl(70); 

  assert1.incrTime(30); //advance clock to 30s 

  assert1.setVoltage(KVO); 

  assert1.incrTime(31); //advance clock to 61s 

  assert1.setVoltage(KVO + 1); 

  assert1.incrTime(1); //advance clock to 62s 

  assert1.reset(); 

  this.assertTrue(assert1.isSuccess()); 

 } 

}

Figure 6. A scenario describing an assertion’s typical behavior. 
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Scenario 1 in figure 6 represents a typical case in which the control voltage is set at a level greater 
than or equal to the KVO voltage within one minute after the startControl() event’s arrival and 
remains greater than or equal to the KVO voltage until CARA receives the reset() event, resulting in 
a successful test outcome. 

To ensure that the assertion works as intended, we create two more scenarios by replacing the body 
of the testExecTReventDispatcher() method with the code in figure 7. 

// Assertion 1, Test Scenario 2 

 public void testExecTReventDispatcher() { 

  assert1.startControl(70); 

  assert1.incrTime(30); //advance clock to 30s 

  assert1.setVoltage(KVO); 

  assert1.incrTime(31); //advance clock to 61s 

  assert1.setVoltage(0); 

  assert1.incrTime(1); //advance clock to 62s 

  assert1.reset(); 

  this.assertFalse(assert1.isSuccess()); 

 } 

 // Assertion 1, Test Scenario 3 

 public void testExecTReventDispatcher() { 

  assert1.startControl(70); 

  assert1.incrTime(30); //advance clock to 30s 

  assert1.setvoltage(0); 

  assert1.reset(); 

  this.assertTrue(assert1.isSuccess()); 

 } 

Figure 7. Scenarios for testing an assertion’s correctness. 

Scenario 2 represents the case in which CARA sets the control voltage at a level greater than or equal 
to the KVO voltage within one minute after receiving the startControl() event, but fails to sustain 
the voltage level condition before receiving the reset() event. The entry action in the Error flowchart 
box in figure 4 sets the variable bSuccess to false, which in turn causes assert1.isSuccess() to 
return false and this.assertFalse() to return true. 

Scenario 3 presents an interesting case. Although CARA constantly maintains  the control voltage 
below the KVO voltage, the test outcome is still successful. This behavior relates directly to the 
process described in figure 5. Initially, this assertion’s success in this scenario surprised its developer. 
He followed the process in figure 5 to determine which reason for incorrect assertions this behavior 
represented and concluded that it might have resulted from incorrect cognitive understanding of the 
requirement. After discussing the situation with the customers, our developer decided that this 
behavior was acceptable and adjusted his cognitive expectation accordingly. If after discussing the 
situation with the customers, the developer decided the behavior was unacceptable, he would have 
needed to adjust the natural language requirement and assertion statechart accordingly. 

This example highlights the subtleties of creating correct formal assertions and the value of testing 
executable formal assertions via JUnit-based simulations. The ability to test statechart assertions 
independent of the prototype design ensures that system designers truly understand the required 
system behavior without being tainted by any preconceived solutions. With the help of StateRover’s 
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code generator, we can create a library of executable assertion patterns consisting of generic 
statechart assertions and the accompanying scenario-based test cases. The use of pretested generic 
statechart assertions will lessen the development time and improve the quality of the statechart 
assertions in rapid prototyping. In fact, we argue that the test suite for an assertion is an integral part 
of the assertion’s deliverables. 

Integrating assertions into the statechart design 
Figure 8 shows the top level of the CARA statechart with the embedded statechart assertion, where 
the Assertion statechart in figure 4 becomes a substatechart of the CARAOn state. In addition, we add 
an unlabeled transition from the Assertion substatechart to the Manual state to enable runtime 
recovery. Whenever the assertion fails, it reaches the terminal state T (in figure 4) and will cause the 
unlabeled transition from the Assertion substatechart to fire, forcing CARA to leave AutoControl and 
return to the Manual state. 

Figure 8. Top-level page of the combined CARA statechart. 

Testing the combined prototype 

The TestCARA1 test case we described in figure 3 resulted in a successful outcome for the prototype 
generated from the statecharts in figures 1 and 2. Running the same test case against the prototype 
generated from the CARA statecharts in figures 2 and 8, however, resulted in an unsuccessful 
outcome due to the Assertion substatechart’s failure. Closely inspecting the execution trace reveals 
that the assertion was violated because CARA doesn’t generate any control voltage until it receives the 
first BPEvent() 70 seconds after the startControl() event in the TestCARA1 test case scenario. To 
fix the problem, we added an entry action setVoltage(KVO) to the AutoControl superstate to ensure 
that the control voltage is set to the KVO voltage once CARA receives the startControl() event. 
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Automatic white-box testing of the combined prototype 

The StateRover’s automatic white-box test generator constructs a JUnit TestCase class from a given 
statechart model and associated embedded assertions. A typical JUnit white-box test case consists of 
hundreds of thousands of runs of the statechart under test (SUT). We use the autogenerated tests in 
three ways: 

To search for severe programming errors that induce a JUnit error status, such as 
NullPointerException.
To identify tests that violate temporal assertions. (To help statechart designers pinpoint 
specific errors, the white-box test case reports each failed test run with an identification 
number. The system designers can investigate the causes of failure for a specific run in detail 
by running the automatic white-box tester in single test/run mode. Such a mechanism helps 
developers efficiently eliminate errors in their design.) 
To identify input sequences leading the SUT to particular states of interest. 

The StateRover-generated WBTestCase creates sequences of events and conditions for the SUT. The 
WBTestCase is nontrivial in that it creates only sequences consisting of events that the SUT or some 
embedded assertion is sensitive to. It does this by repeatedly observing all events that potentially 
affect the SUT when it’s in a given state configuration, selects one of those events, and fires the SUT 
using the selected event. The WBTestCase autogenerates three artifacts: 

events, as we described earlier; 
time advance increments, for correctly generating timeoutFire events; and 
external data objects of the type that the statechart prototype refers to. 

Although this process describes the model-based aspect of the StateRover’s white-box test generator, 
the WBTG actually observes all entities—namely, the SUT and all embedded assertions. It collects all 
possible events from all those entities, thus creating a hybrid model-based and specification-based 
WBTG.

The WBTG uses two algorithms for test generation. The stochastic WBTG algorithm creates a 
stochastic WBTestCase, which generates the artifacts using a random number generator. For each 
artifact of concern—the set of possible events, the set of objects the object factory can generate, and 
simulation time increments—the WBTG rolls the dice and makes a selection accordingly. In contrast, 
the deterministic WBTG algorithm creates a deterministic WBTestCase, which attempts to 
systematically cover all possible sequences by enumerating these artifacts and traversing new 
sequences one by one. 

Both types of WBTestCase address SUT-loops by letting users specify 

the maximal number of test sequences the WBTestCase may generate, denoted as the WB 
test budget, and 
the maximal length of any test sequence generated by the WBTestCase. 

This lets the deterministic WBTestCase provide some coverage information. For example, if the user 
specifies that the SUT may visit a state configuration at most once, which amounts to exploring simple 
paths in the SUT, the WBTestCase could generate all such tests within its test budget, and the 
deterministic WBTestCase would then announce that it has covered all simple paths. When it can’t 
cover all possible paths of a given maximum length within its test budget, the deterministic 
WBTestCase will use the branching statistics of the test-tree traversal it has witnessed so far to 
estimate what percentage of tests it actually generated. 

Using WBTG automates test generation but requires an automatic observer on the output side. We 
rely on assertion monitoring to provide such automatic observation. 
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Say a devil’s advocate runs a test suite using an automatically generated WBTestCase on a SUT that 
contains no assertions. The WBTestCase will then succeed in all tests because no assertion exists that 
could ever fail. This is an extreme example of poor assertion coverage. 

The StateRover’s WBTG estimates assertion coverage—that is, a numeric indication of the assertions’ 
suitability to the underlying SUT—using the notion of an assertion being touched by an event. This 
notion holds true if an assertion transition is traversed because of the event firing. Consequently, the 
StateRover’s WBTG provides the following assertion coverage information: 

the ratio of cycles in which the assertion was touched, to all cycles; and 
the ratio of tests/runs in which the assertion was touched, to all runs. 

We can also configure the StateRover’s WBTG to use NASA’s Java Pathfinder16 instead of its stochastic 
and deterministic methods. JPF uses a customized Java virtual machine to detect concurrency errors, 
such as deadlock, under varying firing schedules of concurrent transitions and actions. Moreover, we 
can view JPF as a sophisticated hybrid of the deterministic and stochastic methods. JPF makes sure to 
not revisit system states more than once by recording the state space being visited. The drawbacks of 
using JPF are that 

it tends to run out of memory for complex systems, 
it wastes resources by model-checking the actions’ and activities’ assertions and methods, and 
it doesn’t work well with frameworks such as JUnit and Spring.17

Statechart assertions for distributed systems 
In earlier work,18 we classified formal assertions into three categories: 

test-time assertions, which look for errors during system testing; 
runtime assertions, which are deployable assertions integrated with the target software’s 
runtime control flow to make the target software better able to detect and handle exceptions; 
and
simulation-time assertions, which use information about the environment that’s unavailable to 
the system at runtime. 

Both test-time and runtime assertions use information present in the target software. The assertion 
statechart shown in figure 4 is an example of test-time and runtime assertions. 

Simulation-time assertions are particularly useful for validating global, emerging behaviors of 
distributed systems, where the system’s global information is unavailable to individual nodes. 
Modeling and simulation hold the key to using these assertions early to validate distributed-system 
behaviors. For example, system designers often use prototypes with simulation-time assertions to 
force catastrophic behavior of the kind only available in simulation mode. 

In addition to specifying the dynamic behavior of individual nodes using statecharts with embedded 
assertions, we’re currently extending the statechart formalism to let system designers intuitively 
specify global system behaviors in terms of message sequence charts. We’ll extend the StateRover to 
generate code based on the statechart and message sequence chart specifications to exercise OPNET 
(http://www.opnet.com) or OMNeT++ (http://www.omnetpp.org) simulation models under the 
WBTG’s control. We plan to publish our results in a sequel to this article. 
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