
Visual Formal Specification using (N)TLCharts: Statechart Automata

with Temporal Logic and Natural Language Conditioned Transitions

Doron Drusinsky

Time-Rover, Inc., 11425 Charsan Ln., Cupertino, CA 95014, USA

www.time-rover.com

Abstract

This paper describes TLCharts, a visual specification

language that combines the visual and intuitive

appeal of non-deterministic Harel Statecharts with

formal specifications written in Linear-time (Metric)

Temporal Logic (LTL and MTL). The formalism is
described using a practical infusion pump

requirement example. The infusion pump TLChart

specification is then compared with two competing

representations: temporal logic and deterministic

Harel statecharts. The infusion pump example will

also be used to point out the strength of each
constituent TLCharts component. We provide an

informal semantics for TLCharts using non-

deterministic automata with negation and

overlapping states. Finally, we show how natural

language snippets are used instead of TLChart
temporal logic conditions thereby inducing a

formalism we call NTLCharts.

1 Introduction

Temporal Logic is a special branch of modal logic

that investigates the notion of time and order. Linear-

time Temporal Logic (LTL) is an extension of

propositional logic where, in addition to the well-

known propositional logic operators, there are four

future-time operators (-Eventually, -Always, U-

Until, -Next) and four dual-past time operators.

Pnueli [Pn] suggested using LTL for reasoning about

concurrent programs. Since then, several researchers

have used LTL to state and measure correctness of

concurrent programs, protocols, and hardware (e.g.,

[MP, Pn]). Metric Temporal Logic (MTL) was

suggested by Chang, Pnueli, and Manna as a vehicle

for the verification of real time systems [CPM]. MTL

extends LTL by supporting the specification of

relative-time and real-time constraints. With MTL,

all four LTL future-time operators can be

characterized by relative-time and real-time

constraints specifying the duration of the temporal

operator. Temporal Logic with Time Series

constraints (TLS) was suggested by Drusinsky as an

extension of MTL which enables temporal

specifications that assert about time-series properties

such as stability, monotonicity, and min-max values

[D2].

Ever since first published [Ha] and later incorporated

into the OMT methodology and eventually into the

UML standard, Harel statecharts have been described

in numerous papers and books (e.g.[Br, RB]).

Statecharts extend finite state diagram with hierarchy

(state nesting), concurrence, and history states. Harel

Statecharts are typically used for design analysis and

implementation; for example, Brugge suggests using

statecharts in the design analysis phase of an object

oriented UML based design methodology [Br].

Theoretical results [DH] show that non-deterministic

are exponentially more succinct than deterministic

Harel statecharts.

 A formal semantics of Harel statecharts has been

suggested in [HN]. This paper uses new automata

theoretic semantics for statecharts first suggested in

[D]. This semantics lends itself to the inherently

non-deterministic semantics required by the

TLCharts formalism.

Sowmya and Ramesh suggested in [SR] to use

temporal logic assertions with statechart qualities by

applying temporal logic in a hierarchical manner; the

resulting language is a new hierarchical form of the

textual temporal logic formalism. In comparison, our

hybrid language is a true automata-theoretic hybrid

with a unified syntax and semantics; the resulting

language is highly visual and familiar language, with

special LTL annotation of some transitions.

Enciso et-al. [E] suggest LNint-e, a logic that

combines points and intervals and the absolute and

relative approaches of LTL and statecharts. This is a

new logic with new syntax and semantics. In

contrast, our suggested language maintains, for the

most part, the syntax and semantics of both

languages.

The Mathworks’ Stateflow statechart tool has a so-

called temporal logic extension. Stateflow events and

conditions can use the four operators after, before, at,

and every. These four operators are essentially

extended versions of the LTL eventuality operator.

Most notably, the Stateflow formalism lacks non-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

determinism, negation, and an operator equivalent to

LTL’s Until operator.

Non-deterministic Finite Automate (NFA) are often

used as a specification language [HU]. The TLChart

formalism suggested in this paper extends the NFA

formalism in two ways: it suggests using non-

deterministic statecharts with negation instead of flat

and sequential NFA formalism, and it supports the

annotation of transitions with LTL, MTL and TLS

conditions.

In this paper we describe TLCharts, a formalism that

visually and intuitively resembles Harel statecharts

while enabling temporal-logic conditioned

transitions. This is useful for the specifying abstract

non-deterministic temporal properties inside a

statechart specification. This paper contains informal

semantics of TLCharts; formal semantics are

avaliable in [D3].

2 Example: Infusion Pump Keypad

Control

The infusion pump example consists of the following

four conditions: (infusion)begin, (infusion)end,

keyPressed and alarm. The requirement is:

R : a session is the interval between a begin and an

end-condition. For every such session a keyPressed

must be repeatedly sensed within two-minute

intervals or else an alarm must sound within 0

seconds and until keyPressed is sensed. Also

according to this specification, once the alarm sounds

then the assertion has succeeded and no more alarms

are permitted. The end-condition is defined as an end

being repeatedly sensed until a later time when begin

is sensed.

In sections 2. and 2.2 we analyze two seemingly

correct formal specifications for requirement R ,

namely MTL and Harel statechart specifications.

These specifications are more complex than the

alternate TLChart specification and also contain

subtle inaccuracies rendering them less effective than

the corresponding TLChart specification.

2.1 Infusion Pump: MTL Specification

The following MTL assertion attempts to capture

requirement R :

L : (begin =>

L2: (((begin ∨ keyPressed) =>

L3: ((≤ 20 ¬alarm) ∧
L4: ((≤ 20 keyPressed)

L5: ∨ (¬keyPressed U [20, 30]

L6: (alarm U

L7: (keyPressed ∧ ¬alarm)))

L8:)

L9:)

L 0:) U (end U

L : (begin ∧ end))

L 2:))

Line L initiates the session. Line L2 combined with

L4 guarantees the repetitive demand for keyPressed

to be sensed every two minutes. Line L3 trivially

requires no alarm until those two minutes have

elapsed. Lines L5, L6, and L7 require an alarm

within 0 seconds of those two minutes, and until

keyPressed is sensed, with no alarm permitted

afterwards. Lines L 0 and L are for the end-

condition .

This assertion suffers from several deficiencies:

. The assertion is arguably non-trivial while the

natural language requirement is straightforward.

For example, the term begin ∨ keyPressed is

confusing. In fact, for purposes of brevity, the

MTL specification does not forbid an alarm

while not in session; the Harel statechart of Fig.

, and the TLChart of Fig. 2 do contain this

constraint.

2. The assertion might fail under the following

scenarios, assuming the LTL-model cycle time is

one second, i.e., the assertion is evaluated every

second. All scenarios begin with a begin at time

0.

a. An interval of 22 seconds between two

consecutive keyPressed events followed by an

alarm sounding second later and a

keyPressed -second afterwards, followed by

no keyPressed or alarm for 40 seconds. The

assertion fails though the requirement is that

following the first alarm the assertion must

succeed.

b. An interval of 22 seconds between two

consecutive keyPressed events followed by an

alarm sounding 4 seconds later and a

keyPressed -second afterwards. The assertion

fails because LTL’s ρUϕ requires ρ to

repeatedly succeed until ϕ succeeds, namely

¬keyPressed must be constantly true until the

alarm.

c. An intuitive expectation is that an end-

condition will terminate the need for a flow of

keyPressed events. However, if keyPressed

occurs at time t and an end-condition at time

t+20 then one additional keyPressed will still

be required after time t+20. In other words,

there is no simple way to explicitly truncate

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

the requirement once an end-condition is

detected other than to conjunct the end-

condition with the inner parts of the rule.
Separate research on LTL with truncated paths

has been published in [EFHL].

2.2 Infusion Pump: Harel Statechart and

TLChart Specifications

A deterministic Harel statechart specification of

requirement R is illustrated in Fig. . and a

corresponding TLChart specification is illustrated in

Fig. 2. Section 3 describes the suggested informal

syntax and semantics for TLCharts.

Fig. and Fig. 2 are both legal TLCharts, i.e. Harel

statecharts are a special case of TLCharts, and so are

LTL and MTL assertions. Note that TLCharts in Fig.

 and Fig. 2 solve the problems described earlier.

A TLChart extends deterministic statechart in two

primary ways:

. Some transitions are annotated with LTL, MTL

or TLS conditions, such as the transition labeled

alarm U keyPressed in Fig. 2.

2. TLChart’s support non-deterministic with

negation. Armor plating of TLCharts, described

in Section 5, uses this feature.

Note that Harel statecharts, when used for

specification, must be deterministic; otherwise, the

specification is ambiguous. Creating correct

deterministic behavior is a non-trivial part of the

implementation process. For example, consider the

following scenario: begin at time 0 and then no

keyPressed for more than two minutes followed, on

cycle #Cyc, by the sequence: Seq =

end.alarm.keyPressed.begin. The Harel statechart of

Fig. has unexpected behavior with respect to this

scenario. Having end precede alarm indicates that the

user wants to end the current session; nevertheless,

the statechart ends the computation in state Done

rather than in state Init. Consequently, a legal

continuation of this scenario that results in a legal

alarm will be determined by the statechart of as an

error. A more accurate Harel statechart is a

refinement of Fig. with more implementation detail

such that following end, whenever a sequence

satisfying alarm U keyPress is recognized, it is

memorized. Later, if the end turns out to be a false

positive (i.e., the end-condition is not satisfied), the

statechart will transition to state Done.

Alternatively, using statechart formalism with

semantics that support non-determinism, the

following non-deterministic approach can be used.

When end is detected, then in addition to the existing

computation leading towards state Init, a non-

deterministic fork is made creating an additional

computation that remains inside State- ; this

computation kicks-in if the complete end-condition
is not satisfied.

It will follow from the semantics of Section 3 that the

TLChart of Fig. 2 operates on the input sequence Seq

in the following accurate manner. The TLChart

traverses the transition State- →Init on cycle #Cyc,

before the transition Alarm-Necessary→Done is

enabled on cycle #Cyc+ .

It will also follow from the semantics that the

TLChart of Fig. 2 is deterministic if alarm and end

Init

Wait-For-KeyPressed

Alarm-Necessary

[tm(2min)]

[begin]

State-1

Error

[tm(10sec)]

[alarm]

[keyPressed]

State-2

State-3

[end]

[begin]

Done

[!end]

[alarm]

[]

[end]

Alarm

[!alarm][keyPressed]

[alarm]

[]

[alarm]

Figure 1. Deterministic Harel statechart

specification for requirement R1.

Figure 2. TLChart specification for requirement
R1. All states other than Error are by default
good states; all states with no specified priority

have the default, i.e., lowest, priority.

Init (1)

W ait-For-KeyPressed

Alarm-Necessary

[tm (2m in)]

[begin]

State-1

Error (2)

[tm (10sec)]

[alarm]

[keyPressed]

Done (1)

[{alarm U keyPressed }]

[end{end U begin }]

[alarm]

[]

[alarm]

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

are mutually exclusive; similar mutual exclusivity

requirements exist for the Harel statechart of Fig. .

2.3 Infusion Pump Requirement R2

In preparation for the description of TLChart syntax

and semantics we introduce an extension R2 to the

R requirement as follows. Condition valveOpen (its

negation denoted as valveClosed) is added as an

additional visible condition. The end-condition is

now re-defined as an interval that starts with the

valveClosed and then end is repeatedly sensed until a

later time when begin is sensed. The TLChart of Fig.

3 is an extension of Fig. 2 that formally captures

requirement R2. It extends the TLChart of Fig. 2 with

concurrence.

3 TLCharts: Informal Syntax and

Semantics

In this paper we consider Harel statecharts as first

described in [Ha], including state hierarchy,

concurrence, and history states. Hence, no state

overlapping is permitted; this assumption will be

changed in the next section. For simplicity, we

assume that statechart transitions are annotated with

conditions and not events, although we expect

TLChart to be used and applied with events and

conditions, much like UML statecharts. Hence,

TLChart transitions are annotated with one or both of

the following types of conditions: propositional and

temporal. Temporal conditions include all legal LTL

and MTL formulae. In Fig. 2, 3, and 4 temporal

conditions are represented using curly braces. Hence

[end {end U begin}] represents the propositional

condition end and the temporal condition end U

begin.

TLCharts specify requirements using formal

languages. The semantics of a TLChart are defined

using an Equivalent Non-Deterministic Automaton
(ENFA) [D , HU]. Once defined in terms of its

ENFA, a TLChart defines correctness properties in a

manner that resembles logic specification, such as

temporal logic specification. It observes a given input

tape and decides whether this tape is acceptable or

not. In real life terms the input tape corresponds to a

combined sequence of inputs to-, and manifested

outputs from-, a given system.

The ENFA’s state set consists of all possible state

configurations in the original TLChart, i.e., where

statechart concurrence is represented using all

possible combinations constituent states from

concurrent threads. Hence, in Fig. 3 {Init}, {Wait-

For-KeyPressed, State-3}, and {Wait-For-

KeyPressed, State-4}, are all legal states of the

ENFA, while {Init, State-4} is not. Note that state

configurations do not, in general, contain information

about corresponding superstates, such as Wait-For-
KeyPressed and State-3 residing under State-2, which

in turn resides under State-1. This information is not

necessary because, absent state overlapping, state

hierarchy is unique. However, we will change this

notation when we describe TLCharts with

overlapping states.

As a preliminary step, before we describe the

ENFA’s transition relation, note that we can replace

statechart and TLChart hierarchical transitions, such

as State- →Init in Fig. 2, with concurrence, using a

new concurrent thread with one inner state, e.g. State-

a. The hierarchical transition is then replaced with

the transition State- a→Init.

To understand the ENFA’s transition relation we first

consider a TLChart with no temporal conditions. In

this case the ENFA’s transition relation pairs states

(i.e., TLChart configurations) using one or more

concurrent constituent TLChart transitions. Hence, in

Fig. 3, several possible transitions are:

. {Wait-For-KeyPressed, State-3}→keyPressed,

valveOpen {Wait-For-KeyPressed, State-4}

constructed from the concurrent firing of the non

conflicting constituent TLChart transitions:

Wait-For-KeyPressed→keyPressed Wait-For-

KeyPressed and State-3→ valveOpen State-4.

2. {Wait-For-KeyPressed, State-

3}→keyPressed,{Wait-For-KeyPressed, State-3}

constructed from the firing of the single

constituent TLChart transition Wait-For-

KeyPressed→keyPressed Wait-For-KeyPressed.

Figure 3. An extension of the TLChart of Fig. 2

that captures requirement R2.

Init (1)

Wait-For-KeyPressed

Alarm-Necessary

[tm(2min)]

[begin]

State-1

Error (2)

[tm(10sec)]
[alarm]

[keyPressed]

Done (1)

[{alarm U keyPressed }]

[end{end U begin }]

State-3 State-4

[valveOpen]

[valveClosed]

[]

[]

[alarm]

[alarm]

State-2

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

3. {Wait-For-KeyPressed, State-3}→alarm {Error}

constructed from the single constituent TLChart

transition Wait-For-KeyPressed→alarm Error.

In other words, an ENFA transition is the collective

result of firing as many concurrent, non-conflicting,

transitions as enabled by the current tape reading.

Those threads where no transition fired simply

remain in the same constituent TLChart state, as the

case for State-3 in transition 2 above.

Note that conflicting simultaneously enabled ENFA

transitions induce non-determinism. This is the case

when keyPressed, valveOpen, and alarm are all true

while in state configuration {Wait-For-KeyPressed,

State-3} i.e. when transitions and 3 above are

simultaneously enabled.

Bridging the gap between the modal logic based

semantics of LTL and formal languages is done in the

standard way using two steps, as follows. First we

use finite linear model semantics for temporal logic;

for example Eventually ρ is satisfied if there exists

state s in the finite linear model which satisfies ρ.

The second step is to translate the LTL model to an

input tape for an automaton. An LTL model consists

of a finite sequence of states with Boolean

propositions and corresponding truth assignments

assigned to each state. For example, consider a model

with two states (i.e., two cycles), where {begin,

¬end, KeyPressed, ¬alarm, valveOpen} is the truth

assignment for state 0 (interpreted as cycle 0), and

{¬begin, ¬end, KeyPressed, ¬alarm, valveClosed}

is the truth assignment for state . This model is

therefore obviously exchangeable with an automaton

input tape with the symbol <begin, ¬end,

KeyPressed, ¬alarm, valveOpen> in position 0 and

<¬begin, ¬end, KeyPressed, ¬alarm, valveClosed>
in position . In other words, each Boolean

proposition pi and its negation ¬pi form an alphabet

Σi. The input alphabet for the ENFA is then the

Cartesian product of all Σi alphabets.

We now incorporate temporal conditions into ENFA

behavior. First, note that every ENFA transition has a

pair of propositional and temporal conditions, which

are the respective conjunctions of all propositional

and temporal conditions annotating its constituent

TLChart transitions. Temporal conditions affect

ENFA behavior via the definition of a computation.

Given an input tape, a conventional one-way non-

deterministic Finite Automaton (NFA) computation

is essentially a sequence of “matching” transitions

and corresponding tape head moves to the right;

details are available in [HU]. ENFA’s extend this

well known definition by requiring that for every

transition ti in the computation the input tape is

observed from position i into the future and back to

the past, but without moving the tape head. The

transition ti is then enabled only if the temporal

condition is satisfied by the tape, while considering

position number i as cycle 0.

For example, using the infusion pump TLChart of

Fig. 3, consider the input tape (using straight forward

abbreviations of the infusion pump conditions):

σ=σ .σ2.σ3.σ4.σ5.σ6=

{IB,¬IE,KP,¬A,VC}.{¬IB,¬IE,¬KP,¬A,VC}.

{¬IB,¬IE,KP,¬A,VO}.{¬IB,¬IE,KP,A,VC}.

{¬IB,IE,¬KP,¬A,VC}.{IB,¬IE,¬KP,¬A,VO}.

The following C computation is enabled by σ; each

line is considered as a cycle, starting at cycle 0:

{Init}→IB

{Wait-For-KeyPressed,State-3}→(none)

{Wait-For-KeyPressed,State-3}→KP, VO

{Wait-For-KeyPressed,State-4}→A

{Error} (a sink state)

Similarly, the following C2 computation is also

enabled by σ:

{Init}→IB

{Wait-For-KeyPressed,State-3}→(none)

{Wait-For-KeyPressed,State-3}→KP, VO

{Wait-For-KeyPressed,State-4}→KP,VC

{Wait-For-KeyPressed,State-3}→ρ{Done}

where ρ is the temporal condition IE U IB. ρ is

enabled on cycle 4 because the input tape then points

to σ5={¬IB,IE,¬KP,¬A,VC} and the tape suffix is

σ5.σ6=

{¬IB,IE,¬KP,¬A,VC}.{IB,¬IE,¬KP,¬A,VO} which

satisfies ρ.

Like their logical counterpart ENFA represent

assertions about a system. They do so using notation

that is similar to automata, namely by accepting or

rejecting strings (tapes). A classical NFA accepts a

string using an existential criterion, namely, if a

computation ending in a final state exists. A dual

universal automaton (∀-FA) accepts a string if all

computations end in a final state. Combining both

acceptance criteria results in an alternating

automaton. Alternatively, an existential NFA with

negation can be used instead of a combination of both

acceptance criteria. ENFA supports negation using (i)

negation inside temporal conditions, (ii) a

combination of good (accepting) and error (rejecting)

states. For a given input string s there is one or more

possible computations, some of which end in a good

state while others end in an error state. Conflicts are

resolved using a priority scheme where the winning

computation is the computation whose last visited

state configuration contains a TLChart state St whose

priority is higher than all other TLChart states in all

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

competing configurations. If St is a good state then

the TLChart accepts the input string otherwise the

TLChart rejects it. For example, in Fig. 3 consider

two computations on the input string σ, C and C2. C

ends in the configuration {Error} where the error
state Error has priority 2. C2 ends in the configuration

{Done} where good state Done has priority . σ is

accepted because Done has a higher priority than

Error.

Whenever the priority scheme cannot resolve

conflicts we arbitrarily select the error computation

as overriding. Likewise, whenever a single

computation ends in a configuration that contains

both good and error states, then we arbitrarily select

the error state as overriding.

TLCharts support two ways for specifying real-time

constraints. The first way uses Harel statechart

timeout (tm) events, while the second uses MTL. In

Fig. 2 for example, the pair of transitions Wait-For-

KeyPressed→tm(2min)Alarm-Necessary, and Wait-For-

KeyPressed→keyPressed Wait-For-KeyPressed are

similar to a single transition Wait-For-

KeyPressed→ρAlarm-Necessary where ρ= ≤2min

keyPressed. The two approached differ with respect

to the timing in which state Alarm-Necessary is

reached. With the first representation Alarm-

Necessary is reached after two minutes while the

second approach makes the transition immediately.

We suggest a special visual delay construct,

represented with thick edges, which can only be used

with the following unnested temporal conditions:

≤dρ (ρ with an MTL upper bound d), ρ, and ρUψ.

It means that the transition is traversed only when the

temporal condition becomes true, i.e., when the MTL

upper bound d in for ≤dρ is reached, or when ψ is

true in ψ or ρUψ. Hence, in Fig. 4, the transition

Done→alarmError is enabled only when, for the

preceding transition, the keyPressed that satisfies

alarm U keyPressed is detected.

From a semantic perspective, real-time

measurements, used by statechart timout events and

MTL constraints, are represented in our ENFA model

using a standard monotonically increasing positive

integer function that maps each tape cell with a real-

time value.

Recall that a TLChart input string represents a

sequence of combinations of stimuli and

corresponding system responses; for example, the

sequence σ contains keyPressed - generated by the

environment, combined with alarm - a system

generated response. Hence, from a verification

standpoint, a rejected string means that the systems

behavior does not comply with the specification,

typically due to an incorrect system reaction to the

input stimuli. This application of diagrams to

specification rather than programming and design

explains the existence of a sink state (the Error state),

which does not typically exist in a design phase

statechart.

Note that though visually similar to Harel Statecharts,

TLCharts are actually used and applied more like a

temporal logic specification in the following sense.

TLCharts do not describe the token by token reaction

of a reactive system to environment stimuli. Rather,

TLCharts consider a complete input string s, which

combines both environment inputs s_in and system

outputs s_out; a TLChart asserts about the legality of

an s_out system response to the s_in stimuli.

4 TLCharts with Overlapping States

The proposed automata theoretic statechart semantics

described in Section 3 caters for statecharts with

overlapping states [Ka]. Consider the TLChart of Fig.

4, a variant of the TLChart of Fig. 3 with overlapping

states. In Fig. 4, state State-OVLP is an and state that

shares its substates with the concurrent threads of

state State-2. Fig. 4 induces a state graph that is a

DAG, not a tree (syntactically illegal when

considered as a pure Harel statechart). The intuitive

meaning of this state overlap is that it is illegal for a

key to be pressed while the valve is open.

From a semantics perspective, ENFA state

configurations for TLCharts with overlapping states

contain all state nesting information. Hence, the

situation where State-KP and State-4 are

simultaneously visited has two distinct possible

Figure 4. An extension of the TLChart of Fig. 3

with overlapping states.

State-OVLP

State-2

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

representations as ENFA state configurations: {State-

, State-2, State-KP, State-4}, and {State- , State-

OVLP, State-KP, State-4}. Therefore, the following

two computations are distinct, though when

considering only leaf states they look alike:

{Init}→IB

{State- ,State-2,

 Wait-For-KeyPressed,State-3}→ KP,VO

{State- ,State-2, State-KP,State-4}→ VC

{State- ,State-2, State-KP,State-3}

and

{Init}→IB

{State- ,State-2,

 Wait-For-KeyPressed,State-3}→ KP,VO

{State- , State-OVLP, State-KP,State-4}→ (any)

{Error}

Given that the second computation ends in Error, a

state with higher priority than any of the states in

{State- , State-2, State-KP, State-3}, the TLChart

rejects the input, effectively stating that State-KP and

State-4 cannot be visited simultaneously.

5 Armor Plating Specifications

Run time assertion checking is a common method for

armor-plating programs against unexpected errors.

Recently, Drusinsky suggested an armor plating

method using run-time monitoring of LTL and MTL

assertions combined with exception handling [D4].

TLCharts offer an opportunity for armor-plating

specifications using over-specification, namely by

adding temporal conditions to an otherwise fully

specified TLChart. Consider for example requirement

R and the corresponding TLChart of Fig. 2. A

correctness property ϕ of interest, expressed in MTL,

is that in state Wait-For-KeyPressed:

(¬ ≤ 20 keyPressed) =>

[20, 30] (alarm U (keyPressed ∧ ¬alarm).

Fig. 2,3, and 4 can be armor-plated with a transition

Wait-For-KeyPressed->¬ϕError.

TLCharts appear to be a good language for armor

plating due to their non-deterministic semantics.

6 NTLChart: Using Natural Language

NTLChart specifications are TLCharts where natural

language snippets are used instead of temporal logic

conditions. NTLCharts are based on the observation

that often the temporal conditions inside TLCharts

are short and use little nesting. In Fig. 3 for example,

both temporal conditions have no nesting of temporal

operators.

Under such circumstances, the number of

possibilities for temporal conditions is rather limited.

It is therefore possible to represent temporal

conditions with natural language sentences using a

straightforward library mapping method. For

example, the sentence alarm occurs before

keyPressed represents the less readable temporal

condition ¬keyPressed U alarm. The Kansas State

specification patterns [ACD] provides a convenient

library of natural language rule snippets and

corresponding temporal logic formal specifications.

7 Conclusion

Harel statechart and LTL are well-researched and

advocated specification languages for reactive

systems. Harel statecharts are widely popular through

their UML counterpart. LTL is advocated primarily

by the academia. While Harel statecharts are visual

and deterministic, LTL is textual/logical and non-

deterministic. TLCharts capture combine both

thereby enabling specifications that are visual,

partially deterministic, but also logical and non-

deterministic when needed. TLCharts have a

straightforward formal automata based semantics that

support a meaningful interpretation of statecharts

with state overlapping. With TLCharts, temporal

conditions are anchored in states, such as alarm U

keyPressed being anchored in the state Alarm-

Necessary in Fig. 2. This eliminates the need to use

deeply nested LTL, when using the pure LTL

alternative, or to provide a fully deterministic

statechart, when using the Harel statechart

alternative. We call this property just in time TL. In

addition, TLCharts enable specification armor

plating.

Clearly, TLCharts can be abused; a single state

TLChart with highly nested LTL and MTL

conditions is a legal TLChart and so is a fully

deterministic, implementation level detailed, Harel

statechart. Further research is needed to establish

when each constituent capability of this new

formalism actually contributes a significant added

value to the specification effort.

References

[ACD] G.S. Avrunin, J. C. Corbett, and M. B. Dwyer-

Property Specification Patterns for Finite-State

Verification, 2nd Workshop on Formal Methods in

Software Practice, March 998.

[Br] B. Bruegge- Object-Oriented Software Engineering:

Conquering Complex and Changing Systems, Prentice

Hall, ISBN 0- 3-489725-0.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

[CPM] E. Chang, A. Pnueli- Z. Manna - Compositional

Verification of Real-Time Systems, Proc. 9'th IEEE Symp.

On Logic In Computer Science, 994, pp. 458-465.

[D] D. Drusinsky- On Synchronized Statecharts, Ph.D.

Dissertation, Weizmann Institute of Science, 988.

[D2] D. Drusinsky- Monitoring Temporal Rules Combined

with Time Series, Proc. 2003 Computer Aided Verification

Conference (CAV), pp. 4- 7.

[D3] D. Drusinsky- Semantics and Runtime Monitoring of

TLCharts: Statechart Automata with Temporal Logic

Conditioned Transitions. Proc. 4’th Runtime Verification

workshop, RV’04 (invited).

[D4] D. Drusinsky- Specs Can Handle Exceptions.

Embedded Developers Journal, November 200 , pp. 0- 4.

(http://eet.com/embedsub/archive.html).

[DH] D. Drusinsky and David Harel. On the power of

bounded concurrency I: Finite Automata. Journal of the

ACM, 4 (3): 5 7-539, May 994.

[Ha] D. Harel- Statecharts: A Visual Formalism for

Complex Systems, Science of Computer Programming 8,

pp. 23 -274, 987

[HN] D. Harel and A. Naamad- The Statemate Semantics

of Statecharts. ACM Tran. of Software Engineering and

Methodology, 5(4) Oct 996.

[EFHL] C. Eisner, D. Fishman, J. Havlicek, Y. Lustig, A.

McIsaac, D. Van Campenhout-Reasoning with Temporal

Logic on Truncated Paths, Proc. 2003 Computer Aided

Verification Conference (CAV), pp. 27-39.

[E] M.Enciso, I. P. de Guzm´an, C.Rossi- Using Temporal

Logic to represent Dynamic Behaviour of UML

Statecharts, en: ECOOP 2002 Workshop on Integration and

Transformation of UML Models (2002).

[HU] J. Hopcroft. and J. Ullman- Theory of Formal

Languages and Automata, Addison Wesley, 2’nd edition,

200 , ISBN 0-20 -44 24-

[Ka] Kahanna, C.A.- Statecharts with overlapping states,

M.S. Thesis, Dept. of Mathematics and Computer Science,

Bar-Ilan University, Ramat-Gan, Israel, 986 (Hebrew).

[MP] Z. Manna, A. Pnueli - Verification of Concurrent

Programs: Temporal Proof Principles, Proc. of the

Workshop on Logics of Programs, Springer LNCS, 98

pp. 200-252.

[Pn] A. Pnueli - The Temporal Logic of Programs, Proc.

8’th IEEE Symp. on Foundations of Computer Science,

977, 46-57.

[RB] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick,

W. Lorensen - Object Oriented Modeling and Design,

Prentice Hall, ISBN 0- 3-62984 -9.

[SR] S. R. Sowmya and S. Ramesh - Extending Statecharts

with Temporal Logic,

IEEE Transactions on Software Engineering, Vol. 24, No.

3, March 998 – 998.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore. Restrictions apply.

