
May 2007 (vol. 8, no. 5), art. no. 0704-o5003
1541-4922 © 2007 IEEE
Published by the IEEE Computer Society

Rapid System Prototyping
Creating and Validating Embedded Assertion Statecharts
Doron Drusinsky, Man-Tak Shing, and Kadir Alpaslan Demir • Naval Postgraduate School

Integrating formal assertions into the modeling, implementation, and testing of statechart-based
designs can enhance a system’s robustness by providing runtime monitoring and recovery from
assertion failures.

Formal specifications and lightweight formal methods help improve requirements specifications’ clarity
and precision.1 Formally specifying requirements enables developers to gain a deeper understanding
of the system being specified and to uncover requirement flaws, inconsistencies, ambiguities, and
deficiencies.2 Unfortunately, formal methods users often discover late in the development process that
their formal requirements are incorrect, making this approach much less effective.

Runtime execution monitoring is a class of methods for tracking an underlying application’s temporal
behavior, often expressed in the form of formal specification assertions. REM methods range from
simple print-statement logging to runtime tracking of complex formal requirements (such as
requirements written in temporal logic) for verification purposes. Using runtime monitoring and
verification of temporal assertions in tandem with rapid prototyping helps debug the requirements and
identify errors earlier in the design process.3 NASA used REM to verify flight code for the Deep Impact
project.4 Recently, the US Ballistic Missile Defense System project adopted REM as the primary
verification method for its new ballistic missile battle manager because of REM’s ability to scale and its
support for temporal assertions that include real-time and time-series constraints.5

System designers often use Harel statecharts for design analysis and implementation.6 Bernd Bruegge
and Allen Dutoit, for example, suggest using statecharts in the design-analysis phase of an object-
oriented UML-based design methodology to specify dynamic behavior of complex reactive systems.7

Although statecharts can effectively specify what a system should do (positive information), they’re
generally less effective for specifying safety requirements (that is, negative information about what a
system must not do). Hence, researchers have attempted to augment statechart specifications with
other formalisms such as process algebra,8 symbolic timing diagrams,9 and temporal logic10 and to
demonstrate their designs’ correctness with formal methods (for example, theorem proofing, static
model checking, or execution-based model checking) on the corresponding assertions. In such
approaches, however, the lack of a unified formalism requires users to work with two models, with no
guarantee that one model’s correctness implies the other’s.

In earlier work, Drusinsky presented statechart assertions, a new formalism that combines UML-based
prototyping, UML-based formal specifications, runtime monitoring, and execution-based model
checking.11,12 Unlike the text-based temporal assertions, statechart assertions are visual, intuitive, and
resemble statechart design models. For example, statechart assertions are event driven like statechart
models, whereas other specification languages, such as temporal logic, are purely propositional.
Moreover, statechart assertions are Turing equivalent and are therefore significantly more expressive
than temporal logic. StateRover, a commercially available tool for UML statechart design entry, code
generation, and visual debug animation, supports this new formalism. The new formalism and tool let
system designers embed deterministic and nondeterministic statechart assertions in statechart
designs and execute the assertions in tandem with their primary UML statechart to provide runtime
monitoring and recovery from assertion failures. Here, we focus on the correct development and early
use of statechart assertions in rapid system prototyping.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 1

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

The CARA statechart design
The Walter Reed Army Institute of Research developed the safety-critical computer-assisted resuscitation
algorithm software to improve life support for trauma cases and military casualties. Several software
engineering research groups have used CARA as a case study.13,14 CARA aims to monitor a patient’s blood
pressure and to automatically administer intravenous fluids via a computer-controlled pump at levels
required to restore intravascular volume and blood pressure.

Prototype

The top-level statechart of the CARA software (figure 1) consists of three concurrent threads: Main,
MonitorPlugIn, and MonitorOcclusion. The Main thread’s top-level statechart consists of two states: Manual
and SoftwareControl, a composite state consisting of the AutoReady, AutoControl, and AutoFail substates.

Figure 1. Top-level page of the computer-assisted resuscitation algorithm (CARA)
statechart.

CARA monitors the pump connector on the life support for trauma and transport (LSTAT) unit to determine
when a pump is powered on and plugged in. When CARA determines that the pump is plugged in and the
occlusion line is clear, it transitions to the AutoReady state.

CARA will transition back to the Manual state if it receives an unplug or occTrue signal from the environment
while it’s in the AutoReady state. If CARA receives the start_control(desired_bp) message from the
environment while it’s in the AutoReady state, it will enter the AutoControl state. While in this state, CARA
continuously checks for continuity on all wires going to the pump. It will sound a level-one alarm and enter
the AutoFail state if it receives unplug or occTrue signals from the environment.

The refined details of the AutoControl state are available in another portion (page) of the diagram file
(see figure 2). AutoControl consists of three concurrent threads. A clock interrupt triggers an event at
precise five-second intervals, signaling the necessity to check the back electromotive force (EMF)
voltage, as shown in the MonitorEMF component in figure 2. It sounds a level-one alarm and transitions
to the AutoFail state via the page connection C1 whenever the back EMF reading is zero or unavailable.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 2

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Figure 2. AutoControl substate of the CARA statechart.

CARA attempts to use blood pressure information from various sources as the input for the CARA
software to control the pump. For simplicity, we use only one blood pressure source in this version of
the prototype—an arterial line sensor, which is an active device with a 1-Hz sampling rate. CARA
adjusts the patient’s blood pressure by regulating the voltage driving the pump on the basis of the
newest blood pressure reading, taken once every second. CARA will signal a lowBPAlarm if the reading
is below a preset minimum critical value and will maintain a keep-vein-open rate at or above the
threshold of four milliliters per minute when the blood pressure reaches desiredBP.

While under the arterial line pressure control, if CARA loses the arterial line signal for more than one
minute, it will sound a level-one alarm and enter the ControlPump component’s LoseBP state, as figure
2 shows. If it loses the arterial line signal for another two minutes, a level-two alarm will sound, and
CARA will transition to the AutoFail state via the page connection C2.

While in the SoftwareControl state, a reset event from the external environment will cause CARA to
reset its alarms and transition back to the Manual state.

Target code generation and testing

The StateRover’s code generator produces one Java controller class for each statechart file. Our case
study uses one statechart diagram file consisting of two pages, with the top-level statechart in the
first page (figure 1) and the AutoControl substatechart in the second (figure 2). The StateRover’s
code generator automatically connects the two statecharts into a single statechart and generates a
single CARA class for the executable prototype. The controller class consists of a set of event handlers
(one per transition event), the central event dispatcher execTReventDispatcher, and the source code

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 3

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

of the local variable declarations and methods supplied by users via the StateRover’s statechart editor
dialog boxes. The code generator also produces a Java interface, CARAIF, to let external environment
test drivers or other systems interact with the CARA prototype.

The StateRover’s vanilla code generator implements statechart orthogonality using a fixed order of
transition traversal. For example, the occTrue() event handler will realize the three orthogonal occTrue()
transitions in figure 1 (two in the Main thread and one in the MonitorOcclusion thread) as three if-blocks.
The order of these if-blocks induces a fixed firing order for corresponding transitions. In addition to the
vanilla code generator, the StateRover has a concurrent code generator that generates multithreaded Java
code for statecharts with Harel concurrence.

The generated code works with the JUnit test framework.15 System designers hand-code use-case
scenarios for identifying user and system requirements as JUnit test cases and exercise them against the
generated statechart code. For example, the test case in figure 3 describes a scenario in which CARA
enters the AutoControl state after receiving the events plugIn(), occFalse(), and startControl(), and
eventually ends up in the AutoFail state after receiving the events BPEvent(), BPEvent(), and occTrue().

import junit.framework.*;

public class TestCARA1 extends TestCase {

 private CARA cara = null;

 public TestCara1(String name) {

 super(name);

 }

 protected void setUp() throws Exception {

 super.setUp();

 cara = new CARA();

 }

 protected void tearDown() throws Exception {

 cara = null;

 super.tearDown();

 }

 // Test Scenario:

 public void testExecTReventDispatcher() {

 cara.plugIn();

 cara.occFalse();

 cara.incrTime(30); //advance clock to 30s

 this.assertTrue(cara.isState(“AutoReady”));

 cara.startControl(70);

 cara.incrTime(70); //advance clock to 100s

 cara.BPEvent(50);

 cara.incrTime(50); //advance clock to 150s

 cara.BPEvent(52);

 cara.incrTime(50); //advance clock to 200s

 cara.occTrue();

 this.assertTrue(cara.isState(“AutoFail”));

 }

}

Figure 3. A test case describing a scenario in which CARA enters the AutoControl and
AutoFail states after receiving specified events.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 4

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Developing and validating the statechart assertion
Typically, system modelers create formal specifications from a conceptual requirement as
understood by the primary modeler. Regardless of the formal notation or method used, system
modelers typically begin requirements discovery using some scenarios involving the system and its
environment. They express their understanding of the system’s expected behavior or properties
informally using natural language. For example, consider a scenario in which the CARA software
must keep the IV line open while it’s under CARA’s control. We first express the requirements in
English:

Whenever CARA receives the startControl() event, it must, within one minute, generate a
control voltage that is greater than or equal to the keep-vein-open (KVO) voltage.
Thereafter, the voltage level condition should be examined once every second and
sustained until the reset() event is received.

We then translate the English statement into the statechart assertion in figure 4, where the
assertion will reach the error flowchart box whenever it violates the requirement.

Figure 4. The assertion statechart.

Users must validate their assertions’ correctness early in the software development process.
Otherwise, as we mentioned earlier, they might discover late in the development process that the
assertions are incorrect and don’t work as intended. Possible reasons for incorrect assertions include

incorrect translation of the natural language specification to a formal specification;
incorrect translation of the requirement, as understood by the modeler, to natural language;
and
incorrect cognitive understanding of the requirement, which typically occurs when the
requirement was driven from the use case’s main success scenario, with insufficient
investigation of other scenarios.

We propose the iterative process for assertion development shown in figure 5.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 5

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Figure 5. Iterative process for assertion development.

We first test the behavior of the assertion described by the statechart in figure 4 with the scenario in
figure 6.

import junit.framework.*;

public class TestAssertion extends TestCase {

 private Assertion1 assert1 = null;

 public TestAssertion(String name) {

 super(name);

 }

 protected void setUp() throws Exception {

 super.setUp();

 assert1 = new Assertion1 ();

 }

 protected void tearDown() throws Exception {

 assert1 = null;

 super.tearDown();

 }

 // Assertion 1, Test Scenario 1

 public void testExecTReventDispatcher() {

 assert1.startControl(70);

 assert1.incrTime(30); //advance clock to 30s

 assert1.setVoltage(KVO);

 assert1.incrTime(31); //advance clock to 61s

 assert1.setVoltage(KVO + 1);

 assert1.incrTime(1); //advance clock to 62s

 assert1.reset();

 this.assertTrue(assert1.isSuccess());

 }

}

Figure 6. A scenario describing an assertion’s typical behavior.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 6

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Scenario 1 in figure 6 represents a typical case in which the control voltage is set at a level greater
than or equal to the KVO voltage within one minute after the startControl() event’s arrival and
remains greater than or equal to the KVO voltage until CARA receives the reset() event, resulting in
a successful test outcome.

To ensure that the assertion works as intended, we create two more scenarios by replacing the body
of the testExecTReventDispatcher() method with the code in figure 7.

// Assertion 1, Test Scenario 2

 public void testExecTReventDispatcher() {

 assert1.startControl(70);

 assert1.incrTime(30); //advance clock to 30s

 assert1.setVoltage(KVO);

 assert1.incrTime(31); //advance clock to 61s

 assert1.setVoltage(0);

 assert1.incrTime(1); //advance clock to 62s

 assert1.reset();

 this.assertFalse(assert1.isSuccess());

 }

 // Assertion 1, Test Scenario 3

 public void testExecTReventDispatcher() {

 assert1.startControl(70);

 assert1.incrTime(30); //advance clock to 30s

 assert1.setvoltage(0);

 assert1.reset();

 this.assertTrue(assert1.isSuccess());

 }

Figure 7. Scenarios for testing an assertion’s correctness.

Scenario 2 represents the case in which CARA sets the control voltage at a level greater than or equal
to the KVO voltage within one minute after receiving the startControl() event, but fails to sustain
the voltage level condition before receiving the reset() event. The entry action in the Error flowchart
box in figure 4 sets the variable bSuccess to false, which in turn causes assert1.isSuccess() to
return false and this.assertFalse() to return true.

Scenario 3 presents an interesting case. Although CARA constantly maintains the control voltage
below the KVO voltage, the test outcome is still successful. This behavior relates directly to the
process described in figure 5. Initially, this assertion’s success in this scenario surprised its developer.
He followed the process in figure 5 to determine which reason for incorrect assertions this behavior
represented and concluded that it might have resulted from incorrect cognitive understanding of the
requirement. After discussing the situation with the customers, our developer decided that this
behavior was acceptable and adjusted his cognitive expectation accordingly. If after discussing the
situation with the customers, the developer decided the behavior was unacceptable, he would have
needed to adjust the natural language requirement and assertion statechart accordingly.

This example highlights the subtleties of creating correct formal assertions and the value of testing
executable formal assertions via JUnit-based simulations. The ability to test statechart assertions
independent of the prototype design ensures that system designers truly understand the required
system behavior without being tainted by any preconceived solutions. With the help of StateRover’s

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 7

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

code generator, we can create a library of executable assertion patterns consisting of generic
statechart assertions and the accompanying scenario-based test cases. The use of pretested generic
statechart assertions will lessen the development time and improve the quality of the statechart
assertions in rapid prototyping. In fact, we argue that the test suite for an assertion is an integral part
of the assertion’s deliverables.

Integrating assertions into the statechart design
Figure 8 shows the top level of the CARA statechart with the embedded statechart assertion, where
the Assertion statechart in figure 4 becomes a substatechart of the CARAOn state. In addition, we add
an unlabeled transition from the Assertion substatechart to the Manual state to enable runtime
recovery. Whenever the assertion fails, it reaches the terminal state T (in figure 4) and will cause the
unlabeled transition from the Assertion substatechart to fire, forcing CARA to leave AutoControl and
return to the Manual state.

Figure 8. Top-level page of the combined CARA statechart.

Testing the combined prototype

The TestCARA1 test case we described in figure 3 resulted in a successful outcome for the prototype
generated from the statecharts in figures 1 and 2. Running the same test case against the prototype
generated from the CARA statecharts in figures 2 and 8, however, resulted in an unsuccessful
outcome due to the Assertion substatechart’s failure. Closely inspecting the execution trace reveals
that the assertion was violated because CARA doesn’t generate any control voltage until it receives the
first BPEvent() 70 seconds after the startControl() event in the TestCARA1 test case scenario. To
fix the problem, we added an entry action setVoltage(KVO) to the AutoControl superstate to ensure
that the control voltage is set to the KVO voltage once CARA receives the startControl() event.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 8

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Automatic white-box testing of the combined prototype

The StateRover’s automatic white-box test generator constructs a JUnit TestCase class from a given
statechart model and associated embedded assertions. A typical JUnit white-box test case consists of
hundreds of thousands of runs of the statechart under test (SUT). We use the autogenerated tests in
three ways:

To search for severe programming errors that induce a JUnit error status, such as
NullPointerException.
To identify tests that violate temporal assertions. (To help statechart designers pinpoint
specific errors, the white-box test case reports each failed test run with an identification
number. The system designers can investigate the causes of failure for a specific run in detail
by running the automatic white-box tester in single test/run mode. Such a mechanism helps
developers efficiently eliminate errors in their design.)
To identify input sequences leading the SUT to particular states of interest.

The StateRover-generated WBTestCase creates sequences of events and conditions for the SUT. The
WBTestCase is nontrivial in that it creates only sequences consisting of events that the SUT or some
embedded assertion is sensitive to. It does this by repeatedly observing all events that potentially
affect the SUT when it’s in a given state configuration, selects one of those events, and fires the SUT
using the selected event. The WBTestCase autogenerates three artifacts:

events, as we described earlier;
time advance increments, for correctly generating timeoutFire events; and
external data objects of the type that the statechart prototype refers to.

Although this process describes the model-based aspect of the StateRover’s white-box test generator,
the WBTG actually observes all entities—namely, the SUT and all embedded assertions. It collects all
possible events from all those entities, thus creating a hybrid model-based and specification-based
WBTG.

The WBTG uses two algorithms for test generation. The stochastic WBTG algorithm creates a
stochastic WBTestCase, which generates the artifacts using a random number generator. For each
artifact of concern—the set of possible events, the set of objects the object factory can generate, and
simulation time increments—the WBTG rolls the dice and makes a selection accordingly. In contrast,
the deterministic WBTG algorithm creates a deterministic WBTestCase, which attempts to
systematically cover all possible sequences by enumerating these artifacts and traversing new
sequences one by one.

Both types of WBTestCase address SUT-loops by letting users specify

the maximal number of test sequences the WBTestCase may generate, denoted as the WB
test budget, and
the maximal length of any test sequence generated by the WBTestCase.

This lets the deterministic WBTestCase provide some coverage information. For example, if the user
specifies that the SUT may visit a state configuration at most once, which amounts to exploring simple
paths in the SUT, the WBTestCase could generate all such tests within its test budget, and the
deterministic WBTestCase would then announce that it has covered all simple paths. When it can’t
cover all possible paths of a given maximum length within its test budget, the deterministic
WBTestCase will use the branching statistics of the test-tree traversal it has witnessed so far to
estimate what percentage of tests it actually generated.

Using WBTG automates test generation but requires an automatic observer on the output side. We
rely on assertion monitoring to provide such automatic observation.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 9

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Say a devil’s advocate runs a test suite using an automatically generated WBTestCase on a SUT that
contains no assertions. The WBTestCase will then succeed in all tests because no assertion exists that
could ever fail. This is an extreme example of poor assertion coverage.

The StateRover’s WBTG estimates assertion coverage—that is, a numeric indication of the assertions’
suitability to the underlying SUT—using the notion of an assertion being touched by an event. This
notion holds true if an assertion transition is traversed because of the event firing. Consequently, the
StateRover’s WBTG provides the following assertion coverage information:

the ratio of cycles in which the assertion was touched, to all cycles; and
the ratio of tests/runs in which the assertion was touched, to all runs.

We can also configure the StateRover’s WBTG to use NASA’s Java Pathfinder16 instead of its stochastic
and deterministic methods. JPF uses a customized Java virtual machine to detect concurrency errors,
such as deadlock, under varying firing schedules of concurrent transitions and actions. Moreover, we
can view JPF as a sophisticated hybrid of the deterministic and stochastic methods. JPF makes sure to
not revisit system states more than once by recording the state space being visited. The drawbacks of
using JPF are that

it tends to run out of memory for complex systems,
it wastes resources by model-checking the actions’ and activities’ assertions and methods, and
it doesn’t work well with frameworks such as JUnit and Spring.17

Statechart assertions for distributed systems
In earlier work,18 we classified formal assertions into three categories:

test-time assertions, which look for errors during system testing;
runtime assertions, which are deployable assertions integrated with the target software’s
runtime control flow to make the target software better able to detect and handle exceptions;
and
simulation-time assertions, which use information about the environment that’s unavailable to
the system at runtime.

Both test-time and runtime assertions use information present in the target software. The assertion
statechart shown in figure 4 is an example of test-time and runtime assertions.

Simulation-time assertions are particularly useful for validating global, emerging behaviors of
distributed systems, where the system’s global information is unavailable to individual nodes.
Modeling and simulation hold the key to using these assertions early to validate distributed-system
behaviors. For example, system designers often use prototypes with simulation-time assertions to
force catastrophic behavior of the kind only available in simulation mode.

In addition to specifying the dynamic behavior of individual nodes using statecharts with embedded
assertions, we’re currently extending the statechart formalism to let system designers intuitively
specify global system behaviors in terms of message sequence charts. We’ll extend the StateRover to
generate code based on the statechart and message sequence chart specifications to exercise OPNET
(http://www.opnet.com) or OMNeT++ (http://www.omnetpp.org) simulation models under the
WBTG’s control. We plan to publish our results in a sequel to this article.

Acknowledgments

This article is a revised version of a paper we presented at the Workshop on Rapid Systems
Prototyping.19 A grant from the US Missile Defense Agency helped fund the research we reported here.
The views and conclusions contained herein are those of the authors and shouldn’t be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the US

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 10

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

government. The US government is authorized to reproduce and distribute reprints for government
purposes notwithstanding any copyright annotations thereon.

References

1. S. Easterbrook et al., “Experiences Using Lightweight Formal Methods for Requirements
Modeling,” (http://doi.ieeecomputersociety.org/10.1109/32.663994) IEEE Trans. Software
Eng., vol. 24, no. 1, 1998, pp. 4–14.

2. E. Clarke et al, “Formal Methods: State of the Art and Future Directions,” ACM Computing
Surveys, vol. 28, no. 4, 1996, pp. 626–643.

3. D. Drusinsky and M. Shing, “Verification of Timing Properties in Rapid System Prototyping,”
(http://doi.ieeecomputersociety.org/10.1109/IWRSP.2003.1207029) Proc. 14th IEEE Int’l
Workshop Rapid Systems Prototyping, IEEE CS Press, 2003, pp. 47–53.

4. D. Drusinsky and G. Watney, “Applying Runtime Monitoring to the Deep-Impact Fault
Protection Engine,” Proc. 28th Ann. NASA Goddard Software Eng. Workshop, IEEE Press,
2003, pp. 127–133.

5. D. Caffall et al., Formal Specification and Runtime Monitoring within the Ballistic Missile
Defense Project, tech. report NPS-CS-05-007, Naval Postgraduate School, 2005.

6. D. Harel, “A Visual Formalism for Complex Systems,” Science of Computer Programming,
vol.8, no. 3, 1987, pp. 231–274.

7. B. Bruegge and A.H. Dutoit, Object-Oriented Software Engineering: Conquering Complex and
Changing Systems, Prentice Hall, 2000.

8. M.H. Park et al., “Equivalence Checking of Two Statechart Specifications,”
(http://doi.ieeecomputersociety.org/10.1109/IWRSP.2000.855185) Proc. 11th Int’l Workshop
Rapid System Prototyping, IEEE CS Press, 2000, pp. 46–51.

9. K. Lüth, J. Niehaus, and T. Peikenkamp, “HW/SW Co-Synthesis Using Statecharts and
Symbolic Timing Diagrams,”
(http://doi.ieeecomputersociety.org/10.1109/IWRSP.1998.676694) Proc. 9th Int’l Workshop
Rapid System Prototyping, IEEE CS Press, 1998, pp. 212–217.

10. G. Graw, P. Herrmann, and H. Krumm, “Verification of UML-Based Real-Time System Design
by Means of cTLA,” (http://doi.ieeecomputersociety.org/10.1109/ISORC.2000.839515) Proc.
3rd IEEE Int’l Symp. Object-Oriented Real-Time Distributed Computing (ISORC 2000), IEEE
CS Press, 2000, pp. 86–95.

11. D. Drusinsky, “Semantics and Runtime Monitoring of TLCharts: Statechart Automata with
Temporal Logic Conditioned Transitions,” Proc. 4th Runtime Verification Workshop (RV 04),
Electronic Notes in Theoretical Computer Science, vol. 113, Elsevier, 2005, pp. 3–21.

12. D. Drusinsky, Modeling and Verification Using UML Statecharts, Elsevier, 2006.
13. R. Alur et al. “Formal Specifications and Analysis of the Computer Assisted Resuscitation

Algorithm (CARA) Infusion Pump Control System,” Int’l J. Software Tools for Technology
Transfer (STTT), vol. 5, no. 4, Springer-Verlag, 2004, pp. 308–319.

14. D. Drusinsky and M. Shing, “TLCharts: Armor-plating Harel Statecharts with Temporal Logic
Conditions,” (http://doi.ieeecomputersociety.org/10.1109/IWRSP.2004.1311092) Proc. 15th
IEEE Int’l Workshop Rapid Systems Prototyping, IEEE CS Press, 2004, pp. 29–36.

15. K. Beck and E. Gamma, “Test Infected: Programmers Love Writing Tests,” Java Report, vol. 3,
no. 7, 1998, pp. 37–50.

16. K. Havelund and T. Pressburger, “Model Checking Java Programs Using Java PathFinder,” Int’l
J. Software Tools for Technology Transfer (STTT), vol. 2, no. 4, 2000, pp. 366–381.

17. J. Arthur and S. Azadegan, “Spring Framework for Rapid Open Source J2EE Web Application
Development: A Case Study,” (http://doi.ieeecomputersociety.org/10.1109/SNPD-
SAWN.2005.74) Proc. 6th Int’l Conf. Software Eng., Artificial Intelligence, Networking and
Parallel/Distributed Computing and the 1st ACIS Int’l Workshop on Self-Assembling Wireless
Networks (SNPD/SAWN 2005), IEEE CS Press, 2005, pp. 90–95.

18. D. Drusinsky, M. Shing, and K. Demir, “Test-Time, Runtime, and Simulation-Time Assertions
for RSP,” (http://doi.ieeecomputersociety.org/10.1109/RSP.2005.50) Proc. 16th IEEE Int’l
Workshop Rapid Systems Prototyping, IEEE CS Press, 2005, pp. 105–110.

19. D. Drusinsky, M. Shing and K. Demir, “Creation and Validation of Embedded Assertions
Statecharts,” (http://doi.ieeecomputersociety.org/10.1109/RSP.2006.12) Proc. 17th IEEE Int’l
Workshop Rapid Systems Prototyping, IEEE CS Press, 2006, pp. 17–23.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 11

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

Doron Drusinsky is an associate professor at the Naval Postgraduate School in Monterey, California,
and president of Time-Rover. His research interests are formal methods, requirement elicitation and
validation, and sound construction of safety-critical systems. He received his PhD in computer science
from the Weizmann Institute of Science. Contact him at the Computer Science Dept., Naval
Postgraduate School, 1411 Cunningham Rd., GE-337, Monterey, CA 93943; ddrusins@nps.edu.

Man-Tak Shing is an associate professor of computer science at the Naval Postgraduate School. His
research interests include software engineering, modeling and design of real-time and distributed
systems, and the specification, validation, and runtime monitoring of temporal assertions. He received
his PhD in computer science from the University of California, San Diego. He’s a senior member of the
IEEE. Contact him at the Computer Science Dept., Naval Postgraduate School, 1411 Cunningham Rd.,
GE-334, Monterey, California 93943; shing@nps.edu.

Kadir Alpaslan Demir is a PhD candidate in software engineering at the Naval Postgraduate School.
His research interests include software project management, software development models and
lifecycle models, software metrics and economics, formal methods, statecharts, and UML. He received
master's degrees in computer science and software engineering from the Naval Postgraduate School.
He’s a member of the IEEE and the IEEE Standards Association. Contact him at Naval Postgraduate
School, Glasgow Hall E., GE-308, 1411 Cunningham Rd., Monterey, CA, 93943; kdemir@nps.edu.

Related Links

DS Online's Software Engineering community
(http://dsonline.computer.org/portal/site/dsonline/index.jsp?pageID=dso_level1&path=dsonli
ne/topics/software_engineering&file=index.xml&xsl=article.xsl)
"Automatic Generation of Executable Assertions for Runtime Checking Temporal
Requirements," Proc. HASE 05 (http://doi.ieeecomputersociety.org/10.1109/HASE.2005.6)
"A Platform-Based Taxonomy for ESL Design," IEEE Design & Test of Computers
(http://doi.ieeecomputersociety.org/10.1109/MDT.2006.112)

Cite this article:

Doron Drusinsky, Man-Tak Shing, and Kadir Alpaslan Demir, "Creating and Validating Embedded
Assertion Statecharts," IEEE Distributed Systems Online, vol. 8, no. 5, 2007, art. no. 0705-o5003.

IEEE Distributed Systems Online (vol. 8, no. 5), art. no. 0704-o5003 12

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:59 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

