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Abstract

In this paper we present a new approach for 
developing libraries of temporal formal specifications. 
Our approach is novel in its use of UML statechart-
based assertions for formal specifications and its 
emphasis on validation testing, including an emphasis 
on the inclusion of validation test scenarios as an 
integral part of a formal specification library. 
Validation test scenarios are needed to ensure a robust 
validation process and to improve the reliability and 
assurance of the specification and resulting software. 

1. Introduction 
In our research effort, we have advocated the use of 

a system reference model (SRM) to capture the 
modeler’s understanding of the problem [1]. The 
framework incorporates computer-based validation 
techniques as part of independent validation and 
verification (IV&V) of software systems. In addition to 
use cases and standard Unified Modeling Language 
(UML) artifacts, the SRM contains a set of formal 
assertions that precisely model the required behavior 
of the system. The framework allows an IV&V team to 
capture its own understanding of the problem domain 
and associated behavioral constraints via an executable 
SRM using formal assertions to specify mission- and 
safety-critical behaviors. The framework uses testing 
to validate the correctness of the assertions with 
respect to the developer’s cognitive expectation as 
manifested by the natural language requirements. 

The effectiveness of executable assertions depends 
on the ability of the modelers to specify correct 
assertions. However, correctly defining assertions that 
describe the system behavior precisely and completely 
is an error-prone task. No matter how powerful 
executable assertions may be, their effectiveness is 
diminished if faulty assertions are used (i.e., the 
Garbage In Garbage Out - GIGO principle). To reduce 
the burden on the modelers and to improve the 
reliability and assurance of the software, we advocate 
the use of libraries of assertions. Rather than having 
the modelers always specify assertions from scratch, 
they can reuse the assertions from such a library. 
Clearly, effective reuse will help reduce the number of 
errors modelers introduce when specifying assertions. 
Moreover, we advocate that assertion-libraries include, 
in addition to the formal specification assertions, the 
validation test scenarios originally used to validate 
each assertion.

The paper is organized as follows. In Section 2 and 
3, we describe statechart assertions and their validation 
process.  Section 4 presents the case for including 
validation test scenarios in the assertions library. We 
discuss some of the reasons causing modelers to err in 
their specification of assertions and discuss how the 
presence of validation test scenarios in the assertions 
library will help the modelers avoid or detect and 
rectify such errors. We provide a list of patterns for 
validation test scenarios in Section 5. Section 6 
concludes with a discussion of the future direction of 
our research on reuse of executable assertions. 
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2. Statechart Assertions
In this section, we describe the UML statechart-

based temporal assertions for formal specifications. 
Harel [3] proposed the use of statechart diagrams as a 
visual approach to modeling the behavior of complex 
reactive systems such as those found in avionics 
applications. Statecharts are now one of the standard 
diagrams in the UML.  Drusinsky [2] extended the use 
of statechart diagrams to specify formal assertions. We 
differentiate the two by calling the original a modeling 
statechart and the extended version an assertion
statechart.

Assertion statecharts extend modeling statecharts in 
two ways:  (i) it includes a built-in boolean flag 
bSuccess (and a corresponding isSuccess method) that 
specifies the Boolean status of the assertion (true if the 
assertion succeeds and false otherwise) and (ii) an 
assertion statechart can be nondeterministic. The 
addition of the bSuccess flag makes the assertion 
statechart suitable as a formal specification, similar to 
a formal logic such as linear-time temporal logic [5]. 
Since assertions can be expressed in different ways 
(e.g., in natural language, formal logic), we use the 
term statechart assertions to differentiate those 
expressed in statecharts from other types of assertions.  

Fig. 1 illustrates a statechart assertion for the 
following requirement, denoted R1: When the engine is 
on, the ignition switch must not be turned on before it 
is turned off.

Figure 1. A statechart assertion for  
requirement R1 

By default, an assertion statechart begins with the 
result flag bSuccess being true. It behaves like 
modeling statechart as described in [3]. When the 
sample assertion enters the ERROR state (upon the 
turnon event) the on-entry action assigns bSuccess = 
false.

3. Validating Statechart Assertions 
To ensure that the statechart assertion correctly 

represents the intended behavior we run validation test 
scenarios against it. Listing 1 describes two validation 
test scenarios for the statechart assertion of Fig. 1 (sa1
is the implementation object for the statechart 
assertion):  

sa1.turnon(); //test 1 
sa1.turnoff();
assertTrue(sa1.isSuccess());

sa1.turnon(); //test 2 
sa1.turnon();
assertFalse(sa1.isSuccess());

Listing 1. Two validation scenarios for the 
statechart assertion of Fig. 1 

These two scenarios are implemented as JUnit test 
cases using the Eclipse-based StateRover tool [6]. 
Clearly, we would like to ascertain the correctness of 
this assertion with an adequate set of validation 
scenarios. We will address this issue in the next 
section. 

In many practical applications, requirements are 
concerned with real-time constraints. For example, 
consider the following requirement, denoted R2: The
engine must be turned-off within 10 minutes of being 
turned-on.

Fig. 2 illustrates a statechart assertion for 
requirement R2: 

Figure 2. A statechart assertion for  
requirement R2 

The variable declaration box declares a variable 
named timer of type TRTimeoutSimulatedTime and set 
to 10 time units. 

The timer is (re)started by the timer.restart()  action 
whenever the statechart enters the Engine_On state.  
The timeout event is triggered when the set time limit 
expires. The timeout event implies a failure because 
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the time limit has expired with no intermediate turnoff
event.

Listing 2 contains two simple test scenarios for the 
assertion of Fig. 2, one for testing the good behavior 
(i.e., isSuccess() == true) and the other for the 
bad behavior (isSuccess() == false). sa2 is the 
implementation object for the statechart assertion. 

sa2.turnon(); //test 1 
sa2.incrTime(8);
sa2.turnoff();
assertTrue(sa2.isSuccess());

sa2.turnon(); //test 2 
sa2.incrTime(15);
sa2.turnoff(); // too late 
assertFalse(sa2.isSuccess());

Listing 2. Two validation scenarios for the 
assertion of Fig. 2 

The incrTime() method increments the timer for the 
designated time units.  

4. Significance of Validation Test Scenarios 
Consider the two candidate statechart assertions 

shown in Fig. 3 for the following natural language 
requirement, denoted R3:  An event Q must occur 
within 30 seconds of every event P.

a. Statechart assertion A 

b. Statechart assertion B 

Figure 3. Two candidate statechart assertions for 
requirement R3 

The two statechart assertions of Fig. 3 are similar.  
The only difference is the existence of the self-loop in 
the first statechart assertion from the P-Detected state 
back to itself. A good validation test-suite should be 
capable of distinguishing between the two statechart 
assertions and identifying the correct statechart 
assertion. Clearly, we should execute meaningful tests 
so to ensure that the assertion is correct. The test 
scenario of Listing 3 does not distinguish between the 
statechart assertions of Fig. 3 because it succeeds on 
both: 

//test 1 – same result 
sa.P();
sa.incrTime(20);
sa.Q();
assertTrue(sa.isSuccess());

Listing 3. A validation scenario that does not 
distinguish between the statechart  

assertions of Fig. 3 

The test scenario of Listing 4, however, does 
distinguish between those two statechart assertions: 

//test 2 – different results 
sa.P();
sa.incrTime(20);
sa.P();
sa.incrTime(20);
sa.Q(); // too late for first P 
assertFalse(sa.isSuccess());

Listing 4. A distinguishing validation scenario for 
the statechart assertions of Fig. 3 

 
We expect a correct statechart assertion to fail this 

test because it violates R3: the Q event occurs 40 time-
units after the first P event, which is too late per R3. At 
the end of the test, bSuccess is false in Assertion B, 
while it is true in Assertion A. Hence, this test scenario 
managed to identify an error in assertion A.  

We identify two kinds of errors in statechart 
assertions:  (i) implementation errors resulting from 
mistakes in the statechart assertion, as the case for 
Assertion A, and (ii) errors or ambiguities in the 
natural language statements. For example, should the 
scenario “R occurs 10 time-units after P without any Q 
in between” violate the requirement: After P occurs, Q
must occur once every 30 time-units until R occurs?
Regardless of the type of error, running the test 
scenarios provides a means to detect errors [4]. 
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5. Patterns for Test Scenarios 

This section describes patterns, or types of 
necessary validation scenarios. The purpose of this 
section is to highlight types of patterns that must be 
part of every validation test-suite. The list is not 
presented as a complete list; rather, it highlights types 
of scenarios that are often overlooked during 
validation testing. Moreover, the patterns are not 
mutually exclusive and are often combined to create 
additional scenarios. 

1. Obvious success. For example, the scenario of 
Listing 3 trivially conforms to requirement R3; 
clearly, we should expect the statechart assertion 
being validated to succeed on such a test. 

2. Obvious failure. For example, consider a 
variation of the scenario of Listing 3 where the 
delay (incrTime) is of 35 time units. Clearly, this 
scenario fails requirement R3; we should 
therefore expect a statechart assertion being 
validated to fail on such a test. 

3. Event repetitions. A common error found in 
temporal assertions is the failure in handling 
event repetitions properly. For example, consider 
the following requirement, denoted R4: An event 
Q must occur between an event P and an event R.
A validation scenario with event repetitions is 
depicted in Fig. 4. Note how it fails requirement 
R4 because Q does not occur between the third P 
event and the R event. By using such a validation 
test pattern we assure that an assertion is not 
written in a manner that only observes the first P 
in a sequence of P’s. 

Note that, depending on the actual assertions, this 
pattern may need to include scenarios with repeating 
Q’s or R’s.

The next two patterns address the presence of timing 
constraints in temporal assertions. 

4. Multiple time intervals. Another common 
assertion modeling error is the failure to handle 
multiple time intervals or scenarios. For example, 
the scenario depicted in Fig. 5 consists of two 30 
time-unit intervals. This scenario fails 

requirement R3 because Q does not occur within 
the second interval as required by R3. By using 
such a validation test pattern we assure that an 
assertion is not written in a manner that observes 
only a single time interval or a single scenario. 

5. Overlapping time intervals. Another common 
assertion modeling error is the failure to handle 
overlapping time intervals within a scenario. For 
example, consider the following requirement, 
denoted R5: An event Q may not occur within 30 
seconds of any event P. The scenario depicted in 
Fig. 6 consists of two overlapping 30 time-unit 
intervals. This scenario fails requirement R5 
because Q occurs within the second interval. 

Note that this list is not comprehensive and the patterns 
can be combined to create additional scenarios. For 
example, consider the scenario depicted in Fig. 7; it 
superimposes a triggering-event-repetitions scenario 
on an overlapping-time-intervals scenario of Fig. 6. 

6. Conclusion 
In this paper, we presented our initial results 

pertaining to the construction of libraries of reusable 
formal specification assertions. Key to our approach is 
the inclusion of validation test scenarios as an integral 
part of a specification library, for use in ensuring the 
correctness of statechart assertions. We argue that 
formal specification assertions must always be 

Figure 4. An event-repetition scenario 
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accompanied by a set of validation test scenarios. 
Without such a test suite it is difficult to interpret the 
original developer’s intent, thus undermining the 
ability to reuse the assertions in the library. A good set 
of test scenarios also helps us understand how the 
developer resolved ambiguities in the natural language 
specification. This concept adheres to the tenet of test-
driven software development of providing a test suite 
along with the software. 

In addition, we provided necessary types of 
validation test scenarios. Our long-term goal is the 
development of an assertion library that includes a rich 
set of validation test scenarios. 
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