
Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

1

Abstract—Numerous techniques exist for conducting

computer-assisted formal verification and validation. The cost
associated with these techniques varies, depending on factors
such as ease of use, the effort required to construct correct
requirement specifications for complex real-life properties, and
the effort associated with instrumentation of the software under
test. Likewise, existing techniques differ in their ability to
effectively cover the system under test and its associated
requirements. To aid software engineers in selecting the
appropriate technique for the formal verification and validation
task at hand, we introduce a three-dimension tradeoff space
encompassing both cost and coverage.

Index Terms—Software Verification and Validation, Formal
Methods, Model Checking, Assertion Checkers

I. INTRODUCTION
There are many real-world examples of the impact of
software-related failures on our lives, such as the
malfunctioning of the Miele G885 SC dishwasher, worldwide
recall of the BMW 745i sedan, the temporary closure of
Southern California’s airspace while air traffic controllers had
no access to digital displays of terrain and airspace
boundaries, the loss of an Ariane 5 rocket and its payload of
satellites, and the loss of life due to friendly fire by the Patriot
missile system. Software is ubiquitous, and software errors
affect everybody. A study conduct in 2001 and sponsored by
the National Institute of Standards and Technology (NIST)
found that the annual cost of software errors to the U.S.
economy is approximately $59.5 billion, which in 2001 was
about 0.6 percent of the gross domestic product [1].

The ever increasing demand for highly automated high-

Manuscript received December 6, 2007. Manuscript revised September 19,

2008. This work was supported in part by the by the National Aeronautics
and Space Administration under Grant No. NNG07LD01I. The views and
conclusions in this talk are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S. Government.

Doron Drusinsky is with the Department of Computer Science, Naval
Postgraduate School, Monterey, CA 93943 USA (telephone: 831-656-2397, e-
mail: ddrusin@nps.edu).

James Bret Michael is with the Department of Computer Science, Naval
Postgraduate School, Monterey, CA 93943 USA (telephone: 831-656-2655, e-
mail: bmichael@nps.edu).

Man-Tak Shing is with the Department of Computer Science, Naval
Postgraduate School, Monterey, CA 93943 USA (telephone: 831-656-2634, e-
mail: shing@nps.edu).

integrity reactive systems, such as those used in defense
(target-tracking system), healthcare (e.g., infusion pump), and
transportation (e.g., traction-control system in an automobile),
pushes the complexity of embedded systems to new heights.
By high-integrity, we mean systems for which the customer or
other stakeholder requires a high level of assurance be
demonstrated before placing these systems into operation.
Reactive systems, under the control of their embedded
software, must interact closely with other embedded systems
and adhere to tight constraints on both timing and control.
Their close interaction with the environment makes the
understanding and satisfaction of embedded systems’
functional requirements (i.e., “what the software must do”)
and their safety requirements (i.e., “what the software must
not do”) a high priority.

The activities for assuring the correctness of reactive
systems reside within the Verification and Validation (V&V)
process. According to the Guide to the Software Engineering
Body of Knowledge [2],

The V&V process determines whether or not
products of a given development or maintenance
activity conform to the requirement of that activity,
and whether or not the final software product fulfills
its intended purpose and meets user requirements.
Verification is an attempt to ensure that the product is
built correctly, in the sense that the output products
of an activity meet the specifications imposed on
them in previous activities. Validation is an attempt
to ensure that the right product is built, that is, the
product fulfills its specific intended purpose.

V&V traditionally relies on manual examination of
software requirements and design artifacts in addition to the
testing of target code. As software-intensive systems have
become increasingly complex, traditional V&V techniques are
now inadequate for use in locating subtle errors in the
software. For example, there are intricate and abstruse system
behaviors that are only observable at runtime and at such a
fine level of granularity of time that human intervention at
runtime is not practical; software automation holds the key to
V&V of these types of system behaviors.

Lutz pointed out, in her study of the software errors
discovered during the integration and testing phase of the
Voyager and Galileo spacecraft, that the majority of the
program faults were functional faults, and a large percentage

A Visual Tradeoff Space for Formal Verification
and Validation Techniques

Doron Drusinsky, James Bret Michael, Senior Member, IEEE,
and Man-Tak Shing, Senior Member, IEEE

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

2

of the functional faults were behavioral faults (50% of the
safety-related, functional faults in Voyager and 38% of safety-
related, functional faults in Galileo) [3]. Lutz’s finding
highlights the difficulties in understanding and implementing
behavioral requirements correctly. We divide the system
behaviors into two classes:
1) Logical behavior - This class describes the cause and

effect of a computation, typically represented as
functional requirements of a system. For example, given
two positive numbers x and e, the output of the square
root function sqrt(x) must satisfy the requirement:
| x – sqrt(x) * sqrt(x) | < e.

2) Sequencing behavior – This class describes behaviors as
sequences of events, conditions, and constraints on data
values and timing. In its vanilla form, sequencing
behavior specifies sets of legal and illegal sequences,
such as the following automotive body-logic requirement:
Once engine is turned off, compartment lights must
be on until driver door is opened.

Sequencing behavior has two types of common constraints:
1) Timing constraints – describe the timely start and/or

termination of successful or forbidden computations, such
as the deadline of a periodic computation or the maximum
response time of an event handler. For example,
The sqrt() function must complete its computation and
return an answer within 200 milliseconds from the time it
is called.

2) Time-series constraints – describe the timely execution of
a sequence of computations within a specific duration of
time. For example,
Whenever the system load (L) exceeds 75% of the
MaxLoad, L must be reduced back to 50% of the
MaxLoad within 1 minute and must remain at or below
60% of the MaxLoad for at least 10 minutes.

Sequencing behaviors with time-series constraints are the
most difficult to understand, specify, and implement correctly.
We need automated V&V techniques to assure the correctness
of both logical and sequencing behaviors. Automated tools for
conducting V&V take as input system behaviors and
properties specified in a mechanically processable formal
specification.

Webster’s Dictionary defines formal as “definite, orderly,
and methodical.” The term “formal methods” refers to the
software development activities (e.g., requirements analysis,
software design, program transformation, and testing) that
employ mathematically based techniques for describing,
reasoning about, and realizing system properties, which are
expressed using formal languages.

It is widely claimed that formal methods help improve the
quality of software [4], [5]. Formal methods have received
considerable academic attention during the last three decades,
as reflected by the many technical papers published in the
open literature. (For example, IEEE Software (Sept. 1990),
IEEE Computer (Sept. 1990), and IEEE Transactions on
Software Engineering (Sept. 1990, May 1997, Aug. 2000) all
have published special issues on formal methods.) In the 1993

seminal study of industrial application of formal methods,
Craigen, Gerhart and Ralston [6] reported that

Formal methods are maturing in terms of:
• The range of applications for exploratory, regulatory,

and commercial use;
• The solution to technical problems inhibiting larger

scale use;
• The understanding of nontechnical barriers to wider

spread use; and
• The standardization of concepts and notations.
However, wide use of formal methods in industry and

government, even for use in safety-critical commercial and
defense applications, has failed to materialize in the past
thirteen years [7]. One reason for this lackluster adoption of
formal methods is that software development is a multi-
facetted process, with each phase of the process having its
own unique set of challenges, and there is a lack of a clear and
common understanding about the effectiveness of the
spectrum of formal methods in different phases of the
software development process. In the past, people have been
positioning and teaching different classes of formal V&V
(FV&V) techniques in isolation, causing confusion in the
market – people seeing a myriad of techniques with no
uniform way to compare them.

In this article, we present a visual tradeoff space we
developed for the NASA IV&V Facility, called the FV&V
tradeoff cuboid, for software engineers to discuss the various
tradeoffs (e.g. cost, coverage, etc.) between different FV&V
approaches in order to select the appropriate techniques for
the FV&V of high-integrity software-intensive systems, many
of which are reactive systems with complex sequencing
behaviors. The rest of the article is organized as follows. We
first discuss the different needs for the FV&V techniques in
the different phases of the software process in Section II,
followed by a description of the three-dimensional FV&V
tradeoff space in Section III. We then illustrate the use of the
tradeoff space with a qualitative comparison of three classes
of FV&V techniques for reactive system behaviors in Section
IV and present a sample application of the tradeoff space in
Section V. We conclude the paper with a discussion on how
the tradeoff space can be used as an aid by software engineers
for selecting the appropriate technique for the FV&V task at
hand.

II. THE V&V REQUIREMENTS IN THE SOFTWARE LIFE
CYCLE

One can view software development as a set of
transformations via the following workflows: requirements
specification, design, and implementation. Depending on the
software process model, these transformations may be carried
out in a sequential order (as in the Waterfall [8], or the Spiral
processes [9]), or in an iterative and incremental fashion (as in
the Unified process [10]). Table 1 shows the input/output of
each transformation and the corresponding V&V activities.

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

3

TABLE I
THE LIFE-CYCLE V&V ACTIVITIES

Development
Activities Input Output V&V Activities

Requirements
Specification

Clients’ ideas System/
software
functional
and non-
functional
requirements

Assure the
adequacy,
correctness, and
consistency of
requirements;
develop
acceptance test
plan and test cases

V
alidation

Design System/
software
requirements

Architecture/
component
specification

Assure the
consistency of
design with
requirements, and
the adequacy of
design; develop
integration and
unit test plan and
test cases

Implementation Architecture/
component
specification

Target Code Assure the
consistency of
code with design,
and the adequacy
of the
implementation,
execute the tests
as planned

V
erification

We need to separate the FV&V techniques into two
categories: the FV&V for the Requirements phase and the
FV&V for the Design/Implementation phase. The FV&V
techniques for the Requirements phase are formal validation
techniques. These techniques must allow stakeholders to
capture and test the formal requirements (e.g., via simulations)
to ensure that the developer’s cognitive understanding of the
requirements matches the formal specifications. The FV&V
techniques for the Design/Implementation phase are formal
verification techniques. These techniques must aid developers
in demonstrating that their software satisfies the requirements
(functional and non-functional), and should effectively locate
and explain the cause of errors in faulty design and code.

III. THE FV&V DIMENSIONS
Let us return to our discussion of the dimensions of the

FV&V tradeoff space, which is made up of the following
three dimensions: specification/validation, program/
implementation, and verification.

A. The specification/validation dimension
The specification/validation dimension represents the cost,

effort and effectiveness associated with formal specification.
Formal requirements specification is the process of capturing
requirements and properties for the domain of discourse (e.g.,
component, module, or system being designed or inspected) in
a machine interpretable or executable form. Clark et al.
reported in [4] that the process of specifying requirements
formally enables developers to gain “a deeper understanding
of the system being specified,” and to “uncover requirements
flaws, inconsistencies, ambiguities and incompletenesses.” In
addition, the artifacts produced by enacting the process “can
itself be formally analyzed,” thus allowing the possibility for

some degree of automation of V&V tasks. The formal
specifications describe what any system that solves the real-
world problem ought to do. Typically, formal specifications
are created from conceptual requirements as understood by the
primary modeler. Regardless of what formal notations or
formal methods were used, the system modelers always start
their requirements-discovery process based on some scenarios
involving the system and its environment, express their
understanding of the expected behavior or properties of the
system informally with natural languages, and then translate
the natural language requirements into formal specifications.

The specification/validation dimension deals with the ease
of writing formal specifications and getting them right, that is,
getting them to represent the cognitive intent the human owner
has for this requirement. This dimension measures cost and
coverage. Cost is the fiscal cost of creating and validating
correct representative formal specifications for desired
properties. Coverage is the degree to which a given
specification language can actually be used to capture certain
properties; a weak formal specification language can only
capture simple requirements. For example, the specification
language known as Propositional Linear-time Temporal Logic
(PLTL) is known to be star-free regular [11] and therefore
cannot formally capture requirements that require a stronger
formalism, such as requirements that require nontrivial
counting. In addition PLTL cannot be used to capture
requirements that contain real-time constraints.

B. The program/implementation dimension
The program/implementation dimension deals with the ease

of the adaptation of a given real-life complex program to a
specific FV&V technique. In an ideal world we would use an
existing program verbatim for our FV&V technique of choice.
In reality however this is often not the case, and a program
needs to be modified, truncated, or abstracted to be considered
for FV&V. For example, a model checker such as SPIN [12]
cannot be used verbatim on a non-trivial C, C++, or Java
program; rather, such a program needs to go through a process
of abstraction before it can be used for verification, and hence
has a low program coverage and a high program cost in the
program/implementation dimension.

C. The verification dimension
The verification dimension bridges the specification and

implementation dimensions. Verification ensures that the
software implementation conforms to the specification. The
verification dimension represents the cost, effort, and
effectiveness of verification. For example, it is generally
accepted that manual (i.e., human-based) testing is costly,
slow, and error prone. Hence, human-based testing will be
represented as a point in the cuboid whose verification
dimension highlights high-cost and low-coverage.

IV. QUALITATIVE COMPARISON OF FV&V
TECHNIQUES FOR REACTIVE SYSTEM BEHAVIORS
Let us illustrate the use of the tradeoff space with a

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

4

discussion of cost and coverage tradeoffs among three
categories of FV&V techniques: theorem proving, non-
execution-based model checking, and execution-based model
checking via the combination of runtime verification and
automatic test generation. We choose these three categories of
techniques because they are used in many hybrid methods. For
example, the Software Cost Reduction (SRC) Toolset [13]
allows the user to enter the required externally visible
behavior of a software system using a tabular notation, and
then translates the SRC specification either into Promela [14],
a Process Meta Language of the SPIN model checker, for
model checking, or into TAME (Timed Automata Modeling
Environment) [15], a specialized interface to PVS (Prototype
Verification System) [16], for theorem proving. Other tools
offer translations of Z [17] specifications to PVS [18],
Isabelle/HOL [19], EVES [20], or SAL [21] for theorem
proving or modeling checking.

The coverage cuboid, shown in Figure 1, represents the
coverage-space tradeoff between three FV&V techniques.
Each point in the solid represents the extent of coverage in the
three dimensions (specification, verification and
implementation) provided by a given FV&V technique.
Hence, an FV&V technique with high coverage (e.g., high
specification coverage) is better in that aspect than a technique
with low coverage.

Figure 2 is the cost cuboid; it represents the cost-space
tradeoff between the three FV&V techniques. Each point in
the solid represents the cost in each dimension induced by a
given FV&V technique. Clearly, an FV&V technique with
high cost along some axis (e.g., high verification cost) is
worse in that aspect than a technique with a low cost.

A. Theorem Proving
As its name suggests, Theorem Proving (TP) is a formal

verification technique that uses mathematical proof techniques
to make a convincing argument that a program conforms to a
formal requirement. FV&V TP tools require a human driver
because the underlying problem to be solved is typically
undecidable. In addition, the choice of the specification
language affects the skill level required by the driver. For
example, ACL2 [22] uses Propositional-Logic (PL)
specification that uses Lisp programming style notation for
specification, whereas STeP (the Stanford Temporal Prover)
[23] uses Propositional Linear-time Temporal Logic (PLTL)
for specification [24], a language that requires more user
expertise than PL. HOL theorem provers [25] are a family of
interactive theorem proving systems that use higher order
logic, which is theoretically more descriptive than PLTL but is
arguably harder to use when it comes to specification of
reactive system requirements. Examples of HOL TPs include
the NQTHM [26], HOL4 [25], Isabelle [27], ProofPower [28]
and PVS [16], as well as several efforts to embed temporal
logic in HOL [29]-[32]. There are also a number of formal
methods (e.g. methods using Floyd-Hoare Logic [33]-[35] and
methods using the Type systems [36]) for the verification of
target code via TP during the code-development phase. In the
Floyd-Hoare Logic methods, every programming step has a
pre-condition, post-condition and an invariant. The verifier is
expected to use a proof system to check that the post condition
follows from the precondition while the invariant is valid. In
the Type systems methods, V&V can be moved to the design
stage by formally stating the requirements in constructive
logic. The software engineer then acts as a mathematician and
proves that the requirement is a theorem that follows from the
domain axioms. The system then extracts the code
automatically from this proof. Therefore the generated code
now automatically becomes correct, as the software engineer
indirectly proved it to be so.

1) The specification/validation dimension of TP
This dimension is affected by the expressive power and

ease of use of the formal specification languages used by TP
tools. In general, the more automated the theorem prover, the
more restrictive is its specification language. Existing theorem

Im
plem

en
tat

ion C
ost

Sp
ec

ifi
ca

tio
n

C
os

t

Fig. 2. The cost space

Pro
gram

 C
ove

rag
e

Fig. 1. The coverage space

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

5

provers have rather weak specification languages - mostly
based on some form of temporal logic. Such languages are
also considered hard to use because they are considerably
different than the languages used by programmers for whom a
common practice is to model and program using UML-based
visual languages. It is difficult for system designers who have
a limited knowledge of formal logic to visualize the subtle
meaning of temporal logic statements in order to validate the
correctness of the formal specifications. Consequently, we
ranked TP techniques as having low specification coverage
and high specification cost.

2) The program/implementation dimension of TP
TP techniques rely on special programming languages

tailored specifically for the TP process. Consequently, it is not
possible to perform TP on an existing Java or C++ application
verbatim, i.e., an existing complex application needs to be first
translated into a new representation using the TP tool’s
language of choice. In most safety-critical application, such as
NASA flight-code, or complex defense applications (e.g., the
AEGIS weapon system), the new representation will not cover
all aspects of the original program; for example, STeP does
not have nearly the same library support as Java or C++.
Consequently, we ranked TP techniques as having low
program coverage and high program cost.

3) The verification dimension of TP
As discussed above, TP is never automatic, and requires a

high level of expertise on the part of the user in automated
reasoning. Even with such expertise, it is not guaranteed that
the human driver will be able to navigate the TP process (e.g.,
selecting the inference rules or managing the set of support
axioms) to completion. Nevertheless, when the process does
complete it provides 100% coverage, that is, no more testing
is required for that specific requirement. Hence, we ranked TP
techniques as having good verification coverage but high
verification cost.

B. Model Checking
Classical, or non-execution-based, Model Checking (MC) is

an algorithmic formal verification technique. MC is a push-
button verification technique in that once a program is set-up
for MC and a property (e.g., reachability, safety, liveness, and
fairness) is formally captured using the formal specification
language of choice, the process does not require an expert
human driver.

1) The specification/validation dimension of MC
Contemporary MC techniques are limited in the

specification dimension. For example, SPIN [12] uses PLTL
or Büchi-automata [37] for requirement specification,
resulting is the similar specification coverage and cost
limitations as TP techniques. Kronos [38] and Uppall [39], on
the other hand, use timed automata to verify real-time
properties specified in computation tree logic (CTL) [40].
Both CTL and PLTL are rather weak subsets of full branching
time logic (CTL*) [41]. Both CTL and CTL* use path
operators, making it challenging to formulate correct
specifications. Like the formal specifications in the TP

techniques, specifications for the MC techniques are text-
based and difficult to visualize and validate by system
designers. Unlike TP, MC does not require the detailed
assertions (e.g. invariants) to help guide the intermediate steps
of the proof processes. Hence, we rank MC as having low
specification coverage, yet with a specification cost somewhat
lower than that assigned to the TP category.

2) The program/implementation dimension of MC
Model checking’s Achilles heel is typically considered to

be the state-space explosion problem, where the size of the
problem space as seen by the MC grows exponentially as the
program under verification grows. Consequently, MC is
limited to finite-state components and is performance-
constrained by the number of states in that component. For
example, a single 32-bit integer variable induces effectively
232 states. For FV&V of large real-life systems there are two
options available to MC users: (i) to ignore large parts of the
system using a process known as abstraction [42], where MC
is performed on a small abstract model of the original system,
or (ii) to carve out limited, small, parts of the system and
perform MC only on those parts. In either case there is a non-
trivial effort involved. In addition, the artifact that is
eventually model-checked differs significantly from the
original system, being either an abstract version or limited
portion of the original system. We therefore rank MC as
having low program coverage and high program cost.

3) The verification dimension of MC
The premise of MC is automatic, “push-button”,

verification with no special driver required. Also, MC results
in 100% verification coverage of the component being
verified (for components small enough to allow MC to
complete without running into the state explosion problem).
Hence, we rank MC as having high verification coverage and
low verification cost.

C. Execution-based Model Checking
Runtime Verification (RV) involves monitoring the runtime

execution of a system and checking the observed runtime
behavior against the system’s formal specification. Hence, RV
behaves as an automated observer of the program’s behavior
and compares that behavior with the expected behavior per the
formal specification.

Some published RV tools are the TemporalRover/DBRover
[43], PaX[44] and RT-Mac [45], all of which use extensions
and variants of PLTL as the specification language of choice,
and the StateRover [46] that uses deterministic and non-
deterministic statechart diagrams as its specification language.

Execution-based Model Checking (EMC) is a combination
of RV and Automatic Test Generation (ATG). With EMC, a
large volume of automatically generated tests are used to
exercise the program or system under test (SUT), using RV on
the other end to check the SUT’s conformance to the formal
specification.

Some ATG tools that, when combined with RV tools,
create an EMC technique are the StateRover’s white-box
automatic test-generator [47] and NASA’s Java Path Finder

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

6

(JPF) [48].
1) The specification/validation dimension of EMC

Although some early RV tools have used limited
specification languages such as PLTL [24] and MTL [49],
there is nothing inherent in the ATG, RV, and EMC
techniques that limit the specification language. Indeed, the
StateRover’s specification language is Turing equivalent. In
contrast, no specification language for MC or TP is Turing
equivalent. In addition, the current state-of-practice considers
UML diagrams as an easy-to-use modeling and specification
language, rendering UML-based formal specification less
costly to create and more powerful than specification
languages used by MC and TP techniques. The availability of
executable code for the formal assertions allows system
designers to test specifications (via scenario simulation)
independent of the prototype design, ensuring that the system
designers truly understand the required system behavior
without being tainted by any pre-conceived solutions [50].
Hence, we rank EMC as having high specification coverage
and low specification cost.

2) The program/application dimension of EMC
The premise of RV is that it can be used for FV&V of any

existing, almost unmodified Java, C, or C++ system,
regardless of its size and complexity. This is true up to the
insertion of instrumentation code. We therefore rank EMC as
having high program coverage and low program cost.

3) The verification dimension of EMC
EMC is an execution-based FV&V method, where the

system under test and the specification execute in tandem.
Consequently, there is always a possibility that the ATG did
not generate a test sequence that violates a requirement. Hence
EMC’s verification coverage cannot be 100% and we
therefore rank EMC as having lower verification coverage
than MC or TP. Depending on the level of automation of the
test-generator, EMC is fully or partially automatic. EMC has a
low verification cost when using an automatic ATG tool.

V. SAMPLE APPLICATION OF THE TRADEOFF SPACE
In 1993, the National Aeronautics and Space

Administration (NASA) established an IV&V facility in the
wake of the Space Shuttle Challenger accident as part of a
plan “to provide the highest achievable levels of safety and
cost-effectiveness for mission critical software” [51]. The
facility has continuously developed their IV&V program,
incorporating new technologies and better verification and
validation techniques in an effort to improve the V&V
process. Earlier versions of the V&V process relied on manual
examination and independent testing of target code. These
techniques are ineffective for use in validation because there
is no provision in the process to validate the developer’s
correct understanding of the requirements as manifested by
the system’s features, capabilities, properties and functions.
Moreover, the processes were unable to locate the subtle
errors in increasingly complex software-intensive systems.
Hence, the IV&V Facility is transitioning from using manual
V&V processes to utilizing highly automated processes
involving the application of advanced computer-aided V&V

techniques. In 2007, the facility adopted a System Reference
Model (SRM) framework that allows the IV&V teams to
capture their own understanding of the problem and the
expected behavior of any proposed system for solving the
problem via executable formal assertions of mission- and
safety-critical behaviors [52]. In particular, the facility was
looking for formal techniques that can capture and validate
sequencing behaviors with timing and time-series constraints.

After comparing the capabilities and costs among the three
major FV&V approaches (TP, MC and EMC), the NASA
IV&V Facility selected the EMC approach and chose to
specify the mission- and safety-critical behaviors in terms of
Statechart assertions for the following reasons:
1) As shown in the Specification dimension of the Coverage

Space (Figure 1), it is very difficult, if not impossible, to
specify sequencing behaviors with timing and time-series
constraints using PLTL.

2) The IV&V teams found that Statechart assertions are
easier to create and understand than the text-based PLTL
assertions, as shown in the Specification dimension of the
Cost Space (Figure 2). In addition, the IV&V teams can
execute the formal assertions to validate their
understanding of the expected behavior of any eventual
system implementation without being tainted by the
developer’s agenda.

3) Since the IV&V Facility is often limited in its ability to
perform detailed analyses of developer’s code, they will
need to rely on black-box testing to verify the correctness
of the developer’s systems. As shown in the
Implementation dimension of the Coverage Space (Figure
1) and the Implementation and the Verification
dimensions of the Cost Space (Figure 2), EMC provides
superior coverage while being the least costly amongst
the three FV&V techniques.

4) The limited test coverage of the EMC approach, as shown
in the Verification dimension of the Coverage Space
(Figure 1), does increase the risk of not being able to
uncover errors in the delivered system. However, the
impact of such risk to the IV&V effort is less significant
than it is to the developer’s V&V effort, since the IV&V
teams only act as a second line of defense in the overall
NASA safety and mission assurance program.

VI. CONCLUSIONS
Clearly, as visually depicted by Figures 1 and 2, we have

identified a tradeoff space associated with FV&V. It follows
from an analysis of this space that an organization may need
to determine how to best allocate its limited V&V resources.
For example, an organization that chooses TP or MC is
effectively deciding in favor of good verification yet for a
restricted set of behavioral (reactive) requirements, since
many behavioral requirements of interest cannot be addressed
by TP or MC. In addition, a choice of MC will limit the size
or level of abstraction of the application being verified. EMC
on the other hand, when compared with MC and TP, has
superior specification coverage and cost as well as superior
program coverage and cost, but inferior verification coverage.

Consequently, one can conclude from Figures 1 and 2 that

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

7

the option boils down to a choice between:
1) Thoroughly verifying a limited application against a

limited set of requirements with a high upfront cost of
specification-development and program-adaptation;

2) Partially verifying an entire application as-is, against a
wide set of real-life requirements.

This choice might also help explain the lackluster
acceptance of FV&V techniques by the industry. In the past,
MC and TP have been the prominent available FV&V
techniques, forcing the marketplace to fund verification of
limited or abstracted components against limited, often seen as
over simplified, requirements: This is not in our opinion a
good investment.

Studies of software failures typically point to the
importance of correct requirements and the difficulties in
getting the correct description of these requirements. One
must start with the correct requirements specifications.
Otherwise, it does not matter how effective and efficient a
verification technique is, it becomes an exercise in futility to
formally verify that a system conforms to invalid requirements
(i.e., that we built the wrong system correctly). Hence, it is
important to select the FV&V techniques that are both cost-
effective and coverage-effective in the specification/validation
dimension.

REFERENCES
[1] RTI, “The Economic Impacts of Inadequate Infrastructure for Software

Testing,” National Institute of Standard and Technology, Planning
Report 02-3, May 2002. Available: http://www.nist.gov/director/prog-
ofc/report02-3.pdf.

[2] P. Bourque and R. Dupuis, eds., Swebok: Guide to the Software
Engineering Body of Knowledge (2004 Version), IEEE, 2004.

[3] R. Lutz, “Analyzing Software Requirements Errors in Safety-Critical,
Embedded Systems,” in Proc. IEEE Int’l Symp. Requirements
Engineering, IEEE, 1993, pp. 26-133.

[4] E. Clarke, J. Wing, et. al., “Formal Methods: State of the Art and Future
Direction,” ACM Computing Surveys, vol. 28, no. 4, pp. 626-643, Dec.
1996.

[5] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D.
Hamilton, “Experiences Using Lightweight Formal Methods for
Requirements Modeling,” IEEE Trans. Software Eng., vol. 24, no. 1,
pp. 4-14, Jan. 1998.

[6] D. Craigen, S. Gerhart and T. Ralston, “An International Survey of
Industrial Applications of Formal Methods, vol. 1 and 2,” Computer
Systems Laboratory, National Institute of Standards and Technology,
Gaithersburg, MD, Tech. Report NIST GCR 93-626, March 1993.

[7] J. Bowen and M. Hinchey, “Ten Commandments of Formal Methods –
Ten Years Later,” IEEE Computer, pp. 40-48, Jan. 2006.

[8] W.W. Royce, “Managing the Development for Large Software
Systems,” in Proc. WESCON, 1970, pp. 1-9.

[9] B. Boehm, “A Spiral Model of Software Development and
Enhancement,” Computer, pp. 61-72, May 1988.

[10] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Development
Process, Addison-Wesley, Reading, MA, 1999.

[11] J. Cohen, D. Perrin and J.-E. Pin, “On the Expressive Power of
Temporal Logic,” J. Computer and System Sciences, vol. 46, no. 3, pp.
271-294, 1993.

[12] G. Holzmann, “The Model Checker SPIN,” IEEE Trans. Software
Engineering, vol. 23, no. 5, pp. 279-295, 1997.

[13] C. Heitmeyer, “Formal Methods for Specifying, Validating, and
Verifying Requirements,” J. Universal Computer Science, vol. 13, no. 5,
pp. 607-618, 2007.

[14] G.J. Holzmann, Design and Validation of Computer Protocols,
Englewood Cliffs, N.J.: Prentice Hall, 1991.

[15] M. Archer, “TAME: Using PVS strategies for special-purpose theorem
proving,” Annals of Mathematics and Artificial Intelligence, vol. 29, pp.
131–189, Feb. 2001.

[16] N. Shankar, S. Owre, J. Rushby, and D. Stringer-Calvert, “PVS Prover
Guide, Version 2.4,” Computer Science Lab, SRI International, Menlo
Park, CA, Technical Report, November 2001.

[17] J. Spivey, The Z Notation: A Reference Manual (2nd Ed.), Prentice Hall,
1992. Available: http://spivey.oriel.ox.ac.uk/~mike/zrm/.

[18] D. Stringer-Calvert, S. Stepney, and I. Wand, “Using PVS to prove a Z
refinement: A case study,” in Formal Methods Europe (FME '97), 1997,
J. Fitzgerald, C. Jones, and P. Lucas (eds.), LNCS, vol. 1313, Springer-
Verlag, pp. 573-588.

[19] Kolyang, T. Santen and B. Wolf, “A structure preserving encoding of Z
in Isabelle/HOL,” in Theorem Proving in Higher Order Logics (TPHOLs
'96), 1996, J. von Wright, J. Grundy, and J. Harrison (eds.), LNCS, vol.
1125, Springer-Verlag, pp. 283-298.

[20] M. Saaltink, “The Z-Eves system,” in J. Bowen, M. Hinchey, and D. Till
(ed.), Proc. Int’l Conf. of Z Users (ZUM '97), 1997, LNCS, vol. 1212,
Springer-Verlag, pp. 72-85.

[21] G. Smith and L. Wildman, “Model checking Z specifications using
SAL,” in Proc. Int’l Conf. of B and Z Users (ZB 2005), 2005, H.
Treharne, S. King, M. Henson and S. Schneider (eds.), LNCS, vol. 3455,
Springer-Verlag, pp. 85-103.

[22] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided
Reasoning: An Approach, Kluwer Academic Publishers, 2000.

[23] N. Bjørner, A. Browne, E. Chang, M. Colón, A. Kapur, Z. Manna, H. B.
Sipma, and T. E. Uribe, “STeP: Deductive-Algorithmic Verification of
Reactive and Real-time Systems,” in Proc. 8th Int’l Conf. Computer
Aided Verification, 1996, LNCS 1102, Springer-Verlag, pp. 415-418.

[24] U. Nitsche, “Propositional Linear Temporal Logic and Language
Homomorphisms,” in Proc. 3rd Int’l Symp. Logical Foundations
Computer Science, 1994, LNCS 813, Springer-Verlag, pp. 265-277.

[25] M. J. C. Gordon and T. F. Melham, eds., Introduction to HOL: A
Theorem Proving Environment for Higher Order Logic, Cambridge
University Press, 1993.

[26] R.S. Boyer and J.S. Moore, A Computational Logic Handbook,
Academic Press, 1988.

[27] L. C. Paulson, Isabelle: A Generic Theorem Prover, LNCS 828,
Springer, 1994.

[28] D. King and R. Arthan, “Development of Practical Verification Tools,”
ICL Systems J., vol. 11, no. 1, pp. 106-122, 1996.

[29] R.W. S. Hale, “Programming in Temporal Logic,” Ph.D. thesis,
Computer Laboratory, Cambridge University, Cambridge, U.K.,
published as Technical Report 173, Oct. 1989.

[30] J. J. Joyce, Multi Level Verification of Microprocessor-Based Systems,
Ph.D. thesis, Computer Laboratory, Cambridge University, Cambridge,
U.K., published as technical report 195May 1990.

[31] J. von Wright, “Mechanizing the Temporal Logic of Actions in HOL,”
in Proc. Int’l Workshop HOL Theorem Proving System and Its
Applications, 1991, IEEE, pp. 155-159.

[32] R. Cardell-Oliver, R. Hale and J. Herbert, “An Embedding of Timed
Transition Systems in HOL,” in Proc. Int’l Workshop Higher Order
Logic Theorem Proving and its Applications, 1992, L. J. M. Claesen and
M. J. C. Gordon, eds., North-Holland, pp. 263-278.

[33] D. Gries, The Science of Programming, Springer-Verlag, New York,
1981.

[34] K.R. Apt and E.-R. Olderrog, Verification and Validation of Sequential
and Concurrent Programs (2nd Ed.), Springer-Verlag New York, 1997.

[35] J. Barnes, “The SPARK Way to Correctness is Via Abstraction,” ACM
SIGAda Ada Letters, vol. XX, no. 4, pp. 69-79, 2000.

[36] R.L. Constable, Implementing Mathematics with the Nuprl Proof
Development System, Prentice Hall, New Jersey, 1986..

[37] W. Thomas, “Automata on infinite objects,” in Handbook of Theoretical
Computer Science (vol. B): Formal Models and Semantics, J. van
Leeuwen (ed.), MIT Press, Cambridge, MA, pp. 133–191, 1990.

[38] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine,
“Kronos: A Model-Checking Tool for Real-Time Systems,” in Proc.
10th Int’l Conf. Computer-Aided Verification, 1998, A.J. Hu and M.Y.
Vardi, eds., LNCS 1427, Springer-Verlag, pp. 546-550.

[39] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nutshell,” Int’l J.
Software Tools for Technology Transfer, vol. 1, nos. 1-2, pp. 134-152,
1997.

Accepted for publication in the IEEE Systems Journal (isj_98 - Received Date: 12/06/07, Revised Date: 09/19/08)

8

[40] E. M. Clarke and E. A. Emerson, “Design and Synthesis of
Synchronization Skeletons Using Branching Time Temporal Logic,” in
Proc. Workshop on Logic of Programs, 1981, D. Kozen, ed., LNCS 131,
Springer-Verlag, pp. 52-71.

[41] E. A. Emerson and J. Y. Halpern, “‘Sometimes’ and ‘Not Never’
Revisited: On Branching versus Linear Time Temporal Logic,” J. ACM,
vol. 33, no. 1, pp. 151-178, 1986.

[42] E. Clarke, O. Grumberg, and D. Long, “Model Checking and
Abstraction,” ACM Trans. Programming Languages and Systems, vol.
16, no. 5, pp. 1512-1542, 1994.

[43] D. Drusinsky, “The Temporal Rover and the ATG Rover,” in Proc. SPIN
2000 Workshop, 2000, LNCS 1885, Springer-Verlag, pp. 323-329.

[44] K. Havelund and G. Rosu, “An Overview of the Runtime Verification
Tool Java PathExplorer,” Formal Methods in System Design, vol. 24,
Springer Netherlands, pp. 189-215, 2004.

[45] U. Sammapun, I. Lee, and O. Sokolsky, “RT-MaC: Runtime Monitoring
and Checking of Quantitative and Probabilistic Properties,” in Proc. 11th
IEEE Int’l Conf. Embedded and Real-Time Computing Systems and
Applications, 2005, IEEE, pp. 147-153.

[46] D. Drusinsky, “Semantics and Runtime Monitoring of TLCharts:
Statechart Automata with Temporal Logic Conditioned Transitions,” in
Proc. 4th Workshop on Runtime Verification, Electronic Notes in
Theoretical Computer Science [online], vol. 113, Springer, pp. 3-21,
2005.

[47] D. Drusinsky, Modeling and Verification Using UML Statecharts - A
Working Guide to Reactive System Design, Runtime Monitoring and
Execution-based Model Checking, Elsevier, 2006.

[48] K. Havelund and T. Pressburger, “Model Checking Java Programs using
Java PathFinder,” Int’l J. Software Tools for Technology Transfer, vol.
2, no. 4, pp. 366-381, 2000.

[49] E. Chang, A. Pnueli and Z. Manna, “Compositional Verification of Real-
Time Systems,” in Proc. 9th IEEE Symp. Logic in Computer Science,
1994, IEEE, pp. 458-465.

[50] D. Drusinsky, M. Shing, and K. Demir, “Creating and Validating
Embedded Assertion Statecharts,” IEEE Distributed Systems Online
[online], vol. 8, no. 5, 2007.

[51] About IV&V, NASA IV&V Facility, Accessed in Jun 2008,
http://www.nasa.gov/centers/ivv/about/index.html

[52] D. Drusinsky, J.B. Michael, and M. Shing , “A framework for computer-
aided validation,” Innovations in Systems and Software Engineering,
vol. 4, no. 2, pp. 161-168, June 2008.

Doron Drusinsky is an associate professor of computer science at the Naval
Postgraduate School, and president of Time-Rover. His research interests are
formal methods, requirement elicitation and validation, and sound
construction of safety-critical systems. He is one of the world’s leading
experts on UML statecharts. He worked for Sony from 1988 until 1993 when
he founded R-Active Concepts and authored BetterState, a UML statecharts
design tool. BetterState was acquired by ISIWindRiver Systems in 1997.
Doron established Time Rover, Inc. and authored the Temporal Rover,
DBRover and StateRover formal verification tools. He has written many
technical papers and a book on the subject. He received his PhD in computer
science from the Weizmann Institute of Science.

James Bret Michael (S’87, M’92, SM’97) is a professor of computer science
and electrical and computer engineering at the Naval Postgraduate School. His
research interests include reliability, safety, and security engineering, in the
context of distributed systems. He serves as an Associate Editor-in-Chief for
IEEE Security & Privacy magazine, an Associate Editor for the IEEE Systems
Journal, and member of the Advisory Board of IEEE Software magazine. He
is the chair of the IEEE Technical Committee on Safety of Systems and a
member of the IEEE Reliability Society’s Administrative Committee. He
received his PhD in Information Technology from the George Mason
University in 1993.

Man-Tak Shing (M’03, SM’07) is an associate professor of computer science
at the Naval Postgraduate School. His research interests include software
engineering, modeling and design of real-time and distributed systems, and the
specification, validation, and runtime monitoring of temporal assertions. He is
on the program committees of several conferences dedicated to software
engineering and is a member of the Steering Committee of the IEEE
International Rapid System Symposium. He was the program co-chair for the

IEEE Rapid System Prototyping Workshop in 2004 prior to being the general
co-chair for the symposium in 2008. He received his PhD in computer science
from the University of California, San Diego.

