
Validating UML Statechart-Based Assertions Libraries for
Improved Reliability and Assurance1

Doron Drusinsky2, James Bret Michael, Thomas W. Otani, Man-Tak Shing
Department of Computer Science

Naval Postgraduate School
1411 Cunningham Road, Monterey, CA 93943, USA

{ddrusins, bmichael, twotani, shing }@nps.edu

1 The research reported in this article was funded in part by a grant from the National Aeronautics and Space Administration. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright annotations thereon.

2 Also with Time-Rover Software Inc. www.time-rover.com

Abstract

In this paper we present a new approach for
developing libraries of temporal formal specifications.
Our approach is novel in its use of UML statechart-
based assertions for formal specifications and its
emphasis on validation testing, including an emphasis
on the inclusion of validation test scenarios as an
integral part of a formal specification library.
Validation test scenarios are needed to ensure a robust
validation process and to improve the reliability and
assurance of the specification and resulting software.

1. Introduction
In our research effort, we have advocated the use of

a system reference model (SRM) to capture the
modeler’s understanding of the problem [1]. The
framework incorporates computer-based validation
techniques as part of independent validation and
verification (IV&V) of software systems. In addition to
use cases and standard Unified Modeling Language
(UML) artifacts, the SRM contains a set of formal
assertions that precisely model the required behavior
of the system. The framework allows an IV&V team to
capture its own understanding of the problem domain
and associated behavioral constraints via an executable
SRM using formal assertions to specify mission- and
safety-critical behaviors. The framework uses testing
to validate the correctness of the assertions with
respect to the developer’s cognitive expectation as
manifested by the natural language requirements.

The effectiveness of executable assertions depends
on the ability of the modelers to specify correct
assertions. However, correctly defining assertions that
describe the system behavior precisely and completely
is an error-prone task. No matter how powerful
executable assertions may be, their effectiveness is
diminished if faulty assertions are used (i.e., the
Garbage In Garbage Out - GIGO principle). To reduce
the burden on the modelers and to improve the
reliability and assurance of the software, we advocate
the use of libraries of assertions. Rather than having
the modelers always specify assertions from scratch,
they can reuse the assertions from such a library.
Clearly, effective reuse will help reduce the number of
errors modelers introduce when specifying assertions.
Moreover, we advocate that assertion-libraries include,
in addition to the formal specification assertions, the
validation test scenarios originally used to validate
each assertion.

The paper is organized as follows. In Section 2 and
3, we describe statechart assertions and their validation
process. Section 4 presents the case for including
validation test scenarios in the assertions library. We
discuss some of the reasons causing modelers to err in
their specification of assertions and discuss how the
presence of validation test scenarios in the assertions
library will help the modelers avoid or detect and
rectify such errors. We provide a list of patterns for
validation test scenarios in Section 5. Section 6
concludes with a discussion of the future direction of
our research on reuse of executable assertions.

The Second International Conference on Secure System Integration and Reliability Improvement

978-0-7695-3266-0 2008

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/SSIRI.2008.54

47

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:00 from IEEE Xplore. Restrictions apply.

2. Statechart Assertions
In this section, we describe the UML statechart-

based temporal assertions for formal specifications.
Harel [3] proposed the use of statechart diagrams as a
visual approach to modeling the behavior of complex
reactive systems such as those found in avionics
applications. Statecharts are now one of the standard
diagrams in the UML. Drusinsky [2] extended the use
of statechart diagrams to specify formal assertions. We
differentiate the two by calling the original a modeling
statechart and the extended version an assertion
statechart.

Assertion statecharts extend modeling statecharts in
two ways: (i) it includes a built-in boolean flag
bSuccess (and a corresponding isSuccess method) that
specifies the Boolean status of the assertion (true if the
assertion succeeds and false otherwise) and (ii) an
assertion statechart can be nondeterministic. The
addition of the bSuccess flag makes the assertion
statechart suitable as a formal specification, similar to
a formal logic such as linear-time temporal logic [5].
Since assertions can be expressed in different ways
(e.g., in natural language, formal logic), we use the
term statechart assertions to differentiate those
expressed in statecharts from other types of assertions.

Fig. 1 illustrates a statechart assertion for the
following requirement, denoted R1: When the engine is
on, the ignition switch must not be turned on before it
is turned off.

Figure 1. A statechart assertion for
requirement R1

By default, an assertion statechart begins with the
result flag bSuccess being true. It behaves like
modeling statechart as described in [3]. When the
sample assertion enters the ERROR state (upon the
turnon event) the on-entry action assigns bSuccess =
false.

3. Validating Statechart Assertions
To ensure that the statechart assertion correctly

represents the intended behavior we run validation test
scenarios against it. Listing 1 describes two validation
test scenarios for the statechart assertion of Fig. 1 (sa1
is the implementation object for the statechart
assertion):

sa1.turnon(); //test 1
sa1.turnoff();
assertTrue(sa1.isSuccess());

sa1.turnon(); //test 2
sa1.turnon();
assertFalse(sa1.isSuccess());

Listing 1. Two validation scenarios for the
statechart assertion of Fig. 1

These two scenarios are implemented as JUnit test
cases using the Eclipse-based StateRover tool [6].
Clearly, we would like to ascertain the correctness of
this assertion with an adequate set of validation
scenarios. We will address this issue in the next
section.

In many practical applications, requirements are
concerned with real-time constraints. For example,
consider the following requirement, denoted R2: The
engine must be turned-off within 10 minutes of being
turned-on.

Fig. 2 illustrates a statechart assertion for
requirement R2:

Figure 2. A statechart assertion for
requirement R2

The variable declaration box declares a variable
named timer of type TRTimeoutSimulatedTime and set
to 10 time units.

The timer is (re)started by the timer.restart() action
whenever the statechart enters the Engine_On state.
The timeout event is triggered when the set time limit
expires. The timeout event implies a failure because

48

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:00 from IEEE Xplore. Restrictions apply.

the time limit has expired with no intermediate turnoff
event.

Listing 2 contains two simple test scenarios for the
assertion of Fig. 2, one for testing the good behavior
(i.e., isSuccess() == true) and the other for the
bad behavior (isSuccess() == false). sa2 is the
implementation object for the statechart assertion.

sa2.turnon(); //test 1
sa2.incrTime(8);
sa2.turnoff();
assertTrue(sa2.isSuccess());

sa2.turnon(); //test 2
sa2.incrTime(15);
sa2.turnoff(); // too late
assertFalse(sa2.isSuccess());

Listing 2. Two validation scenarios for the
assertion of Fig. 2

The incrTime() method increments the timer for the
designated time units.

4. Significance of Validation Test Scenarios
Consider the two candidate statechart assertions

shown in Fig. 3 for the following natural language
requirement, denoted R3: An event Q must occur
within 30 seconds of every event P.

a. Statechart assertion A

b. Statechart assertion B

Figure 3. Two candidate statechart assertions for
requirement R3

The two statechart assertions of Fig. 3 are similar.
The only difference is the existence of the self-loop in
the first statechart assertion from the P-Detected state
back to itself. A good validation test-suite should be
capable of distinguishing between the two statechart
assertions and identifying the correct statechart
assertion. Clearly, we should execute meaningful tests
so to ensure that the assertion is correct. The test
scenario of Listing 3 does not distinguish between the
statechart assertions of Fig. 3 because it succeeds on
both:

//test 1 – same result
sa.P();
sa.incrTime(20);
sa.Q();
assertTrue(sa.isSuccess());

Listing 3. A validation scenario that does not
distinguish between the statechart

assertions of Fig. 3

The test scenario of Listing 4, however, does
distinguish between those two statechart assertions:

//test 2 – different results
sa.P();
sa.incrTime(20);
sa.P();
sa.incrTime(20);
sa.Q(); // too late for first P
assertFalse(sa.isSuccess());

Listing 4. A distinguishing validation scenario for
the statechart assertions of Fig. 3

We expect a correct statechart assertion to fail this

test because it violates R3: the Q event occurs 40 time-
units after the first P event, which is too late per R3. At
the end of the test, bSuccess is false in Assertion B,
while it is true in Assertion A. Hence, this test scenario
managed to identify an error in assertion A.

We identify two kinds of errors in statechart
assertions: (i) implementation errors resulting from
mistakes in the statechart assertion, as the case for
Assertion A, and (ii) errors or ambiguities in the
natural language statements. For example, should the
scenario “R occurs 10 time-units after P without any Q
in between” violate the requirement: After P occurs, Q
must occur once every 30 time-units until R occurs?
Regardless of the type of error, running the test
scenarios provides a means to detect errors [4].

49

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:00 from IEEE Xplore. Restrictions apply.

5. Patterns for Test Scenarios

This section describes patterns, or types of
necessary validation scenarios. The purpose of this
section is to highlight types of patterns that must be
part of every validation test-suite. The list is not
presented as a complete list; rather, it highlights types
of scenarios that are often overlooked during
validation testing. Moreover, the patterns are not
mutually exclusive and are often combined to create
additional scenarios.

1. Obvious success. For example, the scenario of
Listing 3 trivially conforms to requirement R3;
clearly, we should expect the statechart assertion
being validated to succeed on such a test.

2. Obvious failure. For example, consider a
variation of the scenario of Listing 3 where the
delay (incrTime) is of 35 time units. Clearly, this
scenario fails requirement R3; we should
therefore expect a statechart assertion being
validated to fail on such a test.

3. Event repetitions. A common error found in
temporal assertions is the failure in handling
event repetitions properly. For example, consider
the following requirement, denoted R4: An event
Q must occur between an event P and an event R.
A validation scenario with event repetitions is
depicted in Fig. 4. Note how it fails requirement
R4 because Q does not occur between the third P
event and the R event. By using such a validation
test pattern we assure that an assertion is not
written in a manner that only observes the first P
in a sequence of P’s.

Note that, depending on the actual assertions, this
pattern may need to include scenarios with repeating
Q’s or R’s.

The next two patterns address the presence of timing
constraints in temporal assertions.

4. Multiple time intervals. Another common
assertion modeling error is the failure to handle
multiple time intervals or scenarios. For example,
the scenario depicted in Fig. 5 consists of two 30
time-unit intervals. This scenario fails

requirement R3 because Q does not occur within
the second interval as required by R3. By using
such a validation test pattern we assure that an
assertion is not written in a manner that observes
only a single time interval or a single scenario.

5. Overlapping time intervals. Another common
assertion modeling error is the failure to handle
overlapping time intervals within a scenario. For
example, consider the following requirement,
denoted R5: An event Q may not occur within 30
seconds of any event P. The scenario depicted in
Fig. 6 consists of two overlapping 30 time-unit
intervals. This scenario fails requirement R5
because Q occurs within the second interval.

Note that this list is not comprehensive and the patterns
can be combined to create additional scenarios. For
example, consider the scenario depicted in Fig. 7; it
superimposes a triggering-event-repetitions scenario
on an overlapping-time-intervals scenario of Fig. 6.

6. Conclusion
In this paper, we presented our initial results

pertaining to the construction of libraries of reusable
formal specification assertions. Key to our approach is
the inclusion of validation test scenarios as an integral
part of a specification library, for use in ensuring the
correctness of statechart assertions. We argue that
formal specification assertions must always be

Figure 4. An event-repetition scenario

PP P Q

Time

R

30
P PQ Q

30

Figure 5. A time-interval repetition

P QP

30 30

Time

Figure 6. A time-interval-with-overlap
scenario

P QP P
30 30

Time

Figure 7. A combination scenario

R

Time

50

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:00 from IEEE Xplore. Restrictions apply.

accompanied by a set of validation test scenarios.
Without such a test suite it is difficult to interpret the
original developer’s intent, thus undermining the
ability to reuse the assertions in the library. A good set
of test scenarios also helps us understand how the
developer resolved ambiguities in the natural language
specification. This concept adheres to the tenet of test-
driven software development of providing a test suite
along with the software.

In addition, we provided necessary types of
validation test scenarios. Our long-term goal is the
development of an assertion library that includes a rich
set of validation test scenarios.

7. References
[1] D. Drusinsky, J. B. Michael, and M. Shing, “A

Framework for Computer-Aided Validation,” to
appear in the journal Innovations in System and
Software Engineering, Springer, London, ISSN
1614-5046.

[2] D. Drusinsky, Modeling and Verification Using
UML Statecharts - A Working Guide to Reactive
System Design, Runtime Monitoring and
Execution-based Model Checking, Elsevier, 2006,
ISBN 0-7506-7949-2.

[3] D. Harel, “Statecharts: A Visual Approach to
Complex Systems”, Science of Computer
Programming, Vol. 8, No. 3, 1987, pp. 231-274.

[4] D. Drusinsky, M. Shing and K. Demir, “Creation
and Validation of Embedded Assertion
Statecharts”, Proc. 15th IEEE International
Workshop in Rapid Systems Prototyping, Chania,
Greece, 14-16 June 2006, pp. 17-23.

[5] A. Pnueli, “The Temporal Logic of Programs,”
Proc. 18th IEEE Symp. on Foundations of
Computer Science, Providence, Rhode Island, 31
October-2 November 1977, pp. 46-57.

[6] The StateRover, Timer-Rover, Inc.
http://www.time-rover.com

51

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:00 from IEEE Xplore. Restrictions apply.

