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Abstract. We investigate the descriptive succinctness of three fundamental notions for modeling

concurrency: nondeterminism and pure parallelism, the two facets of alternation, and bounded

cooperatu)e concurrency, whereby a system configuration consists of a bounded number of

cooperating states. Our results are couched in the general framework of finite-state automata, but
hold for appropriate versions of most concurrent models of computation, such as Petri nets,

statecharts or finite-state versions of concurrent programming languages. We exhibit exhaustive

sets of upper and lower bounds on the relative succinctness of these features over X* and X@,
establishing that:

(1) Each of thethree features represents anexponential saving insuccinctness of the representa-

tion, in a manner that is independent of the other two and additive with respect to them.

(2) Ofthethree, bounded concurrency isthestrongest, representing asimilar exponential saving
even when substituted for each of the others.

For example, we prove exponential upper and lower bounds on the simulation of deterministic

concurrent automata by AFAs, and triple-exponential bounds on the simulation of alternating
concurrent automata by DFAs.

Categories and Subject Descriptors: F. 1.1 [Computation by Abstract Devices]: Models of Compu-
tation—automata; F. 1.2 [Computation by Abstract Devices]: Modes of Computation—akematiorz
and nondetermmism, parallelisnz and concurrency

General Terms: Languages, Theory

Additional Key Words and Phrases: Alternation, bounded cooperative concurrency, finite au-

tomata, nondeterminism, omega-automata, statecharts, succinctness

1. Introduction

Numerous models have been proposed for capturing the parallelism inherent

in real-world concurrent systems. Direct communication and shared memory

models are the main general approaches. Much research has been carried out
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on the relative merits of these, on their semantics, implementability, natural-

ness, etc. As far as assessing the fundamental savings that these models offer in

the face of sequential models or in the face of each other, most of the work has

been done in the standard framework of complexity theory, namely by evaluat-

ing the time, space and number of processors required to solve various

problems, and by searching for trade-offs between these measures. However, in

distributed and concurrent computing, it is not only computation with general-

purpose resource-bounded mechanisms that is of interest, but also, and in-

creasingly more so in recent years, the medium of finite-state protocols and

programs. In these, terminating computations are modeled by finite words over

a finite alphabet Z, and ongoi~zg computations are modeled by infinite words

thereof. The basic mechanism for programming and generating such computa-

tions is that of finite automata (or o-automata in the latter case). It is

reasonable, therefore, to attempt a thorough investigation of the relative power

of features suggested for modeling concurrency, within the basic framework of

finite automata.

What features should we be looking at? Existential and universal branching

are perhaps the most popular ways of modeling parallelism in complexity

theory. 1 However, unlike the constructs used in the study of real systems, in

these types of branching no communication takes place between the spawned

processes, except when time comes to decide whether the input should be

accepted. In Turing machines, for example, this fact manifests itself in the

totally separate tapes that are assumed to be generated whenever branching (of

either kind) takes place. It would appear that in order to capture real-world

concurrency we would want to allow the mechanism, during a single computa-

tion, to be possibly in more than one state, and these states to be able to

cooperate in achieving a common goal. This approach, which we might call

cooperatil’e concurrency, is the dominating one in the research community of

concurrent and distributed systems, and not the noncooperative concurrency

featured in the alternation approach. Moreover, in the real world the number

of processes available for simultaneous work is bounded and cannot be

assumed to grow as the size of the input grows. In contrast, existential and

universal branching are unbounded: New processes can be spawned without

limit as the computation proceeds (i.e., as the length of the input word grows).

The motivation for this paper (and its companions [Globerman and Harel 1994;

Harel 1989; Harel et al. 1990; Hirst 1989; and Hirst and Harel 1994]) is to

determine how bounded cooperative concurrency, or simply bounded concur-

rency for short, fares with respect to the two classical kinds of branching, in the

realm of finite automata and their extensions.
What should the criteria for comparing such features be? Pure power of

expression is irrelevant here, since all reasonable variants of finite

automata—including the ones we introduce below—accept the regular sets

over Z* and (for the acceptance criteria we use here) the o-regular sets over

ZW.2 Time and space, in the usual complexity-theoretic sense, are not relevant

either, since finite automata operate in real-time and, apart from the states

themselves, they have no additional storage. The correct measure, therefore,

1Typically, the adjectives alternating, nondeterwzzrustic, and detemzcmstlc are used to denote the
presence of both of these, the presence of the first and the absence of both. respectively.

zHowever, see the discussion on synchronized automata below,
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seems to be succinctness, that is, the inherent ,si.zeof an automaton required to

accept a given language.

This paper is concerned with seeking exponential (or higher) discrepancies in

the succinctness of finite automata when augmented with the various mecha-

nisms for modeling concurrency, over finite and infinite computations alike.

Nondeterminism and pure and-parallelism are well understood in automata,

and take the form of the ~-states and ‘d-states in the alternating variant of

finite automata (AFAs; see Chandra and Stockmeyer [1976], Chandra et al.

[1981], and Kozen [1976]). Indeed, regarding succinctness, it is well-known that

NFAs are exponentially more succinct than DFAs, in the following upper and

lower bound senses (see Meyer and Fischer [1971], Rabin and Scott [1959]).

—Any NFA can be simulated by a DFA with at most an exponential growth in

size.

—There is a family of regular sets, L., for n >0, such that each L. is

accepted by an NFA of size O(n) but the smallest DFA accepting it is at

least of size 2“.

By duality, the same is true of what are sometimes called V-automata,

namely, the dual machines, in which all branching is universal. It is also true

that AFAs, that is, those that combine both types of branching, are exponen-

tially more succinct than either NFAs or V-automata, and indeed are double-

exponentially more succinct than DFAs (see Chandra and Stockmeyer [1976],

Chandra et al. [1981], and Kozen [1976]). These results also hold in both the

upper and lower bound senses described,~ so that if we denote nondeterminism

by E and parallelism by A, these known results can be summarized as in Figure

1.4 These results thus establish that, in the framework of finite automata, E

and A are exponentially powerful features, independently of each other (i.e.,

whether or not the other is present), and, moreover, their power is additive: the

two combined are double-exponentially more succinct than none.

In order to model bounded concurrency, which we shall denote by C, we

could have chosen bounded, finite-state versions of any one of a large number

of proposed models of computation, such as Petri nets [Reisig, 1985], CSP

[Hoare, 1978], CCS [Milner, 1980], statecharts [Harel, 1987], or of any of the

accepted concurrent programming languages. We have decided, however, to

remain as close as possible to classical finite automata, and thus propose a

simple version of cooperating finite automata. Of all the aforementioned

models, it comes closest to the language of statecharts, which we shall use to

illustrate some of our constructions. In fact, cooperating automata correspond

to statecharts consisting of a single collection of orthogonal components

[Harel, 1987], each of which is merely a finite automaton. Nevertheless, our

results are very robust, and hold for the bounded, finite-state variants of

virtually all other models (e.g., Petri nets with a bounded number of tokens, or

CSP and CCS with finitely many states and bounded depth of recursion), since

~Of course, the double-exponential lower bound does not follow trivially from the single-
expuncmtkd bounds for the two separate features, since different examples may have been used
for each of them.
4By convention, solid lines are assumed to represent one-exponential upper and lower bounds,
and additive transitivity is assumed too, so that the line labeled “two-exponentials” that would
lead from (E, A) to 0 is omitted for clarity, despite the fact that it does not follow a pnon.
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there are rather straightforward polynomial reductions between any two of

them.5

Our first set of results establishes the solid lines of Figure 2 and all the

transitivity consequences thereof. Among other things, these include exponen-

tial upper and lower bounds for simulating nondeterministic concurrent ma-

chines (e.g., nondeterministic bounded-token Petri nets, or nondeterministic

statecharts) on NFAs, double-exponential bounds for simulating them on

DFAs, and, when V-states are added, a triple-exponential bound for simulating

alternating concurrent machines on DFAs. The solid lines of Figure 2 thus show

that bounded concurrency (C) represents a third, separate, exponentially pow-

erful feature; it is independent of conventional nondeterminism (E) and paral-

lelism (A), since the savings remain intact in the face of any combination of A

and E; and it is also additizle with respect to them, by virtue of the double- and

triple-exponential bounds along the appropriate compound lines in the figure.

This result is of interest, as it shows, among other things, that the unbounded

nature of the pure AND of alternation prevents it from being subsumed by the

bounded AND of the C feature, and the cooperative nature of the AND in the

C feature (as embodied by the joint transitions in Petri nets or statecharts, for

example) prevents it from being subsumed by the noncooperative AND of

alternation.

Our next set of results considers the more delicate question of how C

compares with A and E themselves using the same yardstick, namely, possible

exponential discrepancies in succinctness. For example, the results just de-

scribed do not say anything about the possibility of an exponential gap between

E and C. Here our results for the finite word case are summarized by the four
dashed lines and the one doubly dashed line in Figure 2. Each of the singly

dashed lines denotes exponential upper and lower bounds for the simulation in

the downward direction and polynomial bounds for the upper direction. In

~Clearly, these bounded, fimte-state versions would have to be defined carefully, especially when
nondeterministic or alternating variants are considered. An alternating Petri net, for example,
would allow branching transitions, so that a transition that is fired can take one of several

possibdities, and branches or places are labeled as existential or universal. The main point,
however, is that our proofs use these features in very simple ways (e.g., concurrency to count in
binary, and nondetermimsm to choose an arbitrary appearance of some symbol in the input
word), so that the reader should have htde problem with our general clalm of robustness.
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FIG. 2. Summary of results for the X’ case.

particular, the nondeterministic statecharts of Harel [1 987] are shown to be

exponentially more succinct than AFAs, and the same holds when nondeter-

minism is absent from both. The doubly dashed line represents upper and

lower exponential bounds in both directions, meaning that alternation aand

bounded concurrency can be simulated by each other with at most an exponen-

tial growth in size, and that, in general, neither exponential gap can be

eliminated. We consider these to be our most interesting results, as they show

that bounded concurrency is actually more powerful than each of pure paral-

lelism or nondeterminism taken alone, and is comparable in power to the

combination of both (by virtue, ironically, of the fact that the two are techni-

cally incomparable). The results for finite words appear in Sections 3 and 4.

For the infinite word case, things are somewhat more complicated, since

there are a variety of acceptance criteria that differ in subtle ways. Our results,

which are almost exactly the same as in the finite word case, pertain to the

Rabin and Streett criteria, and are illustrated in IFigure 3. As the figure shows,

vertical lines and lower horizontal lines apply to both Rabin and Streett

criteria; upper horizontal lines on the left-hand side of the figure use the Rabin

criterion and those on the right-hand side use the Streett criterion. We actually

conjecture that the entire cube holds for each of the criteria separately. Some

of the upper bounds require using (and extending) state-of-the-art results on

the determinization of co-automata. For example, we base the polynomial

transition from nondeterministic Rabin automata to deterministic Rabin C-

machines on Safra’s exponential determinization construction [Safra, 1988].

The results for infinite words appear in Sections 5 and 6.
This is one in a series of papers regarding the inherent power of bounded

cooperative concurrency and its relationship to nondeterminism and paral-

lelism. In Hirst and Harel [1994], we deal with the context-free case, via

pushdown automata enriched with the E, A, and C features (see also Hirst
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[1989]), in Globerman and Harel [1994], we consider the framework
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of pebble

automata, and in Globerman and Harel [1994]; and Harel et al. [1990], we

investigate the effect these features have on the complexity of reasoning about

propositional concurrent programs. Hirst [1989] also contains results on finite

automata over one-letter alphabets. A noteworthy fact that surfaces repeatedly,

is that the C feature retains its inherent exponential power in virtually all of

the cases we have looked at, whether the other features turn out to be more

powerful or less so. Many of the results in these papers are surveyed in Harel

[1989].

To complete the background, we should mention synchronized automata, an

idea that was first published in Slobodov~ [1988] and which has been the

subject of extensive research since.G A synchronized automaton is one in which

universal branching, that is, the A feature in our terminology, is enriched with

“synchronizing states, ” which enable the parallel branches to cooperate. As is

the case here, it appears that the precise form of cooperation is unimportant

and that their results are similarly robust. The main difference, however, is that

the cooperative concurrency in synchronized automata is unbounded, since it is

the parallel processes of the A feature that are used as carriers for the

cooperative work. As shown in several of the papers on synchronized automata,
this ability takes finite automata out of the realm of regular sets. In fact, in

Hromkovi? et al. [1992], the following interesting result is proved: one-way

synchronized alternating automata (which are really (E, A)-machines, but with

cooperation allowed within the A feature) accept exactly the context-sensitive

sets.
Thus, the synchronized automata approach enriches an already existing

feature of automata, in a way that extends the class of languages accepted.

“This work and ours were independent: the conference version of the present paper was also

published m 1988 [Drusmslcy and Harel, 1988].
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Research then centers on the added expressible power of the resulting machines.

In contrast, our approach adds a new, independent, feature to finite automata,

but one that does not introduce any new languages. Research then centers on

the added succinctness of the resulting machines.

2. Definitions

In this section, we define automata augmented with the E, A, and C features,

and call them (E, A, C)-AUT, or sometimes just (E, A, C)-rrudzines. As special

cases, if the A and C features are not present, the resulting E-AUT are simply

NFAs. Similarly, (E, A)-AUT are AFAs, and 0-AUT are ones with none of the

three features, and hence are simply DFAs.

Let 2 be a finite alphabet. An (E, A, C)-AUT &l is a tuple

for some L1 >1, where each M, is a triple (Q,, q!, ~1). Here, Q, is a finite set of

states (the Q,, for 1 s i s L’, are required to be pairwise-disjoint), q,” = Q, is

the initial state, and 8,, the transition table, is a finite subset of the product

Q, X ~ X r X Q1.7 We use r to denote the collection of propositional for-

mulas over the alphabet of the atomic letters u, ~, ~,, Q]. Finally, @, the E-

condition, and ~, the termination condition, are elements of r.

The intuition is that M consists of t) automata (sometimes called M’s

orthogonal components, or simply components for short), each with its own set

of states, initial state and transition table. These automata work together in a

synchronous manner, taking transitions according to the (common) input

symbol being read, their internal states, and the condition formulas from r.

These are interpreted to take on truth values according to the states of possibly

all the 1) components. @ distinguishes between existential and universal

state configurations (i.e., between E and A states), and W indicates halting

configurations.

More formally, a configuration of M is an element of Q1 x Qz x .0. x Q, x

~“ Xtill indicating the state each of the M, is in, the input word and the
position of M in the word. Clearly, m s Ixl must hold for any configuration

(q,>..., q,, X, m). We say that a configuration c satisfies a condition y ● r, if y
evaluates to true when each symbol therein is assigned t~zle iff it appears in c.

Thus, for example, the condition (q V p) A w r, where q, p = Q1 and r = Qz,

will be satisfied by any configuration for which Ml is in state q or p, and M? is

not in state r.

To define the behavior of M, let x = xl Xz “”” xl, be a finite word over 2, and

let t = (q, a, y, p) be a transition in Ml’s transition table 8,. We say that t is

applicable to a configuration c = (ql, ..., q,,, x, j), if xl = a, q, = q, and c

satisfies y. A configuration (p 1,. . ., p,, X, m) is said to be a successor of c if
for each i there is a transition (q,, XJ, y,, p,) E 8, that is applicable to c, and

rn=j+l.

A configuration is existential if it satisfies the E-condition 0, otherwise it is
uniwvmzl. It is accepting iff it satisfies the termination condition W.

7The definitions could have been given to include c-moves too, by taking 3, to be a finite subset
of Ql X (~ U ●) X r X Q,, and modifying the other parts of the definitions accordingly. Our
results all hold for this version too.
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A computation of M on x E X* is defined in a way very similar to that of

AFAs [Chandra and Stockmeyer, 1976; Chandra et al., 1981; Kozen, 1976]. It

consists of a tree, each node of which is labeled with a configuration. The root

is labeled with the initial configuration (q ~, q:, . . . . q:, x, 1), and a node has

one successor node for each of its label’s successor configurations, labeled with

that successor configuration. Nodes are assigned 1/0 (accept/reject) marks, in

a bottom up manner, as in the definition for AFAs, ORing the marks of the

successors of an existential node and ANDing those of a universal node. The

input word x is accepted iff the root gets marked 1.

The size of the machine M = (A41 . . . M,,, 0, W) is

Ifuf = l@l + Iwl + ilMl,
1=1

where the size of a formula in r is simply its length in symbols, and the size of

each component automaton is defined by

IMZI= lQtl+ ~ (3+ 171).
(q,a.y,p)-~,

Note that, as special cases, if G = 1, the machine M is simply an alternating

finite automaton, that is, an AFA (in our terminology, it is an (E, A)-AuT); if @

is true, then all states are existential, so that N! is an NFA (an E-AuT); if @ is

false, then all states are universal, so that A4 is an V-automaton (an A-AuT); if

each configuration has at most one successor, then M is deterministic, that is,

it is a C-AUT.

In some of the proofs later, we illustrate the construction of various ma-

chines using statecharts [Harel, 1987], which can be viewed as employing the C

feature in a more flexible way. In general, statecharts can be made to conform

to the terms of the above definitions with at most a linear increase in size.

Although we shall not prove this general claim here, the reader will be able to

apply it easily to the examples we use.

We extend the definitions of (E, A, C)-AUT to define acceptance over X“,

and call the resulting machines (E, A, C)-COAUT. The termination condition is

enriched, so that, rather than a single formule W from r, we have a finite set

of pairs of conditions

A run over a word x = Zw, is an infinite sequence r of successive configura-

tions, and inf( r ) is the set of configurations appearing in r infinitely often. We

shall concentrate on two acceptance criteria, Rabin’s [Choueka. 1974: Rabin,
1969] and Streett’s [1982]. First, assume for the moment that the machine M is

deterministic (and total), so that there is exactly one run per input word x; call

it rl. The two acceptance criteria are now defined as follows:

(1)

(~)

Rabin accepta~lce. The machine M R-accepts a word x E ~ I“, if there is a

pair (w,, ~z ) E 0, such that there is a configuration in inf(rX) that

satisfies ~,, but no configuration therein satisfies ~z.

Streett acceptance. The machine M S-accepts a word x G ~‘, if for each

pair ( TI, Tz ) = {1, if there is a configuration in irzf( r, ) that satisfies ~1,

then there is also a configuration therein that satisfies ~z.
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The conventional Rabin and Streett criteria for DFAs can be easily seen to

be a special case of this definition. Simply take u = 1 and choose the pairs of

conditions (?PI, ~z ) as conjunctions that specify the pairs of sets of states

required for these classical criteria.

Extending the definition to (E, C)-wAUT is easy: ikl accepts x if there is at

least one run on x that accepts. For (A, C)-WAUT, all runs on x must accept.

For the general case of alternation, acceptance is, again, a straightforward

adaption of the usual definition for AFA. Since the computation tree is

infinite, it is inconvenient to talk about marking it with O’s and l’s; it is easier

here to consider traces. A trace of an (E, A, C)-oAUT on a word x = 2”, is a

subtree of Af’s computation tree on x, that includes all offspring of each

universal node and one offspring of each existential node. A4 accepts x if there

is a trace of h! on x, for which every path adheres to the appropriate

acceptance criterion.

We say that two (E, A, C)-oAUT are R-equivalent (respectively, S-equivalent)

if they R-accept (respectively, S-accept) the same subset of X‘.

We now define the exponential and multi-exponential gaps we are interested

in establishing between the various kinds of machines. Let & be any subset of

{E, A, C}. We denote by &AUT and &OAUT the classes of machines employing

the features in g.

Definition. Let &( and ~z be any two subsets of {E, A, C}. We shall write

gl ~ gl (respectively, ~1 ~ cz, ~1 ~ ~z, or ~1 : ~z), if there is a polynomial

p and a constant k > 1, such that, for any machine Ml = $1-AUT of size n

there is an equivalent MZ G $2-AUT of size no more than p(n) (respectively,
kP(~t) ~kr’’”), or #’(”))

>

Definition. Let ~1 and $Z be any two subsets of {E, A, C}. We shall write

fl 7 <z (respectively, <12 <Z, or gl A ~z) if there is a family of regular

languages L., for n >0, a polynomial p and a constant k > 1,such that L. is

accepted by a machine Ml = fl-AUT of size p(f(n)) for some monotonically-

increasing function f, but the smallest lfz ● <Z accepting it is at least of size

kf(”) (respectively, kkf’n), or kk’’’)’).

When a small R or S is added as a subscript to the arrows in these

definitions, they are to be considered as applying to &tiAuT, rather than to

&AUT, and to denote R-equivalence or S-equivalence, respectively.

3. Upper Bounds for the 2“ Case

We first establish exponential upper bounds for the vertical arrows of Figure 2.

(Among other things, this shows, of course, that concurrent automata accept
only the regular languages. )

PROPOSITION 1. Let ~ be any subset of {E, A}. Then (~, C) ~ $.

PROOF. We have to show how to remove the C feature with at most an

exponential increase in size. The idea is simply to simulate the behavior of a
(f, C’)-AUT M by a g-AUT whose set of states is the Cartesian product of the

states in A4’s component machines, A41, ..., M,,. The transition predicates of

the simulating machine are written explicitly in terms of the states of the Tl,,

so that there cannot be more transitions than elements of the Cartesian
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product. Clearly, if A4 is deterministic, nondeterministic, or alternating, the

resulting machine will be of the corresponding type too. ❑

Next, we establish polynomial upper bounds for the upward direction of the

four dashed diagonal lines of Figure 2, so that, for example, nondeterminism

can be replaced by bounded concurrency with only a polynomial increase in

size. This is true whether or not A is present too.

PROPOSITION 2. Let ~ be 0 or A. Then ([, E) S (~, C). The same holds

with A and E exchanged.

PROOF. For the simulation of E by C we mimic the classical subset

construction for eliminating nondeterminism [Rabin and Scott, 1959], using a

collection of orthogonal components, one for each of the n states in the

original NFA. For any state p therein, the corresponding component has two

states, indicating, respectively, whether we are in p or not. Subsets of the

original state set are represented in the obvious way by these yes/no combina-

tions. When a is read as an input, and p‘s component is in its no-state, it

moves into its yes-state if any of p‘s a-predecessors in the original NFA is in its

yes-state right now. Dually, if p is in its yes-state, it moves to its no-state when

a arrives, if all of its a-predecessors in the original NFA are in their no-states.

Clearly, the machine accepts if and only if at least one of the components

that represent a final state of the NFA is in its yes-state. Also, if the NFA had

m transitions, the formulas describing the transitions in the resulting C-

machine can be constructed so that their total size is no more than (m + rz)z.

The simulation of an A-machine by a C-machine is identical, except for the

acceptance decision, which is made only if all the components representing

final states of the NFA are in their yes-states.

Replacing E by C in the presence of A, that is, simulating an (E, A)-machine

by an (A, C)-machine, is a little more subtle. Figure 4 illustrates the construc-

tion as applied to a simple AFA, and, for convenience, the simulating machine

has been depicted as a V-statechart. The basic idea is as above, namely, to

mimic the subset construction using components with yes/no-states. However,

we now have and-branchings in the original machine, that have to be main-

tained in the simulation. We do this by incorporating all such branching one

step ahead of time, at the moment a universal state is entered.

Here is a more rigorous description of the construction. Let k! be the

original (E, A)-AuT, whose state set Q is of size n. Also, let the size of the

alphabet be m. The simulating (A, C)-AUT A’ has n orthogonal components,

one for each q ● Q. Since ih! has but one component, its E-condition @ can
be viewed as simply specifying that some of the states m Q are existential and

some are universal. The component (in N ) of an existential state q G Q

contains the usual yes- and no-states; call them q and ~, respectively. However,

if q is uniuersal in ill, the corresponding component in N will have several

yes-states, corresponding to the various combinations of possibilities it may

carry out when the next symbol is read. Specifically, besides the no-state ~, the

component will have a yes-state q~ I~ ~~FI for each collection of and-choices

available to state q in A4 in response to the arrival of any of the m letters of

the alphabet 2. For example, if Z = {a, b, c}, and if the possible transitions in

M from state q are (q, a, p), (q, a, r), (q, b, q). (q, b, s), (q, b, r), and (q, c,
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FIG. 4. An AFA and its equivalent V-statechart.

P),g then N will have the following yes-states (fixing the order a, b, c on Z):

9
p,<],p p,~,p p I’,p ?>9.P ‘ “p, and q“”p. The intention is to make a “grand”

AND’-~ecisi~~ up &&t, ~;en entering the universal state, as to which state will

be entered in the next step when any symbol is read. For example, the meaning

of q“s’p is that we have decided to go to r if a arrives, and to s if b arrives. For

c, of course, there is no alternative. (In Figure 4 we have omitted q‘s

superscript for the symbol a, since there is but one possibility—like the case

for c in the example above—and have added b as a subscript for clarification.)

Now for the transitions. We first define the ones that specify entrance to a

state. Here, as before, when a is read as an input, and p’s component is in its

no-state, it should move into its yes-state if any of p‘s a-predecessors in the

original NFA is in its yes-state right now. Formally, for any state p c Q and

symbol u = X, the simulating machine N will have transitions (~, m, q, p*)

and (p, ~, q, p*), whenever the original machine has a transition (q, a, p),

and q is existential. If q is universal, N’s transitions will be (~, o-, y, p*) and
(p, V, y, p*) instead. Here, p’ stands for each of p’s yes-states in N (which

‘Note that since M has only onc component. we can assume, without loss of generality, that there
are no condition formulas on tmnsitions.
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will be p itself, with no superscripts, if p is existential), and y ● r is the

disjunction of all yes-states of q whose superscript has p in the position

corresponding to m.

As to when states are left, if p is in its yes-state, it should movq to its

no-state when a arrives if all of its a-predecessors are in their no-states. In our

case, however, the predecessors may be in the “wrong” kind of yes-states, so

that we have to formulate the guarding condition accordingly. Formally, for any

state p ● Q and symbol Q E 2, the simulating machine N will have the

transitions (p*, c, Y, ~) and ($, u, y, ~), where p* is as before, and y is a
conjunction consisting of (i) ~, for any existential q for which the original NFA

M has a transition (q, m, p), and (ii) = q’, for each universal q for which ill

has a transition (q, u, p), and for any superscript ~ that has p in the position

corresponding to o.

It is not too difficult to see that the total size of N is bounded by a

polynomial in n. Actually, it is bounded by 0(rzm2 +‘ ), so that the degree of the

polynomial depends on the size of the alphabet.q

The simulation of (E, A) by (E, C) is dual. ❑

As a corollary, by tracing one vertical line followed by an upward dashed

diagonal, we have exponential upper bounds for the four horizontal lines in the

upper portion of Figure 2, in analogy with what was known for the lower

portion thereof

COROLLARY 3. Let [ be@ or E. Then ((, A, C) + ([, C). The same holds

with A and E exchanged.

Also, the upper exponential bounds going downward along the four dashed

diagonals and along the doubly dashed diagonal are obtained easily by moving

down a vertical line and noticing that the resulting machines are special cases

of the target ones:

COROLLARY 4

(1) .Let { be 0 OF’ A. Then (1, C) ~ (t, E). The same holds with A and E
exchanged.

(2) C > (E, A).

Finally, the exponential upper bound along the upward direction of the

doubly dashed diagonal follows by tracing one solid and one dashed line in the

figure:

COROLLARY 5. (E, A) ~ C.

4. Lower Bounds for the 2* Case

In order to establish the exponential lower bounds represented in all the

solid lines of Figure 2, as well as the double-exponential ones implicit in

the appropriate compound transitive paths, it suffices to establish the triple-

exponential lower bound for the simulation of (E, A, C)-machines by determin-

istic finite automata (i.e., 0-AuT). All the aforementioned bounds then follow

‘It E possible to avoid this—at the expense of making the construction a little more complicated
—by using separate copies of and-states, one for each letter of the alphabet, before proceeding
with a version of the above construction. The details are omitted.



Power oj’ Bounded Concun-ency I 529

immediately, since any violation would contradict either this triple-exponential

lower bound or the previously established upper bounds.

PROPOSITION 6. (E, A, C) A @.

PROOF. We exhibit a family of regular sets, ~,1, for n >0, such that each

K,, is accepted by an (E, A, C)-AUT of size 0(log2n) but the smallest DFA

accepting it is at least of size 22”.

Our sets are very similar to those appearing in Chandra and Stockmeyer,

[1976] (which themselves are based upon sets appearing in Meyer and Fischer,

[1971]).

K:t = {(o, 1, #)*#w#(o, 1, #)*$w I w G {o, l}”}.

K~l represents a simple search problem in which a sequence of words over

{O, 1} is searched for the occurrence of a particular word w of size n that is

given as a suffix following a delimiting $ symbol. In order to make the

illustration in Figure 5 somewhat cleaner, we shall work with a variant of this

language, in which &O and &1 replace O and 1, respectively. Also, the words

contain extra #’s, and end with a + symbol. Let

K,l = {(&O, &1, ##)*##w##(&O, &1, ##)*$w+l w = {&O, &l}”}

A standard argument as in, e.g., Chandra and Stockmeyer [1976] and Meyer

and Fischer [1971] shows that the smallest DFA accepting K,, has at least 2Z”

states. This is because, when the $ is reached, the automaton has to be able to

have remembered any possible set of words of length 2n over {&O, &l}, and

there are 2 ‘n such possibilities.

On the other hand, there is an (E, A, C)-AUT of size 0(log2 n) that accepts

K.. Figure 5 illustrates this, by way of a schematic description of an alternating

statechart. Nondeterminism is utilized to guess which of the words in the initial

sequence is the sought-for w. Then, in the left-hand side branch, universal

branching is used to check, in parallel, that the n pairs of locations in the two

alleged occurrences of w indeed contain identical 0/1 bits. Each such check is

carried out using bounded concurrency as follows. The machine remembers the

bit it is looking at (in the first occurrence of w), and in an orthogonal portion it

counts up to n, suspending the count after consuming the rest of w (i.e., when

a # is reached) and resuming it when the second alleged w is met (i.e., when

the $ is reached). This will cause the machine to reach precisely the corre-

sponding bit in the second occurrence of w, at which point the counting

portion enters a special state OK. The checking component now enters a final

state iff the bits are identical. The right-hand side branch checks separately, in

parallel, that both w’s are of length n. Binary counters are used for these tasks,

utilizing the ability of the C feature to simulate counting to n in base 2 using

log n yes/no components; carries are simulated by the state-sensing mecha-

nism of the conditions along transitions. See Figure 6. The machine has

O(log n) states, and the conditions in the counters can be each of length
O(log n), yielding a total size of 0(log2n). ❑

We now establish exponential lower bounds on both directions of the doubly

dashed diagonal. The bound for the upward direction follows directly from the

double-exponential lower bound (E, A) ~ @ and the one-exponential upper
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FIG. 5. A logarithmic-size alternating statechart that accepts K..
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FIG. 6. A four-bit statechart counting the occurrences of a.

bound C + 0:

COROLLARY 7. (E, A) + C.

The lower bound for the downward direction of the doubly dashed diagonal

is more subtle. We have to exhibit a set accepted by a polynomial-size

deterministic C-AUT, but which requires exponentially many states in an

alternating finite automaton. 10 We use a technical lemma relating AFAs to

DFAs, which was first stated in Chandra et al. [1981, p. 131].

LEMMA 8. Let M be an AFA of size n, accepting the language L. There is a

DFA with no more than 2” states that accepts the language ~, that is, the set

consisting of the words of L in rel)erse.

Although a proof of the lemma can be gleaned from Chandra et al. [1981],

we can prove it directly by considering the reversed sequence of the sets of

‘“This bound was conjectured in the prelimina~ version of the paper [Drusmsky and Hare], 1988],
and was subsequently proved by Hirst [1989].
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states that &i goes through in an accepting trace. We omit the proof here, as

Lemma 21 in Section 6 contains the proof of a (stronger) infinitary version.

Now to the lower bound itself

PROPOSITION 9 [HIRST, 1989]. C ~ (E, A).

PROOF. We use essentially the reversed version of the sets used in the

proof of Proposition 6. Let

Xn = {W$(o, 1, #)*#w#(o, 1, #)* I w’ = {o,1}”}.

Since the reversed language, X;, is exactly the set K: of Proposition 6, it

follows that the smallest DFA accepting it is of size at least 22”. Thus, by

Lemma 8, the smallest AFA accepting the nonreversed version, X,, must have

at least 2“ states. To complete the proof, we describe the operation of a C-AUT

(e.g., a deterministic statechart) that accepts X,l. It “stores” the first word it
sees, w, in binary form (by n orthogonal yes/no components), and then checks

each subsequent word, symbol by symbol, for equality with w. It is easy to

construct this machine to be of linear size. ❑

Turning now to the four singly dashed diagonals of Figure 2, we notice that

the exponential lower bounds in the downward direction follow immediately

from Proposition 9, since E-machines and A-machines are special cases

(E, A)-machines, and C-machines are special cases of both (E, C)-machines and

(A, C)-machines. Thus, in particular, while nondeterminism can be replaced by
bounded concurrency without essential blowup in size (Proposition 2), the

converse is not true; the C feature is strictly stronger than E or A. This

completes the lower bounds discussed in the Introduction.

An additional set of bounds that are of interest are the “sideway” diagonals

that involve going from (A, C) to E and from (E, C) to A. The situation we now

establish for them should be contrasted with the third possible comparison of

two of the features with the third one, namely the comparison of (E, A) and C,

where we had exponential lower bounds in both directions. Here we have

double-exponential upper and lower bounds going downward and polynomial

bounds going upward, which constitutes further evidence of the greater power

of the C feature. The upward bounds follow from the polynomial simulations

going from E to C and from A to C (Proposition 2). The upper bound of two

exponential going downward is obtained simply by following one horizontal

and one dashed diagonal. It remains to prove the double-exponential lower

bound:

PROPOSITION 10. (A, C) ~ E and (E, C) ~ A.

PROOF. We exhibit a family of regular sets, S., for n >0, such that each S.

is accepted by an (A, C)-AUT of size O(log n), but the smallest E-AUT accepting

has at least 2’1 states. Define

s,, = {W$w I w = {o, 1}”}.

The following simple argument shows that any NFA that accepts S,z must have

at least 2“ states. Given such an NFA, associate with each w in {O, 1}” a state,

by choosing some accepting computation of the word w $w and singling out the

state reached after reading the first w. Call it q(w). Since there are 2“
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different w ‘s, if the automaton had less than 2“ states there would be w + u

with q(w) = q(u). It is easy to see that the word w $ LL would then be accepted.

In contrast, an (A, C)-AUT can be constructed to accept S., similar to the

(E, A, C)-AUT in the proof of Proposition 6. It first uses AND-states to choose a

symbol in the initial w to check. It then counts up to n + 1 with log n

orthogonal components, causing the machine to reach the corresponding

symbol in the second word; the checking itself takes a constant number of

states. In parallel, similar counts are used to make sure that the two words are

of length n.

The case with E and A is proved similarly, using the complement of S,,. ❑

Finally, we would like to show that we have lower bounds in the rezlerse

directions of all the solid and singly dashed arrows in Figure 2. These are the

arrows for which we have polynomial (mostly linear) upper bounds. For

example. we would like to show that E does not always decrease the size

exponentially relative to 0. It is possible to establish these bounds for a

uniformly fixed alphabet, such as {O, 1}, as in our previous lower bounds (see

Armoni [1991]). We leave this more satisfactory version to the reader; here we

prove the bounds trivially using alphabets that grow with n. The following

proposition covers all the cases:

PROPOSITION 11. There is a family of regular sets F., for n > 0, such that each

F. is accepted by a DFA of size 0(n), but the smallest (E, A, C)-AUT accepting it

is of size at least n.

PROOF. We use simple one-word languages. Let

F,, = {alaz ““. a~}.

Even our most powerful machine, an (E, A, C)-AUT, requires each of the al to

appear on at least one edge, otherwise it can easily be shown to misbehave. A

trivial DFA with n states accepts F.. ❑

Discussion. Since the C feature adds an exponential amount of succinctness

to a deterministic finite automaton, one would expect the standard decision

problems to behave differently on C-AUT. This is indeed true. It is possible to

show, for example, that the emptiness problem for C-AUT and the determinism

problem for (E, C)-AUT are both PSPACE-complete, and that the equivalence

problem for C-AUT is NP-complete. In contrast, of course, for DFAs these are

in PTIME.

.5. Upper BOLUKISfor the Z- Case

In this section and the next, we assume that our machines work on inputs from

Z 0. The results are essentially as in the finite word case, but involve the two

acceptance criteria, as illustrated in Figure 3. (In the figure, lines with no R

or S mark apply to both Rabin and Streett criteria. ) We make heavy use of

the results of Safra [1988; 1992] providing determinization and combined

determinization-and-complementation results for automata on infinite words

with single-exponential blowup.
First, we establish the exponential upper bounds along the solid vertical lines

of Figure 3.
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PROPOSITION 12. Let f be any subset of {E, A}. Then (<, C) ~R,~f.

PROOF. The reasoning in the proof of Proposition 1 holds here too. Note

that the accepting pairs in O have to be written in terms of the new states,

which are tuples of states taken from the orthogonal components of the

original machine. ❑

We now use Safra’s results [1988, 1992] to establish the exponential upper

bounds along two of the bottom horizontal lines of Figure 3:

PROPOSITION 13. E AR ~ @ alzd A <R,~ @.

PROOF. That E ~RO is exactly the main result in Safra [1988] to the effect

that nondeterminism can be eliminated in Rabin automata with only a single

exponential growth in size. (The result in Safra [1988] transforms from Buchi

automata to Rabin automata, but one first carries out the easy polynomial

transformation of nondeterministic Rabin machines to nondeterministic Buchi

machines; see, for example, Lemma 5 of Safra [1988 ].) That A ~s 0 follows

from the following easily proved duality:

Let L z Z” be R-accepted by the nondeterministic automaton iW with

acceptance set 0. If ~ is the automaton A4, but viewed as an A-tiAuT (that

is, its states are all considered AND-states), and with the same acceptance

set Q, then N S-accepts ~. The same holds with R and S exchanged.

For E ~s 0 (and by the same duality, also A ~RO), we use Safra’s

determinization-and-complementation result for Streett automata [Safra, 1992].

lt establishes, with a single exponential blow-up, a transformation from a

nondeterministic Streett automaton to a deterministic Rabin automaton that

accepts the complement of the original language. The dual automaton (in the

sense of the above duality) S-accepts the original language. ❑

Here are the other two bottom horizontal lines.

PROPOSITION 14. (E, A) ~~,s E and (E, A) ~R,s A.

PROOF. First, (E, A) ~~ E.

Let M be a given (E, A)-wAuT operating over the alphabet 2, and with state

set Q. We first transform M into an A-OAUT M’ that operates over a richer

alphabet. Define 2 = S u (2 x Q X Q). M’ has the same state set Q, the
same start state and the same acceptance pairs. Its transitions are obtained

from those of M in the following way. Transitions emanating from universal

states are included in M’ without change. For an existential state p, if M

contains a transition leading to state q for input symbol a, then in M’ the

symbol triggering the transition from p to ~ will be the triple (a, p, q). Thus,

we have replaced the nondeterminism of M by deterministic choices, in which

the source and target states have been “remembered” alongside the input

symbol that caused the transition. Note also that the size of M’ is polynomial

in the size of M.

The projection of a word x = X* over S, denoted by X2, is obtained from x

simply by dropping the state components from any triple appearing in x. Let
L c Z’ be the language R-accepted by M, and let L’ c 2* be the language

R-accepted by M’. It is straightforward to show that for any y = 2’, y = L iff

there is some x E L’, with y = x~. The details of this are left to the reader.



534 D. DRUSINSKY AND D. HAREL

We now dualize our Rabin A-wAuT, M’, considering its states to be existen-

tial and its acceptance mechanism to be Streett. The new automaton S-accepts

~. Now, we apply Safra’s [1992] co-determinization result to this nondetermin-

istic Streett automaton, yielding an 0-WAUT of exponential size that R-accepts

L’. Call if N’. The final step is to “project out” the state pairs in the enriched

alphabet of N’, by simply replacing any triple-symbol (a, p, q) in a transition

by a. This yields an E-OJAUT JV that R-accepts the original language L.

We can now use this construction (with the help of Safra’s results, of course)

to obtain the (E, A) +~ E transformation too. Consider the automaton N’

above. It has an exponential number of states, but only a linear number of

pairs in its termination condition. In the full version of Safra [1988], Safra

shows how to transform a deterministic Rabin automaton into a deterministic

Streett automaton using an exponential blow-up in the number of pairs only. In

this way, we can obtain an 0-OAUT of exponential size that S-accepts L’. One

then projects out the state pairs as above.

The (E, A) ~~,s A transformations follow by duality. ❑

In analogy with Proposition 2, we now prove polynomial upper bounds for

the upward direction of the four dashed diagonal lines of Figure 3. This entails

a certain strengthening of Safra’s constructions:

PROPOSITION 15

(1) E~, C and A~s C;

(2) (E, A) ~ R(E, C) and (E, A) ~ s (A, C).

PROOF. Consider the claim E ~ ~ C. Given an E-COAUT of size n, we first

carry out the easy transformation into an R-equivalent nondeterministic Buchi

automaton, with at most a polynomial increase in size. The idea now is to

implement Safra’s construction [Safra, 1988] of an exponential-sized R-

equivalent @-WAUT using a polynomial-sized “data structure” that can be

described and manipulated by a deterministic C-LOAUT of roughly the same

polynomial size. The full details involve tedious programming of a complicated

C-OAUT (e.g., a deterministic statechart ), and are omitted in favor of a

high-level description.

Let us go through the steps of Safra’s construction. Denote by Q the set of

states in the given Buchi automaton M. In the new deterministic machine N,

the states are ordered trees, each node of which is colored white or green and

is labeled with some subset of Q. These trees satisfy the following conditions.

The label of a node is a subset of the label of its parent, and the label of the
parent, in turn, contains at least one state of Q not present in the labels of any

of its child nodes. In this way, the union of the sets labeling the child nodes of

any node is a strict subset of the set labeling the parent. Moreover, the sets

labeling sibling nodes are pairwise disjoint. Consequently, the tree cannot

contain more than IQ I nodes. The start state of N is the tree containing one
white node only, labeled by {qf}}, the start state of M.

Here is how N behaves when in the state given by a tree T if the symbol it

sees is a. It first colors all nodes of T white. Next, to any node whose label set

intersects F—the set of accepting states of M—we attach a new child node

labeled with the said intersection. The new node is to be the rightmost (i.e.,
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youngest) child. Now, the transition table 8 of the original machine M is

applied to each node in T, pointwise to all states in the label, resulting in new

label sets of states for each node. A series of corrections to this temporary tree

is now carried out. First, if, as a result of this application of 8, we find a state

s ● Q appearing in the labels of more than one child of some node, we delete s

from all those child nodes except the oldest (i.e., leftmost) one in which it

appears. As a result, each state of Q that appears in the tree, appears along a

unique path of nodes stretching from the root to some node. Any node whose

label becomes empty as a result of these deletions is eliminated from the tree,

together with its entire subtree. Finally, if, as a result of all of this, the set

labeling some node becomes equal to the union of the sets labeling its child

nodes, the child nodes are all deleted from the tree (together with their

subtrees), and the node itself is colored green.

As shown in Safra [1988], no more than 2n new nodes are ever created

during a run of N, where n is the size of M, so that we can attach a unique

name to each node from among 1, 2,. . . . 2n. The acceptance set of N is now

taken to contain all pairs of the form (L,,, U,,), for L E {1,2,..., n}, where L,,

is the set of trees that contain the node u colored green, and U, is the set of

trees that do not contain L at all. That this construction works lies at the heart

of Safra’s proof. In the construction, the new deterministic automaton has the

trees as states, so that its size is the number of possible trees (times the size of

the names of the nodes), which is exponential in n.

Our goal is to show how this very construction can be implemented by a

C-OAUT of size polynomial in n. The basic idea is to construct the machine to

maintain a complex set of orthogonal components that have the capacity to

denote all possible trees and the labels and names of their nodes. Figure 7

contains a schematic statechart illustration of the main components in this

machine. There is a vertical row of components for each potential node of the

tree, and, by the remark made earlier, we need at most 2n of them. During

each step of the simulating machine, the nodes actually present in the current

tree are all left-justified in the figure. Thus, since a node’s place in the

statechart is not fixed, we hold the name of the node explicitly. In addition, we

have the color of each node, and the name of its parent. Finally, the set of

states in Q labeling the node is kept too, using orthogonal yes/no components.

In addition to the information for each vertical node column, we maintain a

table indicating the color of each node by name. This is needed for stating the

acceptance criterion.

The initial states (not indicated in the figure) will cause the statechart to

initialize to the tree containing a single node (held in the leftmost column)

whose only state from Q is qo. We now have to convince ourselves that we can

encode the effect of simulating steps of the deterministic automaton N within

this C-tiAUT, with only a polynomially-large transition table. In general, the

simulation is carried out by a transition triggered by the input symbol, and

which, by entering special states and having other components sense the ones

that have been entered, triggers a chain reaction of changes. (Such chain

reactions can be set up in the statechart in much the same way as the carry

ripples through a counter, as illustrated in Figure 6, without the need for

e-transition s.) The various steps in the simulation entail adding several state

components to the main parts appearing in Figure 7. These are used mainly to

control the order in which the changes are made.
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There are basically three abilities that we must be able to program in order

to simulate the entire process: (i) adding a youngest child to a node; (ii)

deleting a set of nodes; (iii) copying information from node to node. Some such

actions are carried out in each of the vertical columns in order, by rippling

triggers from left to right. The most intricate of these is the deletion of nodes,

since we have to be able to left-justify the remaining columns. This is done by

first calculating, in a new component for each vertical node description i, the

unique node k, that represents the ith node from the left that is to be present

in the tree after the deletions. The new component simply uses two counters of

states; the first counts up to i, with the second continuously searching for the

next vertical component that is in its “present-in-the-tree” state. When this

computation is over, the machine triggers the copying routine from left to

right, moving the information in vertical column k, to column i. Applying 8 to
a node in the tree is done as m the first part of the proof of Proposition 2.

As mentioned, the details of this simulation contain nothing conceptually

complicated, and mostly involve just tedious programming. This completes the

proof of E ~ ~ C. Clearly, A ~s C follows by duality.
Part (2) of the Proposition refers to the upward direction of the “back”

dashed arrows in Figure 3. The proof of E 4 ~ C from part (1) involved

implementing Safra’s construction in [Safra, 1988] efficiently using the C

feature. Similarly, proving the claim (E, A) ~ ~ (E, C) involves using the C

feature to efficiently implement the proof of Proposition 14, the heart of which
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is Safra’s construction in [Safra, 1992] (the (E, A) ~ ~(A, C) claim will then also

follow by duality).

As in the proof of Proposition 14, we first enrich the alphabet from 2 to

2, construct the polynomially-sized Rabin A-WAUT, and promptly view it as

a Streett E-WAUT accepting some language L over 2’. We now have to

mimic Safra’s codeterminization procedure from Safra [1992] to obtain a

polynomially-sized C-COAUT (e.g., a deterministic statechart) that R-accepts ~.

The proof here is in essence just as before. One carefully follows Safra’s

construction, using a “data structure” of polynomial size. This has to be done

for the constructions in both Theorem 1 and Lemma 3 of Safra [1992]. In fact,

in contrast to Safra [1988], the formal constructions in Safra [1992] are

preceded by informal descriptions in which the simulating machine is viewed as

“a program with bounded memory and some infinitary acceptance condition”

[Safra, 1992, Sect. 3]. Together with the points made in the proof of part (1)

above, regarding ways to control the order in which changes are made in the

“data structure” and to ripple triggers from one part thereof to another, the

descriptions in Safra [1992] are sufficient to establish our claim. Here too we

leave the programming details to the reader. ❑

As a corollary, by tracing a vertical line and an upward dashed diagonal, we

obtain exponential upper bounds for the four top horizontal lines of Figure 3:

COROLLARY 16

(1) (E,C) +R C and (A,C) ~, C;

(2) (Q A, C) +R (E, C) and (E, A, C) +s (A, C).

Also, the exponential bounds going downward along the four dashed diago-

nals and along the doubly dashed diagonal in Figure 3 are obtained immedi-

ately by moving down a vertical line and noticing that the resulting machines

are special cases of the target ones:

COROLLARY 17

(1) C +Rli C ~#, (E, C) *R (Q N, alzd L% c) ~s (E 4;

(2) C ~R,s (E, A).

The R and S upper bounds along the upward direction of the doubly dashed

diagonal follow by tracing a solid and a dashed line in Figure 3:

COROLLARY 18. (E, A) ~R,s C.

6. Lower Bounds for the X “’ Case

The lower bounds here are also as in the finite words case. As in Section 4, we

shall first prove a triple-exponential lower bound for the transition from

(E, A, C)-oAUT to 0-oAuT. This will establish the exponential lower bounds

along the solid lines in Figure 3, as well as the double-exponential ones implicit

in the appropriate compound transitive paths.

PROPOSITION 19. (E, A, C) .+ ~ ~0.
,.

PROOF. Recalling the sets K,t of Proposition 6, we take .1. to be simply
K,, “ O‘. That a 0-OAUT requires 2Z” states to accept 1,, follows the same

argument used for the finite word case, since, when the $ symbol is reached,

the machine has to be able to have remembered any possible set of words of

length n over {O, 1}. Also, to R-accept or S-accept .1,1 by a logarithmic-sized
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(E, A, C)-COAUT, simply use the machine of Proposition 6 to first confirm that

the portion up to the + symbol is in ~,,, and then an additional state will be

used to read the O ‘“ and accept according to the criterion of choice. ❑

As in the finite word case, the exponential bound for the upward direction

of the doubly dashed diagonal follows directly from the double-exponential

(E, A) ~~,s 0 lower bounds and the one-exponential C ~~,s 0 upper bounds:

COROLLARY 20. (E, A) ~R,5 C.

The proof of the lower bound for the downward direction of the doubly

dashed diagonal also follows along the lines of the proof in Section 4. In

particular, we first prove an appropriately amended version of Lemma 8:

LEMMA 21. Let L G X’ be a regular set, and let M be an (E. A)- COAUT of size

n that R-accepts the ~-regular set L .0 ‘“. There is a 0- OJAUT N of size at most
2°~”~ tilat R-accepts the set L’ “ O‘. The same holds for S-acceptance.

PROOF. The states of ~ are taken to be subsets of those of ~. Let P’

denote the set of states of ~ with the property that if A4 is started in such a

state on the word O a, it accepts. The start state of N will be the set ~. Define

the transitions of N so that upon seeing the symbol a G Z when in state U it

enters the unique state W defined as follows: For a state w of M, we put w in

W iff at least one a-successor of w (when considered as a state of M) is in U if

w is existential, and all a-successors of w are in U if w is universal, In

addition, we set things up in N so that when it reads O“’ starting in any state U

that contains the start state of M, it accepts. This can be done very easily using

either the Rabin or the Streett criteria.

It is now straightforward to show that N accepts a word x .00 iff x’ ● L,

which is exactly when M accepts x“. O‘. ❑

Now for the lower bound:

PROPOSITION 22. C ~R,~ (E, A).

PROOF. Again, we use a simple infinitary version of the sets ~,, of Proposi-

tion 9. Let Yn be defined as ~,, .00. That no (E, A)-oAuT with less than 2“

states R-accepts or S-accepts ~, follows from Lemma 21 and the argument in

the proof of Proposition 19. To accept h with a linear-sized C-COAUT, a new

state is added to the statechart described in the proof of Proposition 9, to

accept if the rest of the word is O‘. ❑

The lower bounds along the dashed diagonals now follow as in the finite

word case.
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