
Real-time, Online, Low-Impact Temporal Pattern Matching

Doron Drusinky
Department of Computer Science

and
J. L. Fobes

Transportation Security Administration Chair in Security

Naval Postgraduate School
drusinsky@nps.navy.mil and jlfobes@ nps.navy.mil,

Abstract

A temporal pattern matching technique based on formal
specifications using Linear-Time Temporal Logic (LTL) is
described. The method is based on Remote Execution and
Monitoring (REM) of LTL assertions. Unlike verification
applications where the formal specification is used to lo-
cate errors in a corresponding program, REM is not con-
cerned with correctness but rather with temporal pattern
detection. Unlike comparable techniques, such as SQL in
temporal databases, the method is completely on-line and
does not require storage of the input sequence. This makes
REM especially suitable for low-impact, real-time, tempo-
ral pattern matching of potentially never ending applica-
tions such as security monitoring and financial temporal
business rule checking.

1 Introduction

Temporal Logic is a special branch of modal logic that in-
vestigates the notion of time and order. Pnueli [1] sug-
gested using LTL for reasoning about concurrent programs.
Since then, several researchers have used LTL to state and
measure correctness of concurrent programs, protocols, and
hardware (e.g., [2], [3]).
LTL is an extension of propositional logic where, in addi-
tion to the propositional logic operators there are four fu-
ture-time operators and four dual-past time operators: al-
ways in the future (always in the past), eventually, or some-
time in the future (sometime in the past), Until (Since), and
next cycle (previous cycle).
Metric Temporal Logic (MTL) was suggested by Chang,
Pnueli, and Manna as a vehicle for the verification of real
time systems [4]. MTL extends LTL by supporting the
specification of relative-time and real-time constraints. All
four LTL future-time operators (Eventually, Always, Until,

Next) can be characterized by relative-time and real-time
constraints specifying the duration of the temporal operator.
REM is a method of tracking the behavior of an underlying
application, such as an embedded system, financial data-
base, or airline reservation systems. REM methods range
from simple print statement logging methods to run-time
tracking of complete formal requirements (e.g., written in
LTL/MTL) for verification purposes. Indeed, first applica-
tions of REM where for verification applications where
REM was and is used to track how formal specification
requirements are conformed to by the actual executing sys-
tem.
Recent adaptations of REM methods enable run time moni-
toring for non-verification purposes such as temporal busi-
ness rule checking and temporal security rule checking.
This adaptation uses REM methods as on-line, real-time,
and low-impact temporal pattern matchers.
This paper describes the DBRover, an online, real-time,
low-impact REM tool based on LTL and MTL, and its ap-
plication to temporal pattern detection for financial and
security applications.

2 Online Temporal Pattern Detection

Consider the following two airline security related temporal
pattern rules, both concerned with detecting a foreign na-
tional male passenger with a student visa flying to the Har-
risburg International Airport near the Three Mile Island
nuclear power plant:
R1. Detect such a passenger if he flew to the Middle East at
least once within a year of obtaining his student visa.
R2. Detect such a passenger if he flew to the Middle East at
least once within a year of obtaining his student visa and he
received two or more direct deposits from non-US banks
within the last year.

mailto:drusinsky@nps.navy.mil

Both rules describe temporal patterns that contain poten-
tially discernable elements from an aviation security system
operating automatically and in real-time. The two primary
methods for performing such temporal pattern detection are
off-line and online, as described in the sequel.
The Transportation Security Administration has an auto-
mated profiling system originally termed Computer As-
sisted Passenger Screening [5] that relies upon the data in
each Passenger Name Record. This profiling system is
being upgraded to access a more extensive range of data.
The Computer Assisted Passenger Prescreening System
(CAPPS II) will profile airline passengers based on secret
criteria in order to identify potential terrorists. Personal
information about passengers could additionally include
that from immigration, law enforcement, and customs. Hav-
ing such history information stored in the system, or in
constituent subsystems, enables SQL based implementation
of a temporal pattern rule such as R1. We call such an im-
plementation off-line because it relies on storing and query-
ing historical information. An off-line solution induces the
following three impact consequences.
1. Temporal historical information is stored within the sys-
tem (e.g., within CAPPSII and/or its constituent subsys-
tems).
2. Temporal and non-temporal pattern detection is initiated
by the security-related query, querying the constituent re-
sources at will. We regard this as high-impact solution be-
cause a temporal query is initiated from outside the original
scope of the queried system thereby impacting the perform-
ance of the queried system. For example, an immigration
subsystem of CAPPS II being impacted by repeated exter-
nal queries from CAPPS II which sooner or later will de-
grade the INS system performance. Performance degrada-
tion will occur because of the actual query processing
forced on the subsystem and because of the fact that with
time, temporal queries can query monotonically increasing
datasets of historical data.
In addition to performance issues, CAPPS II and its con-
stituent subsystems need to agree on a shared data repre-
sentation for merging query results from multiple subsys-
tems (e.g., immigration and law enforcement query results).
This paper is concerned with low-impact, online temporal
pattern detection. It uses REM to detect temporal patterns
without using historical data (i.e., it is online), and without
querying the underlying application (i.e., it is low-impact).
The only communicated information it requires from under-
lying applications (e.g., CAPPS II constituent subsystems)
are Boolean messages for basic propositions such as de-
posit of more than $1000 was made to account of SSN=222
11 2222.
While pattern rule R1 described earlier is programmable
within the suggested CAPPS II framework, R2 requires an

extension that includes banking information. Such an ex-
tension however will not lend itself to off-line temporal
pattern detection methods for the following reasons:

1. The banking data systems only store histori-

cal/temporal information for a limited duration (e.g., 3
months). The industry is unlikely to make any signifi-
cant change to this policy.

2. Banking data systems are not likely to permit high-
impact, CAPPS II initiated queries because of the per-
formance consequences discussed earlier as well as
their own security requirement to be in full control
over the content of any such query.

In contrast, a REM temporal pattern detection method, be-
ing online and low-impact, can be used in tandem with
CAPPSII, while supporting extensions that support rules
such as R2.

3 The Temporal Rover and DBRover

The Temporal Rover [6] is a code generator whose input is
a Java, C, C++, or HDL source code program where
LTL/MTL assertions are embedded as source code com-
ments. The Temporal Rover parser converts this program
file into a new file, identical to the original file except for
the assertions that are now implemented in source code.
The following example contains an embedded MTL asser-
tion for a traffic light controller written using the Temporal
Rover syntax asserting that for 100 milliseconds, whenever
light is red, camera should be on:
void tlc(int Color_Main, boolean CameraOn) {
… /* Traffic Light Controller functionality */
/* TRBegin
TRClock{C1=getTimeInMillis()} // get time from the OS
TRAssert{ Always({Color_Main == RED} Implies
 Eventually_C1<1000_{CameraOn==1})
 } =>
 // Customizable user actions
 {printf("SUCCESS\n");
 printf("FAIL\n");
 printf("DONE!\n");}
TREnd */
} /* End of tlc */
The Temporal Rover generates code that replaces the em-
bedded LTL/MTL assertion with real C, C++, Java, or
HDL code which executes in process (i.e., as part of the

underlying appli
for formal specif
The DBRover [2
whereby assertio
using HTTP, so
underlying targe
graphical tempo
(illustrated in Fig
based on the Tem
The DBRover is
tives:

1. Monitoring
is used. A co
in a databas
those tables
quirement is
underlying
should be
time, the siz
tonically in
cases. The a
online and d
storage spac

2. Low-impact.
underlying a
R2 exampl
pertaining
occurred, or
by the under

3. Rule flexibil
main specifi
often written
DBRover us
can be chan
for monitori
cation being

4. Powerful ru
cussed earli
able to captu
real-time co
language. L
of research
as a specific
straints to LT

The DBRover lis
tion messages se
such as a bankin
streams that repr
APP. Every cycl

ion
os-
.g.,
cation). The Temporal Rover is also used
ication-based exception handling [7].

ance changes, the APP sends 1 bit per basic proposit
(e.g., deposit of more than $500 made to account) and p
sibly an ID of the underlying entity being tracked (e
] is a REM version of the Temporal Rover

ns are monitored on a remote machine
ckets, or serial communication with the
t application. The DBRover includes a
ral rule editor, a temporal rule simulator
. 1), and a temporal rule execution engine
poralRover code generator.

 concerned with the following main objec-

on-line, namely no postmortem processing
unter example would be to store all events
e and use a SQL-based method to query
at a later time. The motivation for this re-
 that no expected termination time for the
application (e.g., security application)

assumed. With no expected termination
e of the stored information will be mono-
creasing which is unacceptable in most
lgorithm chosen for the DBRover is fully
oes not require monotonically increasing

e.

 The DBRover does not interrogate the
pplication (e.g., the banking system in the

e). Rather, it listens to simple events
to basic propositions such as deposit-
 balance<0 which are sent to the DBRover
lying application via sockets or http.

ity. Pattern specification rules, being do-
c and evolving, change frequently and are
 by domain experts not programmers. The
es a GUI for LTL pattern rule entry; rules
ged in the UI and automatically mounted
ng, all with almost no change to the appli-
 monitored.

les language. For the same reasons dis-
er, pattern specification rules need to be
re real-life patterns and concerns, such as
nstrains, all while being close to natural
TL satisfies this requirement; a large body
points to its expressiveness and usefulness
ation language. MTL adds real-time con-
L specifications.

tens to sockets, http, or serial communica-
nt to it from the main application (APP),
g application. Messages are organized in
esent sequences of events or conditions in
e, such as whenever the bank account bal-

SSN or bank account number) indicating whether that
proposition is true or false in that particular cycle. The
DBRover will repeatedly re-evaluate the temporal pattern
rule, either in a single instance, or using multi-instancing
(e.g. one instance per SSN or bank account number). An
administrative part of the DBRover can be programmed to
send out e-mail’s or to invoke custom actions (e.g., exter-
nal, user written program or script) based on the success or
failure of chosen rules.

Figure 1. The DBRover LTL and MTL Simulator

References

[1] A. Pnueli - The Temporal Logic of Programs, Proc. 18th
IEEE Symp. Found. of Comp. Sci., 1977, pp. 46-57.

[2] B. T. Hailpern, S. Owicki - Modular Verification of
Communication Protocols. IEEE Trans of comm. COM-31
(1), No. 1, 1983, pp. 56-68.

[3] Z. Manna, A. Pnueli - Verification of Concurrent Programs:
Temporal Proof Principles, Proc. of the Workshop on Logics
of Programs, Springer LNCS, 1981 pp. 200-252.

[4] E. Chang, A. Pnueli, Z. Manna - Compositional Verification
of Real-Time Systems, Proc. 9'th IEEE Symp. On Logic In
Computer Science, 1994, pp. 458-465.

[5] Fobes, J. L. Computer Assisted Passenger Screening
(CAPS), DOT/FAA/AR-96/38, 1996.

[6] D. Drusinsky, The Temporal Rover and ATG Rover. Proc.
Spin2000 Workshop, Springer Lecture Notes in Computer
Science, 1885, pp. 323-329. ((((YEAR?))))

[7] D. Drusinsky, Formal Specs Can Handle Exceptions, CMP
Embedded Developers Journal, Nov. 2001, pp., 10-14.

	Introduction
	Online Temporal Pattern Detection
	The Temporal Rover and DBRover

