
Monitoring Temporal Rules Combined with Time Series
Doron Drusinsky

Naval Postgraduate School, Monterey, CA, USA, ddrusins@nps.navy.mil
Time-Rover, Inc., 11425 Charsan Ln., Cupertino, CA 95014, USA, doron@time-

rover.com, www.time-rover.com

Abstract. Run-time monitoring of temporal properties and assertions is used for testing and
as a component of execution-based model checking techniques. Traditional run-time
monitoring however, is limited to observing sequences of pure Boolean propositions. This
paper describes tools, which observe temporal properties over time series, namely, sequences of
propositions with constraints on data value changes over time. Using such temporal logic with
time series (LTLD) it is possible to monitor important properties such as stability,
monotonicity, temporal average and sum values, and temporal min/max values. The paper
describes the Temporal Rover and the DBRover, which are in-process and remote run-time
monitoring tools, respectively, that support linear time temporal logic (LTL) with real-time
(MTL) and time series (LTLD) constraints.

1. Temporal Logic and Run-time Monitoring Overview

Temporal Logic is a special branch of modal logic that investigates the notion of time
and order. In [6], Pnueli suggested using Linear-Time Propositional Temporal Logic
(LTL) for reasoning about concurrent programs. Since then, several researchers have
used LTL to state and prove correctness of concurrent programs, protocols, and
hardware.

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in
addition to the propositional logic operators there are four future-time operators and
four dual past time operators: always in the future (always in the past), eventually, or
sometime in the future (sometime in the past), until (Since), and next cycle (previous
cycle). Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as
a vehicle for the verification of real time systems [1]. MTL extends LTL by
supporting the specification of relative time and real time constraints. All four LTL
future time operators can be constrained by relative time and real time constraints
specifying the duration of the temporal operator. This paper described additional
extension to LTL and MTL suitable for the specification of time-series constraints.

Run time Execution Monitoring (REM) is a class of methods of tracking temporal
requirements for an underlying application. First applications of REM were
verification oriented where REM methods were used to track whether an executing
system conforms to formal specification requirements. Recent adaptations of REM
methods enable run time monitoring for non-verification purposes such as temporal
business rule checking and temporal security rule checking [5]. Unlike previously
published methods [7], the newer methods are on-line, namely, temporal rules are
evaluated without storing an ever growing and potentially unbounded history trace.
The TemporalRover and DBRover tools described in this paper perform on-line REM
using executable alternating finite automata. The technique enables on-line
monitoring complex Kansas State Specification Pattern assertions at a rate of 6000 to

60,000 cycles per second on a 1GHz CPU [4], and is capable of monitoring past-time
and future-time temporal logic augmented with real-time constraints, time-series
constraints, and special counting operators described in [2]. High-speed on-line REM
enables demanding applications such as formal specification based exception
handling [3].

2. Run Time Monitoring Tools: The Temporal Rover and DBRover

The Temporal Rover [2] is a code generator whose input is a Java, C, C++, or HDL
source code program, where LTL/MTL assertions are embedded as source code
comments. The Temporal Rover parser converts this program file into a new file,
which is identical to the original file except for the assertions that are now
implemented in source code. The following example contains an embedded MTL
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover
syntax asserting that for 100 milliseconds, whenever light is red, camera s.b. on:

void tlc(int Color_Main, boolean CameraOn) {
 … /* Traffic Light Controller functionality */
 /* TRBegin
 TRClock{C1=getTimeInMillis()} // get time from OS
 TRAssert{ Always({Color_Main == RED} Implies
 Eventually_C1<1000_{CameraOn == 1})
 } =>

// Customizable user actions
{printf("SUCCESS");printf("FAIL");printf("DONE!");}

 TREnd */

} /* end of tlc */

The TemporalRover generates code that replaces the embedded LTL/MTL assertion
with real C, C++, Java, or HDL code, which executes in-process, i.e., as part of the
underlying application. The DBRover is a remote monitor version of the
TemporalRover whereby assertions are monitored on a remote machine, using HTTP,
sockets, or serial communication with the underlying target application.

3. LTL and MTL with Time Series Constraints (LTLD)

While LTL and MTL assert about sequences of pure Boolean propositions, it is often
required to assert about sequences of propositions over time series, i.e., series of data
values with constraints on the change of those values over time. For example,
consider a requirement R, stating that for one minute as of eventA, the value of
variable x should be 10% stable. Such a requirement combines MTL with
propositions based on temporal instances of a variable x. The need for such time
series assertions typically involves the validation of statistical and algebraic artifacts
such as stability, monotonicity, averaging and expectancy, sum and product values,
time-series properties, min/max values, etc. Specific examples of such time series
assertions are listed in the sequel.

Like LTL, LTL augmented with time series (LTLD) assertions are non-deterministic
and might have multiple overlapping instances active simultaneously. For example, in
requirement R above, the values of a same variable name x are referred to and
compared with one another in multiple points in time, for a plurality of eventA's, i.e.,
for a plurality of initial x values. One of many possible scenarios is where eventA
occurs first when x =100, and then occurs again 30 seconds later when x =110; hence,
in the overlapping 30 second time-segment, x values must range between 99 and 110.
Clearly, the number and timing of eventA occurrences is unknown in advance, and the
simple 1-minute end condition could, in general, be non-deterministic, rendering the
task of monitoring all possible scenarios non-trivial.

LTLD enables the specification of requirements in which propositions include
temporal instances of variables. Consider the following automotive cruise control
code with an embedded stability assertion requiring speed to be 5% stable while
cruise is set and not changed (uses TemporalRover syntax):

Void cruise(boolean cruiseSet, boolean cruiseChange,
boolean cruiseOff, boolean cruiseIncr, int speed){
 … /* Cruise Controller functionality */
 /* TRBegin

TRAssert{Always ({cruiseSet}Implies
 {speed*0.95<speed’ && speed’<speed*1.05}
 Until $speed$
 {cruiseChange || cruiseOff}
) }=> {…} // user actions

 TREnd */

In the this example speed is a temporal data variable, which is associated with the
Until temporal operator. This association implies that every time the Until operator
begins its evaluation, possibly in multiple instances (due to non-determinism), the
speed value is sampled and preserved in speed variable of this instance of the Until
operator; this value is referred to as the pivot value for this Until operator instance.
Future speed values used by this particular evaluation of the Until statement are
referred to using the prime notation, i.e., as speed’, and are referred to as primed
values. Hence, if speed is 100Kmh when cruiseSet is true, then the pivot value for
speed is 100, while every subsequent speed value is referred to as speed’ and must be
within 5% of the (pivot) speed.

Note how speed is declared using the $speed$ notation to be a temporal data variable
associated with the Until operator. This declaration indicates to the Temporal Rover
that it should be sampling a pivot value from the environment in the first cycle of the
Until operators lifecycle, and to refer to all subsequent samples of speed as speed’.

Similarly, the following example consists of a monotonicity requirement for the cruise
control system, where speed is monotonically increasing while Cruise Increase
(cruiseIncr) command is active:

TRAssert {Always({cruiseIncr}Implies
 {(speed<=speed') && (speed=speed')>=0}

 Until $speed$ {!cruiseIncr}
)}=> { => {…} // user actions

In this example the temporal data variable speed is sampled upon the cruiseIncr
event, and is compared to the current value (speed’) every cycle. The latest speed
value is then saved in the pivot for next cycle’s comparison.
The following example consists of a temporal averaging and min/max requirement for
the cruise control system, requiring that while cruise is set and unchanged the
difference between average speed and minimum speed is always less than 1% of
speed.
TRAssert{Always ({cruiseSet}Implies

{(n++ >=0)&& ((sum+=speed’) >= 0) &&
((average=sum/n) >=0) &&
((min=(speed’<min?speed’:min) >=0) &&
(average-min < speed’/100)
}

Until $speed,min=1000,n=0,average=0,sum=0$
{cruiseChange || cruiseOff}

)}=> {…} // user actions

In this example the only data value that is sampled from the environment (the cruise
method/function) is speed. All other pivots (i.e., for min, n, average, and sum) are
initialized upon the construction of the Until object. Likewise, the only prime value
that is sampled from the environment is speed’, whereas all other primed variables are
assigned as specified in the assignment statements (e.g. average’=sum’/n’). The
TemporalRover makes this distinction when is recognizes an assignment in the
declaration statement, such as sum=0 above.

4. References

1. E. Chang, A. Pnueli, Z. Manna - Compositional Verification of Real-Time Systems,
Proc. 9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

2. D. Drusinsky - The Temporal Rover and ATG Rover. Proc. Spin2000 Workshop,
Springer Lecture Notes in Computer Science, 1885, pp. 323-329.

3. D. Drusinsky - Formal Specs Can Handle Exceptions, CMP Embedded Developers
Journal, Nov. 2001, pp., 10-14.

4. D. Drusinsky, On-line Efficient Monitoring of Metric Temporal Logic Specifications
using Alternating Automata, submitted for publication.

5. D. Drusinsky and J. Fobes - Real-time,On-line,Low Impact, Temporal Pattern
Matching, 7th World Multiconference on Systemics, Cybernetics and Informatics,
Orlando FL, 2003; accepted for publication.

6. A. Pnueli - The Temporal Logic of Programs, Proc.18th IEEE Symp. on Foundations
of Computer Science, pp. 46-57, 1977.

7. A. P. Sistla and O. Wolfson - Temporal Conditions and Integrity Constraints in
Active Database Systems, Proceedings of the ACM-SIGMOD 1995, International
Conference on Management of Data, San Jose, CA, May 1995.

	1. Temporal Logic and Run-time Monitoring Overview
	2. Run Time Monitoring Tools: The Temporal Rover and DBRover
	3. LTL and MTL with Time Series Constraints (LTLD)
	4. References

