
Creation and Validation of Embedded Assertion Statecharts

Doron Drusinsky, Man-Tak Shing and Kadir Alpaslan Demir
Department of Computer Science

Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943, USA

{ddrusins, shing, kdemir}@nps.edu

Abstract

This paper addresses the need to integrate formal
assertions into the modeling, implementation, and testing of
statechart based designs. The paper describes an iterative
process for the development and verification of statechart
prototype models augmented with statechart assertions
using the StateRover tool. The novel aspects of the
proposed process include (1) writing formal specifications
using statechart assertions, (2) JUnit-based simulation and
validation of statechart assertions, (3) JUnit-based
simulation and testing of statechart prototype models
augmented with statechart assertions, (4) automatic, JUnit-
based, white-box testing of statechart prototypes
augmented with statechart assertions, and (5) spiral
adjustment of model and specification using the test results.
We demonstrate the proposed process with a prototype of a
safety-critical computer assisted resuscitation algorithm
(CARA) software for a casualty intravenous fluid infusion
pump.

1 Introduction

Harel Statecharts are commonly used for design analysis
and implementation; for example, Brugge suggests using
statecharts in the design analysis phase of an object
oriented UML based design methodology to specify
dynamic behavior of complex reactive systems [3]. Studies
have suggested that the process of formally specifying
requirements enables developers to gain a deeper
understanding of the system being specified, and to
uncover requirements flaws, inconsistencies, ambiguities
and incompletenesses [6]. In order to improve the clarity
and precision of the system requirements, system designers
often incorporate formal assertions into statechart design by
augmenting statechart models with other formalisms such
as process algebra [11], symbolic timing diagrams [9] and
temporal logic [7], and demonstrate the correctness of the
statechart design with formal methods (e.g. theorem prover,
static model-checker, or execution-based model checker)
on the corresponding assertions. In [4], Drusinsky

presented a new formalism that combines UML-based
prototyping, UML-based formal specifications, run-time
monitoring, and execution-based model checking. The
approach is supported by the StateRover, a design entry,
code generation, and visual debug animation tool for UML
statecharts combined with flowcharts. The new formalism
and tool allow system designers to embed deterministic and
non-deterministic statechart requirement assertions in
statechart designs and to execute the assertions in tandem
with their primary UML statechart to provide run-time
monitoring and run-time recovery from assertion failures.

This paper is concerned with the correct development
and early use of statechart assertions in rapid system
prototyping. We shall illustrate the process with a statechart
design of the safety-critical computer assisted resuscitation
algorithm (CARA) software for a casualty intravenous fluid
infusion pump. The rest of the paper is organized as
follows. Section 2 presents a statechart design of the CARA
software. Section 3 describes the process for the
development and validation of statechart assertions. Section
4 presents the prototype that combines the statechart design
and the statechart assertions, and the testing of the
prototype using the StateRover tool. Section 5 presents a
discussion on the approach and draws some conclusions.

2 The CARA Statechart Design

CARA is a safety-critical software developed by the
Walter Reed Army Institute of Research to improve life
support for trauma cases and military casualties; it has been
used as a case study by several software engineering
research groups [1, 5, 10]. CARA’s mission is to monitor a
patient’s blood pressure and to automatically administer
intravenous (IV) fluids via computer-controlled pump at
levels required to restore intravascular volume and blood
pressure.

2.1 The CARA Statechart Prototype
Figure 1 shows the top-level statechart of the CARA

software. It consists of three concurrent threads, Main,

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

MonitorPlugIn and MonitorOcclusion. The top-level
statechart of the Main thread is made up of two states, the
Manual state and a composite state named
SoftwareControl, which consists of three sub-states:
AutoReady, AutoControl and AutoFail.

Figure 1. Top level page of the CARA statechart

CARA monitors the pump connector on the Life
Support for Trauma and Transport (LSTAT) unit to
determine when a pump is powered on and plugged in.
When CARA determines that (i) the pump is plugged in
and (ii) the occlusion line is clear, it transitions into the
AutoReady state.

CARA will transition back to the Manual state if it
receives the unplug or the occTrue signals from the
environment while it is in the AutoReady state. If CARA
receives the start_control(desired_bp) message from the
environment while it is in the AutoReady state, it will enter
the AutoControl state, which is made up of three concurrent
threads shown in Figure 2.

While in the AutoControl sub-state, CARA continuously
checks for continuity on all wires going to the pump, and
will sound a level-one alarm and enter the AutoFail state if
it receives the unplug or the occTrue signals from the
environment. Note that refined details of this state are
available in another portion (page) of the diagram file,
depicted in Figure 2.

A clock interrupt triggers an event at precise five-second
intervals signaling the necessity to check the back
electromotive force (EMF) voltage as shown in the
MonitorEMF component in Figure 2. It will sound a level-
one alarm and transition to the AutoFail state whenever the
back EMF reading is zero or cannot be obtained.

CARA will attempt to use blood pressure from various
sources as the input for the CARA algorithm to control the
pump. For simplicity, we use only one blood pressure
source in this version of the prototype - an arterial line
sensor, which is an active device with a sampling rate of
1Hz. CARA adjusts the patient’s blood pressure by
regulating the voltage to drive the pump after each blood
pressure reading. CARA will signal a lowBPAlarm if the
blood pressure reading is below a pre-set minimum critical
value, and will maintain a keep-vein-open rate at or above
the threshold of 4 ml/min when desiredBP is reached.
While under the arterial line pressure control, if the arterial
line signal is lost for more than 1 minute, CARA sounds a
level-one alarm and enters the LoseBP state of the
ControlPump component shown in Figure 2. If the arterial
line signal is lost for another 2 minutes, a level-two alarm
sounds and CARA transitions to the AutoFail state.

While in SoftwareControl, a “reset” event from the
external environment will cause CARA to reset its alarms
and transition back to the Manual state.

2.2 Generation and Testing of the Target Code
The StateRover’s code generator generates one Java

controller class for each statechart file. In our case study,
we have one statechart diagram file consisting of two
pages, with the top-level statechart in the first page (Figure
1) and the AutoControl sub-statechart in the second page
(Figure 2). The StateRover’s code generator automatically
connects the two statecharts into a single statechart and
generates a single CARA class for the executable prototype.
The controller class consists of a set of event handlers (one
per transition event), the central event dispatcher
execTReventDispatcher, and the source code for local
variable declarations and methods supplied by the users via
the dialog boxes of StateRover’s statechart editor. In
addition, the code generator also generates a Java interface,
named CARAIF, to allow the test drivers or other systems
from the external environment to interact with the CARA
prototype.

The StateRover’s vanilla code generator implements
statechart orthogonality using a fixed schedule. For
example, the three orthogonal occTrue() transitions shown
in Figure 1, two in the Main thread and one in the
MonitorOcclusion thread, will be realized as three if-blocks
within the occTrue() event handler. The order of these if-
blocks induces a fixed firing schedule for corresponding
transitions. In addition to the vanilla code generator
described above, the StateRover has a concurrent code
generator that generates multi-threaded Java code for
statecharts with Harel-concurrence.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

Figure 2. Detailed AutoControl sub-state of the CARA statechart

The generated code is designed to work with the JUnit
Test Framework [2]. Use Case scenarios used by the
system designers to identify user needs and system
requirements are hand-coded as JUnit test cases and
exercised against the generated statechart code. For
example, the following test case describes a scenario in
which CARA enters the AutoControl state after receiving
the events plugIn(), occFalse(), startControl(), and
eventually ends up in the AutoFail state after receiving
the events BPEvent(), BPEvent() and occTrue() :
import junit.framework.*;

public class TestCARA1 extends TestCase {
 private CARA cara = null;

 public TestCara1(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();
 cara = new CARA();
 }

 protected void tearDown() throws Exception {
 cara = null;
 super.tearDown();
 }

 // Test Scenario:

 public void testExecTReventDispatcher() {
 cara.plugIn();
 cara.occFalse();
 cara.setTime(30); //advance clock to 30s
 this.assertTrue(cara.isState("AutoReady"));
 cara.startControl(70);
 cara.incrTime(70); //advance clock to 100s
 cara.BPEvent(50);
 cara.incrTime(50); //advance clock to 150s
 cara.BPEvent(52);
 cara.incrTime(50); //advance clock to 200s
 cara.occFalse();
 this.assertTrue(cara.isState("AutoFail"));
 }
}

3 Development and Validation of the
Statechart Assertion Correctness

Typically, formal specifications are created from a
conceptual requirement as understood by the primary
modeler. Regardless of what formal notations or formal
methods were used, the system modelers always start
their requirements discovery process based on some
scenarios involving the system and its environment, and
express their understanding of the expected behavior or
properties of the system informally with natural
languages. For example, we may come across a scenario

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

where there is a need for the CARA software to keep the
IV line open while under its control. We first express the
requirements in English

“Whenever CARA receives the startControl() event, it
must generate a control voltage that is greater than or
equal to the Keep-Vein-Open (KVO) voltage within
one minute. The voltage level condition will be
examined once every second and should be sustained
until the reset() event is received.”

and then translate the assertion into the statechart shown
in Figure 3.

Figure 3. The assertion statechart

It is important to validate the correctness of the
assertions early in the software development process.
Unfortunately, users often discover, late in the
development process, that their assertions are incorrect
and do not work as intended. Possible reasons for
incorrect assertions are:
1. Incorrect translation of the natural language

specification to a formal specification.

2. Incorrect translation of the requirement, as
understood by the modeler, to natural language.

3. Incorrect cognitive understanding of the requirement.
This situation typically occurs when the requirement
was driven from the use case’s main success
scenario, with insufficient investigation of other
scenarios.

Hence, we propose the following iterative process for
assertion development (Figure 4).

We will first test the behavior of the assertion
described by the statechart shown in Figure 3 with the
following scenario.

Figure 4. Iterative process for assertion development

import junit.framework.*;

public class TestAssertion extends TestCase {
 private Assertion1 assert1 = null;

 public TestAssertion(String name) {
 super(name);
 }

 protected void setUp() throws Exception {
 super.setUp();
 assert1 = new Assertion ();
 }

 protected void tearDown() throws Exception {
 assert1 = null;
 super.tearDown();
 }

 // Assertion 1, Test Scenario 1
 public void testExecTReventDispatcher() {
 assert1.startControl(70);
 assert1.incrTime(30); //advance clock to 30s
 assert1.setVoltage(KVO);
 assert1.incrTime(30); //advance clock to 60s
 assert1.incrTime(1); //advance clock to 61s
 assert1.setVoltage(KVO + 1);
 assert1.incrTime(1); //advance clock to 62s
 assert1.reset();
 this.assertTrue(assert1.isSuccess());
 }
}

Scenario 1 represents a typical case where the control
voltage is set at a level greater than or equal to the KVO
voltage within 1 minute after the arrival of the
startControl() event and remain greater than or equal to
the KVO voltage until the reset() event is received,
resulting in a successful test outcome.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

 In order to make sure that the assertion works as
intended, we create two more scenarios by replacing the
body of the testExecTReventDispatcher() method with the
following code.

 // Assertion 1, Test Scenario 2
 public void testExecTReventDispatcher() {
 assert1.startControl(70);
 assert1.incrTime(30); //advance clock to 30s
 assert1.setVoltage(KVO);
 assert1.incrTime(30); //advance clock to 60s
 assert1.incrTime(1); //advance clock to 61s
 assert1.setVoltage(0);
 assert1.incrTime(1); //advance clock to 62s
 assert1.reset();
 this.assertTrue(assert1.isSuccess());
 }

 // Assertion 1, Test Scenario 3
 public void testExecTReventDispatcher() {
 assert1.startControl(70);
 assert1.incrTime(30); //advance clock to 30s
 assert1.setvoltage(0);
 assert1.reset();
 this.assertTrue(assert1.isSuccess());
 }

Scenario 2 represents the case where the control
voltage is set at a level greater than or equal to the KVO
voltage within 1 minute after the arrival of the
startControl() event, but fails to sustain the voltage level
condition before the reset() event is received. The entry
action in the Error flowchart box in Figure 3 sets the
variable bSuccess to false, which in turn causes
assert1.isSuccess() to return false and this.assertTrue() to
fail.

Scenario 3 presents an interesting case. Although the
control voltage is kept below KVO voltage all the time,
the test outcome still turns out to be successful. This
behavior relates directly to the process described in
Figure 4 as follows: initially, the developer of the
assertion was surprised by the assertion’s success for this
scenario. He then followed the process illustrated in
Figure 4 and checked whether this behavior represents (1)
an incorrect assertion realization of the natural language
requirement, (2) incorrect or ambiguous natural language
requirement, or (3) incorrect or ambiguous cognitive
expectation. Finally our developer decided that this is an
acceptable behavior. Other developers might have
concluded otherwise and would need to adjust their
natural language requirement and assertion statechart
accordingly.

This example highlights the subtleties in creating
correct formal assertions and the value of testing
executable formal assertions via JUnit-based simulations.
In fact, we argue that the test suite for an assertion is an
integral part of the assertion’s deliverables.

4 Integrating Assertions to the Statechart
Design

Figures 5 and 6 shows the combined CARA statechart
with embedded statechart assertion, where the Assertion
statechart shown in Figure 3 now becomes a sub-
statechart of the AutoControl sub-state shown in Figure 6.
In addition, an unlabeled transition from the Assertion
sub-statechart (Figure 6) to the Manual state in the top-
level statechart (Figure 5) is added to enable run-time
recovery. Whenever the assertion fails, it reaches the
terminal state T (in Figure 3) and will therefore cause the
unlabeled transition out of the Assertion sub-statechart to
fire, forcing CARA to leave AutoControl and returns to
the Manual state.

reset()

CARAOn

Main MonitorPlugIn

MonitorOcclusion

Manual

PlugInTrue

PlugInFalse

AutoReady

AutoControl
Rep’s Page-2

OccFalse

OccTrue
AutoFail

SoftwareControl

plugIn()
[isState(OccFalse)]

occFalse()
[isState(PlugInTrue)]

occTrue()

unPlug()

startControl(int desiredBP)

occTrue() /
occAlarm()

unPlug() /
badLineAlarm()

unPlug() plugIn()

occFalse() occTrue()

C1 C2
C3

Figure 5. Top level page of the combined CARA
statechart

4.1 Testing the Combined Prototype
Although the TestCARA1 test case described in Section

2.2 resulted in a successful test outcome for the prototype
generated from the statecharts shown in Figures 1 and 2,
running the same TestCARA1 test case against the
prototype generated from the CARA statecharts shown in
Figures 5 and 6 resulted in an unsuccessful test outcome
due to failure of the Assertion sub-statechart. A close
inspection of the execution trace reveals that the assertion
was violated because CARA does not generate any
control voltage until it receives the first BPEvent() 70
seconds after the startControl() event in the TestCARA1
test case scenario. To fix the problem, an entry action
“setVoltage(KVO)” is added to the AutoControl super-
state to make sure that the control voltage is set to the
KVO voltage once CARA receives the startControl()
event.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

ControlPump

Normal
on entry / BPTimer1.restart()

WaitingForBP

tokenEv() /
mIssingBPTimer60.reset()

[true] /
stopLowBPAlarm()

AutoControl

MonitorEMF

WatchingEMF

emfEvent(int voltage) /
setNewEMF(true);

setEMFVoltage(voltage);

timeoutFire(TRTimeoutATGTime timer)
[timer == EMFTimer5]

[true] /
setNewEMF(false);
EMFTimer5.restart()

[false] /
EMFAlarm()

[false] /
lowBPAlarm()

[true]

timeoutFire(TRTimeoutATGTime timer)
[timer == BPTimer1]

[false] /
missingBPTimer60.restart()

LoseBP
timeoutFire(TRTimeoutATGTime timer)

[timer == missingBPTimer60] /
missingBPAlarm();

noBPTimer120.restart()

tokenEv() /
noBPTimer120.reset();
stopMissingBPAlarm()

timeoutFire(TRTimeoutATGTime timer)
[timer == noBPTimer120] /

stopMissingBPAlarm();
noBPAlarm()

MonitorBP

HasNewBP

WatchingBP

tmSynchEv() BPEvent(int x)/
setBP(x); tokenEv()

BPEvent(int x)/
setBP(x)

on entry /
EMFTimer5.restart();
setNewEMF(false)

newEMF() &&
EMFVoltage() > 0

isState(HasNewBP)

getBP() > minBP

on entry /
tmSynchEv();

controlVoltage = computeVoltage(getBP());
setVoltage(controlVoltage)

C1

C2

Assertion
C3

AssertionThread

Figure 6. The AutoControl sub-state of the combined CARA statechart with embedded statechart assertion

4.2 Automatic White Box Testing of the
Combined Prototype

The StateRover’s automatic white box tester constructs
a JUnit TestCase class from a given statechart model and
associated embedded assertions. The JUnit test case
executes a large volume of test runs of the statechart-
under-test (SUT). A typical white box test case consists
of hundreds of thousands of runs of the SUT. The
availability of the executable statechart assertions makes
the automatic checking of test results possible and cost-
effective.

In order to help statechart designers pinpoint specific
errors, each failed test run is reported with an
identification number. The causes of failure for a specific
run can be investigated in detail by running the automatic
white box tester in single test/run mode. Such mechanism
helps developers to efficiently eliminate errors in their
design.

5 Discussions and Conclusion

In this paper, we presented an iterative process for
developing statechart assertions and using the assertions

to verify statechart prototype designs early in the software
development process. The proposed process has the
following novelties:
(1) Writing formal specifications using statechart
assertions. It is easier for system designers to create and
understand statechart assertions than text-based temporal
assertions because statechart assertions are visual,
intuitive, and resemble statechart design models. For
example, statechart assertions are event driven just like
statechart models, while temporal logic is purely
propositional. Moreover, statechart assertions are Turing
equivalent and are therefore significantly more expressive
than temporal logic
(2) JUnit-based simulation and validation of statechart
assertions. The ability to test the statechart assertions
independent of the prototype design ensures that system
designers truly understand the required system behavior
without being tainted by any pre-conceived solutions.
With the help of StateRover’s code generator, we can
create a library of executable assertion patterns consisting
of generic statechart assertions and the accompanying
scenario-based test cases. The use of pre-tested generic
statechart assertions will lessen the development time and
improve the quality of the statechart assertions in rapid
prototyping.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

(3) JUnit-based simulation and testing of statechart
prototype models augmented with statechart assertions.
Quite often, subtle timing properties can only be studied
with simulation and runtime execution monitoring. The
availability of the StateRover code generator and the
JUnit test framework makes the rapid prototyping and
testing of the statechart prototype augmented with
statechart assertions possible and cost-effective.
(4) Automatic, JUnit-based, white-Box testing of
statechart prototypes augmented with statechart
assertions. The white-box tester is both model-based and
specification-based because it uses information from the
SUT as well as embedded assertions for test generation.
The StateRover white-box test generator is intelligent; it
generates only test scenarios that actually affect the
statechart SUT or one of its embedded assertions.
(5) Spiral adjustment of model and specification using the
test results. This paper points out the subtleties in creating
correct formal assertions and the value of testing
executable formal assertions via JUnit-based simulations.
The proposed iterative process helps ensure the
correctness of formal requirements per the modeler’s
expectations early in the development process.

The StateRover is commercially available and is being
used by the U.S. Ballistic Missile Defense System project
to design and verify the new BMDS battle manager
because of its ability to scale, and its support for temporal
assertions that include real-time and time series
constraints. The StateRover’s automatic white-box tester
has been extended to generate code for NASA’s Java Path
Finder (JFP) [8], which uses a customized Java Virtual
Machine to detect the presence of concurrency error
under varying firing schedules of concurrent transitions
and actions.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their very helpful comments. The research
reported in this article was funded in part by a grant from
the U.S. Missile Defense Agency. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright
annotations thereon.

References

[1] R. Alur, D. Arney, E. Gunter, I. Lee, W. Nam and J.
Zhou, “Formal Specifications and Analysis of the
Computer Assisted Resuscitation Algorithm (CARA)
Infusion Pump Control System”, Proc. Integrated Design
and Process Technology (IDPT), 2002.

[2] K. Beck and E. Gamma, “Test infected: Programmers
love writing tests”, Java Report, 3(7), pp. 37-50, 1998.

[3] B. Bruegge, Object-Oriented Software Engineering:
Using UML, Patterns, and Java (2nd ed.), Prentice Hall,
2004, ISBN 0-13-0471100.

[4] D. Drusinsky, Modeling and Verification Using UML
Statecharts - A Working Guide to Reactive System
Design, Runtime Monitoring and Execution-based Model
Checking, Elsevier, 2006, ISBN 0-7506-7949-2.

[5] D. Drusinsky and M. Shing, “TLCharts: Armor-
plating Harel Statecharts with Temporal Logic
Conditions”, Proceedings of the 15th IEEE International
Workshop in Rapid Systems Prototyping, Geneva,
Switzerland, pp. 29-36, June 28-30, 2004.

[6] S. Easterbrook, R. Lutz, R. Covington, J. Kely, Y.
Ampo and D. Hamilton, “Experiences using lightweight
formal methods for requirements modeling”, IEEE
Transactions on Software Engineering, 24(1), pp. 4-11,
Jan 1998.

[7] G. Graw, P. Herrmann, and H. Krumm, “Verification
of UML-Based Real-Time System Design by Means of
cTLA”, Proc. 3rd IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing
(ISORC 2000), pp.86-95, 15-17 March 2000.

[8] K. Havelund, T. Pressburger, “Model Checking Java
Programs Using Java PathFinder”, International Journal
on Software Tools for Technology Transfer, STTT, 2(4)
April 2000.

[9] K. Lüth, J. Niehaus and T. Peikenkamp, “HW/SW
Co-synthesis using Statecharts and Symbolic Timing
Diagrams”, Proc. 9th International Workshop on Rapid
System Prototyping, pp.212-217, 3-5 June 1998.

[10] Luqi, M. Shing, J. Puett, V. Berzins, Z. Guan, Y.
Qiao, L. Zhang, N. Chaki, X. Liang, W. Ray, M. Brown,
and D. Floodeen, “Comparative Rapid Prototyping, A
Case Study”, Proc. 14th IEEE International Workshop in
Rapid Systems Prototyping, pp. 210-217, 9-11 June
2003.

[11] M.H. Park, K.S. Bang, J.Y. Choi and I. Kang,
“Equivalence Checking of Two Statechart
Specifications”, Proc. 11th International Workshop on
Rapid System Prototyping, pp.46-51, 21-23 June 2000.

Proceedings of the Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP'06)
0-7695-2580-6/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:04 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

