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Abstract.  Run-time monitoring of temporal properties and assertions is used for testing and 
as a component of execution-based model checking techniques. Traditional run-time 
monitoring however, is limited to observing sequences of pure Boolean propositions. This 
paper describes tools, which observe temporal properties over time series, namely, sequences of 
propositions with constraints on data value changes over time. Using such temporal logic with 
time series (LTLD) it is possible to monitor important properties such as stability, 
monotonicity, temporal average and sum values, and temporal min/max values. The paper 
describes the Temporal Rover and the DBRover, which are in-process and remote run-time 
monitoring tools, respectively, that support linear time temporal logic (LTL) with real-time 
(MTL) and time series  (LTLD) constraints. 

1. Temporal Logic and Run-time Monitoring Overview 

Temporal Logic is a special branch of modal logic that investigates the notion of time 
and order. In [6], Pnueli suggested using Linear-Time Propositional Temporal Logic 
(LTL) for reasoning about concurrent programs. Since then, several researchers have 
used LTL to state and prove correctness of concurrent programs, protocols, and 
hardware.  

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in 
addition to the propositional logic operators there are four future-time operators and 
four dual past time operators: always in the future (always in the past), eventually, or 
sometime in the future (sometime in the past), until (Since), and next cycle (previous 
cycle). Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as 
a vehicle for the verification of real time systems [1]. MTL extends LTL by 
supporting the specification of relative time and real time constraints. All four LTL 
future time operators can be constrained by relative time and real time constraints 
specifying the duration of the temporal operator. This paper described additional 
extension to LTL and MTL suitable for the specification of time-series constraints. 

Run time Execution Monitoring (REM) is a class of methods of tracking temporal 
requirements for an underlying application. First applications of REM were 
verification oriented where REM methods were used to track whether an executing 
system conforms to formal specification requirements. Recent adaptations of REM 
methods enable run time monitoring for non-verification purposes such as temporal 
business rule checking and temporal security rule checking [5]. Unlike previously 
published methods [7], the newer methods are on-line, namely, temporal rules are 
evaluated without storing an ever growing and potentially unbounded history trace. 
The TemporalRover and DBRover tools described in this paper perform on-line REM 
using executable alternating finite automata. The technique enables on-line 
monitoring complex Kansas State Specification Pattern assertions at a rate of 6000 to 



60,000 cycles per second on a 1GHz CPU [4], and is capable of monitoring past-time 
and future-time temporal logic augmented with real-time constraints, time-series 
constraints, and special counting operators described in [2]. High-speed on-line REM 
enables demanding applications such as formal specification based exception 
handling [3]. 

2. Run Time Monitoring Tools: The Temporal Rover and DBRover 

The Temporal Rover [2] is a code generator whose input is a Java, C, C++, or HDL 
source code program, where LTL/MTL assertions are embedded as source code 
comments. The Temporal Rover parser converts this program file into a new file, 
which is identical to the original file except for the assertions that are now 
implemented in source code. The following example contains an embedded MTL 
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover 
syntax asserting that for 100 milliseconds, whenever light is red, camera s.b. on: 

void tlc(int Color_Main, boolean CameraOn) { 
  … /* Traffic Light Controller functionality */ 
  /* TRBegin 
   TRClock{C1=getTimeInMillis()} // get time from OS 
   TRAssert{ Always({Color_Main == RED} Implies  
               Eventually_C1<1000_{CameraOn == 1})  
           } =>  

// Customizable user actions                   
{printf("SUCCESS");printf("FAIL");printf("DONE!");} 

  TREnd */ 

} /* end of tlc */ 

The TemporalRover generates code that replaces the embedded LTL/MTL assertion 
with real C, C++, Java, or HDL code, which executes in-process, i.e., as part of the 
underlying application. The DBRover is a remote monitor version of the 
TemporalRover whereby assertions are monitored on a remote machine, using HTTP, 
sockets, or serial communication with the underlying target application.  

3. LTL and MTL with Time Series Constraints (LTLD) 

While LTL and MTL assert about sequences of pure Boolean propositions, it is often 
required to assert about sequences of propositions over time series, i.e., series of data 
values with constraints on the change of those values over time. For example, 
consider a requirement R, stating that for one minute as of eventA, the value of 
variable x should be 10% stable. Such a requirement combines MTL with 
propositions based on temporal instances of a variable x. The need for such time 
series assertions typically involves the validation of statistical and algebraic artifacts 
such as stability, monotonicity, averaging and expectancy, sum and product values, 
time-series properties, min/max values, etc. Specific examples of such time series 
assertions are listed in the sequel.  



Like LTL, LTL augmented with time series (LTLD) assertions are non-deterministic 
and might have multiple overlapping instances active simultaneously. For example, in 
requirement R above, the values of a same variable name x are referred to and 
compared with one another in multiple points in time, for a plurality of eventA's, i.e., 
for a plurality of initial x values. One of many possible scenarios is where eventA 
occurs first when x =100, and then occurs again 30 seconds later when x =110; hence, 
in the overlapping 30 second time-segment, x values must range between 99 and 110. 
Clearly, the number and timing of eventA occurrences is unknown in advance, and the 
simple 1-minute end condition could, in general, be non-deterministic, rendering the 
task of monitoring all possible scenarios non-trivial. 

LTLD enables the specification of requirements in which propositions include 
temporal instances of variables. Consider the following automotive cruise control 
code with an embedded stability assertion requiring speed to be 5% stable while 
cruise is set and not changed (uses TemporalRover syntax): 

Void cruise(boolean cruiseSet, boolean cruiseChange,  
boolean cruiseOff, boolean cruiseIncr, int speed){ 
   … /* Cruise Controller functionality */ 
  /* TRBegin 

TRAssert{Always ({cruiseSet}Implies  
    {speed*0.95<speed’ && speed’<speed*1.05}  
    Until $speed$ 
    {cruiseChange || cruiseOff} 
   ) }=> {…} // user actions 

  TREnd */ 

In the this example speed is a temporal data variable, which is associated with the 
Until temporal operator. This association implies that every time the Until operator 
begins its evaluation, possibly in multiple instances (due to non-determinism),  the 
speed value is sampled and preserved in speed variable of this instance of the Until 
operator; this value is referred to as the pivot value for this Until operator instance. 
Future speed values used by this particular evaluation of the Until statement are 
referred to using the prime notation, i.e., as speed’, and are referred to as primed 
values. Hence, if speed is 100Kmh when cruiseSet is true, then the pivot value for 
speed is 100, while every subsequent speed value is referred to as speed’ and must be 
within 5% of the (pivot) speed. 

Note how speed is declared using the $speed$ notation to be a temporal data variable 
associated with the Until operator. This declaration indicates to the Temporal Rover 
that it should be sampling a pivot value from the environment in the first cycle of the 
Until operators lifecycle, and to refer to all subsequent samples of speed as speed’. 

Similarly, the following example consists of a monotonicity requirement for the cruise 
control system, where speed is monotonically increasing while Cruise Increase 
(cruiseIncr) command is active: 

TRAssert {Always({cruiseIncr}Implies  
                  {(speed<=speed') && (speed=speed')>=0}  



                  Until $speed$ {!cruiseIncr} 
                 )}=>  { => {…} // user actions 

In this example the temporal data variable speed is sampled upon the cruiseIncr 
event, and is compared to the current value (speed’) every cycle. The latest speed 
value is then saved in the pivot for next cycle’s comparison. 
The following example consists of a temporal averaging and min/max requirement for 
the cruise control system, requiring that while cruise is set and unchanged the 
difference between average speed and minimum speed is always less than 1% of 
speed. 
TRAssert{Always ({cruiseSet}Implies  

{(n++ >=0)&& ((sum+=speed’) >= 0) && 
((average=sum/n) >=0) && 
((min=(speed’<min?speed’:min) >=0) && 
(average-min < speed’/100) 
}  

Until $speed,min=1000,n=0,average=0,sum=0$ 
{cruiseChange || cruiseOff} 

)}=> {…} // user actions 

In this example the only data value that is sampled from the environment (the cruise 
method/function) is speed. All other pivots (i.e., for min, n, average, and sum) are 
initialized upon the construction of the Until object. Likewise, the only prime value 
that is sampled from the environment is speed’, whereas all other primed variables are 
assigned as specified in the assignment statements (e.g. average’=sum’/n’). The 
TemporalRover makes this distinction when is recognizes an assignment in the 
declaration statement, such as sum=0 above. 
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