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Abstract 

A temporal pattern matching technique based on formal 
specifications using Linear-Time Temporal Logic (LTL) is 
described. The method is based on Remote Execution and 
Monitoring (REM) of LTL assertions. Unlike verification 
applications where the formal specification is used to lo-
cate errors in a corresponding program, REM is not con-
cerned with correctness but rather with temporal pattern 
detection. Unlike comparable techniques, such as SQL in 
temporal databases, the method is completely on-line and 
does not require storage of the input sequence. This makes 
REM especially suitable for low-impact, real-time, tempo-
ral pattern matching of potentially never ending applica-
tions such as security monitoring and financial temporal 
business rule checking.  

1 Introduction 

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Pnueli  [1] sug-
gested using LTL for reasoning about concurrent programs. 
Since then, several researchers have used LTL to state and 
measure correctness of concurrent programs, protocols, and 
hardware (e.g., [2], [3]).  
LTL is an extension of propositional logic where, in addi-
tion to the propositional logic operators there are four fu-
ture-time operators and four dual-past time operators: al-
ways in the future (always in the past), eventually, or some-
time in the future (sometime in the past), Until (Since), and 
next cycle (previous cycle).  
Metric Temporal Logic (MTL) was suggested by Chang, 
Pnueli, and Manna as a vehicle for the verification of real 
time systems [4]. MTL extends LTL by supporting the 
specification of relative-time and real-time constraints. All 
four LTL future-time operators (Eventually, Always, Until, 

Next) can be characterized by relative-time and real-time 
constraints specifying the duration of the temporal operator. 
REM is a method of tracking the behavior of an underlying 
application, such as an embedded system, financial data-
base, or airline reservation systems. REM methods range 
from simple print statement logging methods to run-time 
tracking of complete formal requirements (e.g., written in 
LTL/MTL) for verification purposes. Indeed, first applica-
tions of REM where for verification applications where 
REM was and is used to track how formal specification 
requirements are conformed to by the actual executing sys-
tem. 
Recent adaptations of REM methods enable run time moni-
toring for non-verification purposes such as temporal busi-
ness rule checking and temporal security rule checking. 
This adaptation uses REM methods as on-line, real-time, 
and low-impact temporal pattern matchers.  
This paper describes the DBRover, an online, real-time, 
low-impact REM tool based on LTL and MTL, and its ap-
plication to temporal pattern detection for financial and 
security applications. 

2 Online Temporal Pattern Detection 

Consider the following two airline security related temporal 
pattern rules, both concerned with detecting a foreign na-
tional male passenger with a student visa flying to the Har-
risburg International Airport near the Three Mile Island 
nuclear power plant: 
R1. Detect such a passenger if he flew to the Middle East at 
least once within a year of obtaining his student visa. 
R2. Detect such a passenger if he flew to the Middle East at 
least once within a year of obtaining his student visa and he 
received two or more direct deposits from non-US banks 
within the last year. 
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Both rules describe temporal patterns that contain poten-
tially discernable elements from an aviation security system 
operating automatically and in real-time. The two primary 
methods for performing such temporal pattern detection are 
off-line and online, as described in the sequel. 
The Transportation Security Administration has an auto-
mated profiling system originally termed Computer As-
sisted Passenger Screening [5] that relies upon the data in 
each Passenger Name Record.  This profiling system is 
being upgraded to access a more extensive range of data.   
The Computer Assisted Passenger Prescreening System 
(CAPPS II) will profile airline passengers based on secret 
criteria in order to identify potential terrorists.  Personal 
information about passengers could additionally include 
that from immigration, law enforcement, and customs. Hav-
ing such history information stored in the system, or in 
constituent subsystems, enables SQL based implementation 
of a temporal pattern rule such as R1.  We call such an im-
plementation off-line because it relies on storing and query-
ing historical information. An off-line solution induces the 
following three impact consequences. 
1. Temporal historical information is stored within the sys-
tem (e.g., within CAPPSII and/or its constituent subsys-
tems). 
2. Temporal and non-temporal pattern detection is initiated 
by the security-related query, querying the constituent re-
sources at will. We regard this as high-impact solution be-
cause a temporal query is initiated from outside the original 
scope of the queried system thereby impacting the perform-
ance of the queried system. For example, an immigration 
subsystem of CAPPS II being impacted by repeated exter-
nal queries from CAPPS II which sooner or later will de-
grade the INS system performance. Performance degrada-
tion will occur because of the actual query processing 
forced on the subsystem and because of the fact that with 
time, temporal queries can query monotonically increasing 
datasets of historical data. 
In addition to performance issues, CAPPS II and its con-
stituent subsystems need to agree on a shared data repre-
sentation for merging query results from multiple subsys-
tems (e.g., immigration and law enforcement query results). 
This paper is concerned with low-impact, online temporal 
pattern detection. It uses REM to detect temporal patterns 
without using historical data (i.e., it is online), and without 
querying the underlying application (i.e., it is low-impact). 
The only communicated information it requires from under-
lying applications (e.g., CAPPS II constituent subsystems) 
are Boolean messages for basic propositions such as de-
posit of more than $1000 was made to account of SSN=222 
11 2222.  
While pattern rule R1 described earlier is programmable 
within the suggested CAPPS II framework, R2 requires an 

extension that includes banking information. Such an ex-
tension however will not lend itself to off-line temporal 
pattern detection methods for the following reasons: 
 
1. The banking data systems only store histori-

cal/temporal information for a limited duration (e.g., 3 
months). The industry is unlikely to make any signifi-
cant change to this policy. 

2. Banking data systems are not likely to permit high-
impact, CAPPS II initiated queries because of the per-
formance consequences discussed earlier as well as 
their own security requirement to be in full control 
over the content of any such query.  

In contrast, a REM temporal pattern detection method, be-
ing online and low-impact, can be used in tandem with 
CAPPSII, while supporting extensions that support rules 
such as R2.  

3 The Temporal Rover and DBRover 

 
The Temporal Rover [6] is a code generator whose input is 
a Java, C, C++, or HDL source code program where 
LTL/MTL assertions are embedded as source code com-
ments. The Temporal Rover parser converts this program 
file into a new file, identical to the original file except for 
the assertions that are now implemented in source code. 
The following example contains an embedded MTL asser-
tion for a traffic light controller written using the Temporal 
Rover syntax asserting that for 100 milliseconds, whenever 
light is red, camera should be on: 
void tlc(int Color_Main, boolean CameraOn) { 
… /* Traffic Light Controller functionality */ 
/* TRBegin 
TRClock{C1=getTimeInMillis()} // get time from the OS 
TRAssert{ Always({Color_Main == RED} Implies  
         Eventually_C1<1000_{CameraOn==1})  
 } =>  
 // Customizable user actions 
 {printf("SUCCESS\n"); 
  printf("FAIL\n"); 
  printf("DONE!\n");} 
TREnd */ 
} /* End of tlc */ 
The Temporal Rover generates code that replaces the em-
bedded LTL/MTL assertion with real C, C++, Java, or 
HDL code which executes in process ( i.e., as part of the 
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proposition is true or false in that particular cycle. The 
DBRover will repeatedly re-evaluate the temporal pattern 
rule, either in a single instance, or using multi-instancing 
(e.g. one instance per SSN or bank account number). An 
administrative part of the DBRover can be programmed to 
send out e-mail’s or to invoke custom actions (e.g., exter-
nal, user written program or script) based on the success or 
failure of chosen rules. 

 
Figure 1. The DBRover LTL and MTL Simulator  
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