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Abstract

This paper describes TLCharts, a visual specification 

language that combines the visual and intuitive 

appeal of non-deterministic Harel Statecharts with 

formal specifications written in Linear-time (Metric) 

Temporal Logic (LTL and MTL). The formalism is 
described using a practical infusion pump 

requirement example. The infusion pump TLChart 

specification is then compared with two competing 

representations: temporal logic and deterministic 

Harel statecharts. The infusion pump example will 

also be used to point out the strength of each 
constituent TLCharts component. We provide an 

informal semantics for TLCharts using non-

deterministic automata with negation and 

overlapping states.  Finally, we show how natural 

language snippets are used instead of TLChart 
temporal logic conditions thereby inducing a 

formalism we call NTLCharts.

1   Introduction 

Temporal Logic is a special branch of modal logic 

that investigates the notion of time and order. Linear-

time Temporal Logic (LTL) is an extension of 

propositional logic where, in addition to the well-

known propositional logic operators, there are four 

future-time operators ( -Eventually, -Always, U-

Until, -Next) and four dual-past time operators. 

Pnueli [Pn] suggested using LTL for reasoning about 

concurrent programs. Since then, several researchers 

have used LTL to state and measure correctness of 

concurrent programs, protocols, and hardware (e.g., 

[MP, Pn]). Metric Temporal Logic (MTL) was 

suggested by Chang, Pnueli, and Manna as a vehicle 

for the verification of real time systems [CPM]. MTL 

extends LTL by supporting the specification of 

relative-time and real-time constraints. With MTL, 

all four LTL future-time operators can be 

characterized by relative-time and real-time 

constraints specifying the duration of the temporal 

operator. Temporal Logic with Time Series 

constraints (TLS) was suggested by Drusinsky as an 

extension of MTL which enables temporal 

specifications that assert about time-series properties 

such as stability, monotonicity, and min-max values 

[D2].

Ever since first published [Ha] and later incorporated 

into the OMT methodology and eventually into the 

UML standard, Harel statecharts have been described 

in numerous papers and books (e.g.[Br, RB]). 

Statecharts extend finite state diagram with hierarchy 

(state nesting), concurrence, and history states. Harel 

Statecharts are typically used for design analysis and 

implementation; for example, Brugge suggests using 

statecharts in the design analysis phase of an object 

oriented UML based design methodology [Br]. 

Theoretical results [DH] show that non-deterministic 

are exponentially more succinct than deterministic 

Harel statecharts. 

 A formal semantics of Harel statecharts has been 

suggested in [HN]. This paper uses new automata 

theoretic semantics for statecharts first suggested in 

[D ]. This semantics lends itself to the inherently 

non-deterministic semantics required by the 

TLCharts formalism. 

Sowmya and Ramesh suggested in [SR] to use 

temporal logic assertions with statechart qualities by 

applying temporal logic in a hierarchical manner; the 

resulting language is a new hierarchical form of the 

textual temporal logic formalism. In comparison, our 

hybrid language is a true automata-theoretic hybrid 

with a unified syntax and semantics; the resulting 

language is highly visual and familiar language, with 

special LTL annotation of some transitions. 

Enciso et-al. [E] suggest LNint-e, a logic that 

combines points and intervals and the absolute and 

relative approaches of LTL and statecharts. This is a 

new logic with new syntax and semantics. In 

contrast, our suggested language maintains, for the 

most part, the syntax and semantics of both 

languages. 

The Mathworks’ Stateflow statechart tool has a so-

called temporal logic extension. Stateflow events and 

conditions can use the four operators after, before, at,

and every. These four operators are essentially 

extended versions of the LTL eventuality operator. 

Most notably, the Stateflow formalism lacks non-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore.  Restrictions apply.



determinism, negation, and an operator equivalent to 

LTL’s Until operator. 

Non-deterministic Finite Automate (NFA) are often 

used as a specification language [HU]. The TLChart 

formalism suggested in this paper extends the NFA 

formalism in two ways: it suggests using non-

deterministic statecharts with negation instead of flat 

and sequential NFA formalism, and it supports the 

annotation of transitions with LTL, MTL and TLS 

conditions.  

In this paper we describe TLCharts, a formalism that 

visually and intuitively resembles Harel statecharts 

while enabling temporal-logic conditioned 

transitions. This is useful for the specifying abstract 

non-deterministic temporal properties inside a 

statechart specification. This paper contains informal 

semantics of TLCharts; formal semantics are 

avaliable in [D3].

2   Example: Infusion Pump Keypad 

Control 

The infusion pump example consists of the following 

four conditions: (infusion)begin, (infusion)end,

keyPressed and alarm. The requirement is:  

R : a session is the interval between a begin and an

end-condition. For every such session a keyPressed 

must be repeatedly sensed within two-minute 

intervals or else an alarm must sound within 0

seconds and until keyPressed is sensed. Also 

according to this specification, once the alarm sounds 

then the assertion has succeeded and no more alarms 

are permitted. The end-condition  is defined as an end

being repeatedly sensed until a later time when begin 

is sensed.

In sections 2.  and 2.2 we analyze two seemingly 

correct formal specifications for requirement R ,

namely MTL and Harel statechart specifications. 

These specifications are more complex than the 

alternate TLChart specification and also contain 

subtle inaccuracies rendering them less effective than 

the corresponding TLChart specification. 

2.1   Infusion Pump: MTL Specification 

The following MTL assertion attempts to capture 

requirement R :

L :  ( begin =>  

L2:      ( ((begin ∨ keyPressed) =>  

L3:         ( ( ≤ 20 ¬alarm) ∧
L4:            (( ≤ 20 keyPressed) 

L5:               ∨ (¬keyPressed U [ 20, 30]

L6:                   (alarm U

L7:                           (keyPressed ∧ ¬alarm))) 

L8:            ) 

L9:         ) 

L 0:     ) U (end U

L :                   (begin  ∧ end)) 

L 2:    )) 

Line L  initiates the session. Line L2 combined with 

L4 guarantees the repetitive demand for  keyPressed

to be sensed every two minutes. Line L3 trivially 

requires no alarm until those two minutes have 

elapsed. Lines L5, L6, and L7 require an alarm 

within 0 seconds of those two minutes, and until 

keyPressed is sensed, with no alarm permitted 

afterwards. Lines L 0 and L  are for the end-

condition . 

This assertion suffers from several deficiencies: 

. The assertion is arguably non-trivial while the 

natural language requirement is straightforward.  

For example, the term begin ∨ keyPressed is 

confusing. In fact, for purposes of brevity, the 

MTL specification does not forbid an alarm 

while not in session; the Harel statechart of Fig. 

, and the TLChart of Fig. 2 do contain this 

constraint. 

2. The assertion might fail under the following 

scenarios, assuming the LTL-model cycle time is 

one second, i.e., the assertion is evaluated every 

second. All scenarios begin with a begin at time 

0.

a. An interval of 22 seconds between two 

consecutive keyPressed events followed by an 

alarm sounding  second later and a 

keyPressed -second afterwards, followed by 

no keyPressed or alarm for 40 seconds. The 

assertion fails though the requirement is that 

following the first alarm the assertion must 

succeed. 

b. An interval of 22 seconds between two 

consecutive keyPressed events followed by an 

alarm sounding 4 seconds later and a 

keyPressed -second afterwards. The assertion 

fails because LTL’s ρUϕ requires ρ to 

repeatedly succeed until ϕ succeeds, namely 

¬keyPressed must be constantly true until the 

alarm. 

c. An intuitive expectation is that an end-

condition  will terminate the need for a flow of 

keyPressed events. However, if keyPressed 

occurs at time t and an end-condition  at time

t+20 then one additional keyPressed will still 

be required after time t+20. In other words, 

there is no simple way to explicitly truncate
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the requirement once an end-condition  is 

detected other than to conjunct the end-

condition  with the inner parts of the rule.
Separate research on LTL with truncated paths 

has been published in [EFHL]. 

2.2   Infusion Pump: Harel Statechart and 

TLChart Specifications 

A deterministic Harel statechart specification of 

requirement R  is illustrated in Fig. . and a 

corresponding TLChart specification is illustrated in 

Fig. 2. Section 3 describes the suggested informal 

syntax and semantics for TLCharts.  

Fig.  and Fig. 2 are both legal TLCharts, i.e. Harel 

statecharts are a special case of TLCharts, and so are 

LTL and MTL assertions.  Note that TLCharts in Fig. 

 and Fig. 2 solve the problems described earlier.  

A TLChart extends deterministic statechart in two 

primary ways: 

. Some transitions are annotated with LTL, MTL 

or TLS conditions, such as the transition labeled 

alarm U keyPressed in Fig. 2. 

2. TLChart’s support non-deterministic with 

negation. Armor plating of TLCharts, described 

in Section 5, uses this feature. 

Note that Harel statecharts, when used for 

specification, must be deterministic; otherwise, the 

specification is ambiguous. Creating correct 

deterministic behavior is a non-trivial part of the 

implementation process. For example, consider the 

following scenario: begin at time 0 and then no 

keyPressed for more than two minutes followed, on 

cycle #Cyc, by the sequence: Seq =

end.alarm.keyPressed.begin. The Harel statechart of 

Fig.  has unexpected behavior with respect to this 

scenario. Having end precede alarm indicates that the 

user wants to end the current session; nevertheless, 

the statechart ends the computation in state Done

rather than in state Init. Consequently, a legal 

continuation of this scenario that results in a legal 

alarm will be determined by the statechart of as an 

error. A more accurate Harel statechart is a 

refinement of Fig.  with more implementation detail 

such that following end, whenever a sequence 

satisfying alarm U keyPress is recognized, it is 

memorized. Later, if the end turns out to be a false 

positive (i.e., the end-condition  is not satisfied), the 

statechart will transition to state Done.

Alternatively, using statechart formalism with 

semantics that support non-determinism, the 

following non-deterministic approach can be used. 

When end is detected, then in addition to the existing 

computation leading towards state Init, a non-

deterministic fork is made creating an additional 

computation that remains inside State- ; this 

computation kicks-in if the complete end-condition 
is not satisfied.  

It will follow from the semantics of Section 3 that the 

TLChart of Fig. 2 operates on the input sequence Seq

in the following accurate manner. The TLChart 

traverses the transition State- →Init on cycle #Cyc,

before the transition Alarm-Necessary→Done is 

enabled on cycle #Cyc+ .

It will also follow from the semantics that the 

TLChart of Fig. 2 is deterministic if alarm and end

Init

Wait-For-KeyPressed

Alarm-Necessary

[tm(2min)]

[begin]

State-1

Error

[tm(10sec)]

[alarm]

[keyPressed]

State-2

State-3

[end]

[begin]

Done

[!end]

[alarm]

[]

[end]

Alarm

[!alarm][keyPressed]

[alarm]

[]

[alarm]

Figure 1. Deterministic Harel statechart 

specification for requirement R1. 

Figure 2. TLChart specification for requirement 
R1. All states other than Error are by default 
good states; all states with no specified priority 

have the default, i.e., lowest, priority. 

Init (1)

W ait-For-KeyPressed

Alarm-Necessary

[tm (2m in)]

[begin]

State-1

Error (2)

[tm (10sec)]

[alarm ]

[keyPressed]

Done (1)

[{alarm  U keyPressed }]

[end{end U begin }]

[alarm ]

[]

[alarm]
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are mutually exclusive; similar mutual exclusivity 

requirements exist for the Harel statechart of Fig. .

2.3   Infusion Pump Requirement R2 

In preparation for the description of TLChart syntax 

and semantics we introduce an extension R2 to the 

R  requirement as follows. Condition valveOpen (its 

negation denoted as valveClosed) is added as an 

additional visible condition. The end-condition  is 

now re-defined as an interval that starts with the 

valveClosed and then end is repeatedly sensed until a 

later time when begin is sensed. The TLChart of Fig. 

3 is an extension of Fig. 2 that formally captures 

requirement R2. It extends the TLChart of Fig. 2 with 

concurrence.  

3   TLCharts: Informal Syntax and 

Semantics 

In this paper we consider Harel statecharts as first 

described in [Ha], including state hierarchy, 

concurrence, and history states. Hence, no state 

overlapping is permitted; this assumption will be 

changed in the next section. For simplicity, we 

assume that statechart transitions are annotated with

conditions and not events, although we expect 

TLChart to be used and applied with events and 

conditions, much like UML statecharts. Hence, 

TLChart transitions are annotated with one or both of 

the following types of conditions: propositional and 

temporal. Temporal conditions include all legal LTL 

and MTL formulae. In Fig. 2, 3, and 4 temporal 

conditions are represented using curly braces. Hence 

[end {end U begin}] represents the propositional 

condition end and the temporal condition end U 

begin.

TLCharts specify requirements using formal 

languages. The semantics of a TLChart are defined 

using an Equivalent Non-Deterministic Automaton
(ENFA) [D , HU]. Once defined in terms of its 

ENFA, a TLChart defines correctness properties in a 

manner that resembles logic specification, such as 

temporal logic specification. It observes a given input 

tape and decides whether this tape is acceptable or 

not. In real life terms the input tape corresponds to a 

combined sequence of inputs to-, and manifested 

outputs from-, a given system.  

The ENFA’s state set consists of all possible state 

configurations in the original TLChart, i.e., where 

statechart concurrence is represented using all 

possible combinations constituent states from 

concurrent threads. Hence, in Fig. 3 {Init}, {Wait-

For-KeyPressed, State-3}, and {Wait-For-

KeyPressed, State-4}, are all legal states of the 

ENFA, while {Init, State-4} is not. Note that state 

configurations do not, in general, contain information 

about corresponding superstates, such as Wait-For-
KeyPressed and State-3 residing under State-2, which 

in turn resides under State-1. This information is not 

necessary because, absent state overlapping, state 

hierarchy is unique. However, we will change this 

notation when we describe TLCharts with 

overlapping states. 

As a preliminary step, before we describe the 

ENFA’s transition relation, note that we can replace 

statechart and TLChart hierarchical transitions, such 

as State- →Init in Fig. 2, with concurrence, using a 

new concurrent thread with one inner state, e.g. State-

a. The hierarchical transition is then replaced with 

the transition State- a→Init.

To understand the ENFA’s transition relation we first 

consider a TLChart with no temporal conditions.  In 

this case the ENFA’s transition relation pairs states 

(i.e., TLChart configurations) using one or more 

concurrent constituent TLChart transitions. Hence, in 

Fig. 3, several possible transitions are: 

. {Wait-For-KeyPressed, State-3}→keyPressed, 

valveOpen {Wait-For-KeyPressed, State-4}

constructed from the concurrent firing of the non 

conflicting constituent TLChart transitions: 

Wait-For-KeyPressed→keyPressed Wait-For-

KeyPressed and State-3→ valveOpen State-4.

2. {Wait-For-KeyPressed, State-

3}→keyPressed,{Wait-For-KeyPressed, State-3}

constructed from the firing of the single 

constituent TLChart transition Wait-For-

KeyPressed→keyPressed Wait-For-KeyPressed.

Figure 3. An extension of the TLChart of Fig. 2 

that captures requirement R2.  

Init (1)

Wait-For-KeyPressed

Alarm-Necessary

[tm(2min)]

[begin]

State-1

Error (2)

[tm(10sec)]
[alarm]

[keyPressed]

Done (1)

[{alarm U keyPressed }]

[end{end U begin }]

State-3 State-4

[valveOpen]

[valveClosed]

[]

[]

[alarm]

[alarm]

State-2
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3. {Wait-For-KeyPressed, State-3}→alarm {Error}

constructed from the single constituent TLChart 

transition Wait-For-KeyPressed→alarm Error.

In other words, an ENFA transition is the collective 

result of firing as many concurrent, non-conflicting, 

transitions as enabled by the current tape reading. 

Those threads where no transition fired simply 

remain in the same constituent TLChart state, as the 

case for State-3 in transition 2 above.

Note that conflicting simultaneously enabled ENFA 

transitions induce non-determinism. This is the case 

when keyPressed, valveOpen, and alarm are all true 

while in state configuration {Wait-For-KeyPressed,

State-3} i.e. when transitions  and 3 above are 

simultaneously enabled. 

Bridging the gap between the modal logic based 

semantics of LTL and formal languages is done in the 

standard way using two steps, as follows. First we 

use finite linear model semantics for temporal logic; 

for example Eventually ρ is satisfied if there exists 

state s in the finite linear model which satisfies ρ.

The second step is to translate the LTL model to an 

input tape for an automaton. An LTL model consists 

of a finite sequence of states with Boolean 

propositions and corresponding truth assignments 

assigned to each state. For example, consider a model 

with two states (i.e., two cycles), where {begin, 

¬end, KeyPressed, ¬alarm, valveOpen} is the truth 

assignment for state 0 (interpreted as cycle 0), and 

{¬begin, ¬end, KeyPressed, ¬alarm, valveClosed}

is the truth assignment for state . This model is 

therefore obviously exchangeable with an automaton 

input tape with the symbol <begin, ¬end,

KeyPressed, ¬alarm, valveOpen> in position 0 and

<¬begin, ¬end, KeyPressed, ¬alarm, valveClosed>
in position . In other words, each Boolean 

proposition pi and its negation ¬pi form an alphabet  

Σi. The input alphabet for the ENFA is then the 

Cartesian product of all Σi alphabets. 

We now incorporate temporal conditions into ENFA 

behavior. First, note that every ENFA transition has a 

pair of propositional and temporal conditions, which 

are the respective conjunctions of all propositional 

and temporal conditions annotating its constituent 

TLChart transitions. Temporal conditions affect 

ENFA behavior via the definition of a computation. 

Given an input tape, a conventional one-way non-

deterministic Finite Automaton (NFA) computation 

is essentially a sequence of “matching” transitions 

and corresponding tape head moves to the right; 

details are available in [HU]. ENFA’s extend this 

well known definition by requiring that for every 

transition ti in the computation the input tape is 

observed from position i into the future and back to 

the past, but without moving the tape head. The 

transition ti is then enabled only if the temporal 

condition is satisfied by the tape, while considering 

position number i as cycle 0.  

For example, using the infusion pump TLChart of 

Fig. 3, consider the input tape (using straight forward 

abbreviations of the infusion pump conditions): 

σ=σ .σ2.σ3.σ4.σ5.σ6=

{IB,¬IE,KP,¬A,VC}.{¬IB,¬IE,¬KP,¬A,VC}.

{¬IB,¬IE,KP,¬A,VO}.{¬IB,¬IE,KP,A,VC}.

{¬IB,IE,¬KP,¬A,VC}.{IB,¬IE,¬KP,¬A,VO}.

The following C computation is enabled by σ; each 

line is considered as a cycle, starting at cycle 0: 

{Init}→IB

{Wait-For-KeyPressed,State-3}→(none)

{Wait-For-KeyPressed,State-3}→KP, VO

{Wait-For-KeyPressed,State-4}→A

{Error} (a sink state) 

Similarly, the following C2 computation is also 

enabled by σ:

{Init}→IB

{Wait-For-KeyPressed,State-3}→(none)

{Wait-For-KeyPressed,State-3}→KP, VO

{Wait-For-KeyPressed,State-4}→KP,VC 

{Wait-For-KeyPressed,State-3}→ρ{Done} 

where ρ is the temporal condition IE U IB. ρ is 

enabled on cycle 4 because the input tape then points 

to σ5={¬IB,IE,¬KP,¬A,VC} and the tape suffix is 

σ5.σ6=

{¬IB,IE,¬KP,¬A,VC}.{IB,¬IE,¬KP,¬A,VO} which 

satisfies ρ.

Like their logical counterpart ENFA represent 

assertions about a system. They do so using notation 

that is similar to automata, namely by accepting or 

rejecting strings (tapes). A classical NFA accepts a 

string using an existential criterion, namely, if a 

computation ending in a final state exists. A dual 

universal automaton (∀-FA) accepts a string if all 

computations end in a final state. Combining both 

acceptance criteria results in an alternating 

automaton. Alternatively, an existential NFA with 

negation can be used instead of a combination of both 

acceptance criteria. ENFA supports negation using (i) 

negation inside temporal conditions, (ii) a 

combination of good (accepting) and error (rejecting) 

states. For a given input string s there is one or more 

possible computations, some of which end in a good 

state while others end in an error state. Conflicts are 

resolved using a priority scheme where the winning 

computation is the computation whose last visited 

state configuration contains a TLChart state St whose 

priority is higher than all other TLChart states in all 
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competing configurations. If St is a good state then 

the TLChart accepts the input string otherwise the 

TLChart rejects it. For example, in Fig. 3 consider 

two computations on the input string σ, C and C2. C

ends in the configuration {Error} where the error
state Error has priority 2. C2 ends in the configuration 

{Done} where good state Done has priority . σ is 

accepted because Done has a higher priority than 

Error.

Whenever the priority scheme cannot resolve 

conflicts we arbitrarily select the error computation 

as overriding. Likewise, whenever a single 

computation ends in a configuration that contains 

both good and error states, then we arbitrarily select 

the error state as overriding.  

TLCharts support two ways for specifying real-time 

constraints. The first way uses Harel statechart 

timeout (tm) events, while the second uses MTL. In 

Fig. 2 for example, the pair of transitions Wait-For-

KeyPressed→tm(2min)Alarm-Necessary, and Wait-For-

KeyPressed→keyPressed Wait-For-KeyPressed are

similar to a single transition Wait-For-

KeyPressed→ρAlarm-Necessary where ρ= ≤2min

keyPressed. The two approached differ with respect 

to the timing in which state Alarm-Necessary is 

reached. With the first representation Alarm-

Necessary is reached after two minutes while the 

second approach makes the transition immediately. 

We suggest a special visual delay construct, 

represented with thick edges, which can only be used 

with the following unnested temporal conditions: 

≤dρ ( ρ with an MTL upper bound d), ρ, and ρUψ.

It means that the transition is traversed only when the 

temporal condition becomes true, i.e., when the MTL 

upper bound d in for ≤dρ is reached, or when ψ is 

true in ψ or ρUψ. Hence, in Fig. 4, the transition 

Done→alarmError is enabled only when, for the 

preceding transition, the keyPressed that satisfies 

alarm U keyPressed is detected. 

From a semantic perspective, real-time 

measurements, used by statechart timout events and 

MTL constraints, are represented in our ENFA model 

using a standard monotonically increasing positive 

integer function that maps each tape cell with a real-

time value. 

Recall that a TLChart input string represents a 

sequence of combinations of stimuli and 

corresponding system responses; for example, the 

sequence σ contains keyPressed - generated by the 

environment, combined with alarm - a system 

generated response. Hence, from a verification 

standpoint, a rejected string means that the systems 

behavior does not comply with the specification, 

typically due to an incorrect system reaction to the 

input stimuli. This application of diagrams to 

specification rather than programming and design 

explains the existence of a sink state (the Error state), 

which does not typically exist in a design phase 

statechart. 

Note that though visually similar to Harel Statecharts, 

TLCharts are actually used and applied more like a 

temporal logic specification in the following sense. 

TLCharts do not describe the token by token reaction 

of a reactive system to environment stimuli. Rather, 

TLCharts consider a complete input string s, which 

combines both environment inputs s_in and system 

outputs s_out; a TLChart asserts about the legality of 

an s_out system response to the s_in stimuli. 

4   TLCharts with Overlapping States 

The proposed automata theoretic statechart semantics 

described in Section 3 caters for statecharts with 

overlapping states [Ka]. Consider the TLChart of Fig. 

4, a variant of the TLChart of Fig. 3 with overlapping 

states. In Fig. 4, state State-OVLP is an and state that 

shares its substates with the concurrent threads of 

state State-2.  Fig. 4 induces a state graph that is a 

DAG, not a tree (syntactically illegal when 

considered as a pure Harel statechart). The intuitive 

meaning of this state overlap is that it is illegal for a 

key to be pressed while the valve is open.  

From a semantics perspective, ENFA state 

configurations for TLCharts with overlapping states 

contain all state nesting information. Hence, the 

situation where State-KP and State-4 are 

simultaneously visited has two distinct possible 

Figure 4. An extension of the TLChart of Fig. 3

with overlapping states.  

State-OVLP

State-2
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representations as ENFA state configurations: {State-

, State-2, State-KP, State-4}, and {State- , State-

OVLP, State-KP, State-4}. Therefore, the following 

two computations are distinct, though when 

considering only leaf states they look alike: 

{Init}→IB

{State- ,State-2,

               Wait-For-KeyPressed,State-3}→ KP,VO

{State- ,State-2, State-KP,State-4}→ VC

{State- ,State-2, State-KP,State-3}

and  

{Init}→IB

{State- ,State-2,

               Wait-For-KeyPressed,State-3}→ KP,VO

{State- , State-OVLP, State-KP,State-4}→ (any)

{Error}

Given that the second computation ends in Error, a 

state with higher priority than any of the states in 

{State- , State-2, State-KP, State-3}, the TLChart 

rejects the input, effectively stating that State-KP and 

State-4 cannot be visited simultaneously. 

5   Armor Plating Specifications 

Run time assertion checking is a common method for 

armor-plating programs against unexpected errors. 

Recently, Drusinsky suggested an armor plating 

method using run-time monitoring of LTL and MTL 

assertions combined with exception handling [D4].  

TLCharts offer an opportunity for armor-plating 

specifications using over-specification, namely by 

adding temporal conditions to an otherwise fully 

specified TLChart. Consider for example requirement 

R  and the corresponding TLChart of Fig. 2. A 

correctness property ϕ of interest, expressed in MTL, 

is that in state Wait-For-KeyPressed:

(¬ ≤ 20 keyPressed) =>

[ 20, 30] (alarm U (keyPressed ∧ ¬alarm).

Fig. 2,3, and 4 can be armor-plated with a transition 

Wait-For-KeyPressed->¬ϕError.

TLCharts appear to be a good language for armor 

plating due to their non-deterministic semantics. 

6   NTLChart: Using Natural Language 

NTLChart specifications are TLCharts where natural 

language snippets are used instead of temporal logic 

conditions. NTLCharts are based on the observation 

that often the temporal conditions inside TLCharts 

are short and use little nesting. In Fig. 3 for example, 

both temporal conditions have no nesting of temporal 

operators. 

Under such circumstances, the number of 

possibilities for temporal conditions is rather limited. 

It is therefore possible to represent temporal 

conditions with natural language sentences using a 

straightforward library mapping method. For 

example, the sentence alarm occurs before 

keyPressed represents the less readable temporal 

condition ¬keyPressed U alarm. The Kansas State 

specification patterns [ACD] provides a convenient 

library of natural language rule snippets and 

corresponding temporal logic formal specifications.

7   Conclusion

Harel statechart and LTL are well-researched and 

advocated specification languages for reactive 

systems. Harel statecharts are widely popular through 

their UML counterpart. LTL is advocated primarily 

by the academia. While Harel statecharts are visual 

and deterministic, LTL is textual/logical and non-

deterministic. TLCharts capture combine both 

thereby enabling specifications that are visual, 

partially deterministic, but also logical and non-

deterministic when needed. TLCharts have a 

straightforward formal automata based semantics that 

support a meaningful interpretation of statecharts 

with state overlapping. With TLCharts, temporal 

conditions are anchored in states, such as alarm U 

keyPressed being anchored in the state Alarm-

Necessary in Fig. 2. This eliminates the need to use 

deeply nested LTL, when using the pure LTL 

alternative, or to provide a fully deterministic 

statechart, when using the Harel statechart 

alternative. We call this property just in time TL. In 

addition, TLCharts enable specification armor 

plating. 

Clearly, TLCharts can be abused; a single state 

TLChart with highly nested LTL and MTL 

conditions is a legal TLChart and so is a fully 

deterministic, implementation level detailed, Harel 

statechart. Further research is needed to establish 

when each constituent capability of this new 

formalism actually contributes a significant added 

value to the specification effort. 

References 

[ACD] G.S.  Avrunin, J. C. Corbett, and M. B. Dwyer- 

Property Specification Patterns for Finite-State 

Verification, 2nd Workshop on Formal Methods in 

Software Practice, March 998.  

[Br] B. Bruegge- Object-Oriented Software Engineering: 

Conquering Complex and Changing Systems, Prentice 

Hall, ISBN 0- 3-489725-0.  

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore.  Restrictions apply.



[CPM] E. Chang, A. Pnueli- Z. Manna - Compositional 

Verification of Real-Time Systems, Proc. 9'th IEEE Symp. 

On Logic In Computer Science, 994, pp. 458-465. 

[D ] D. Drusinsky- On Synchronized Statecharts, Ph.D. 

Dissertation, Weizmann Institute of Science, 988. 

[D2] D. Drusinsky- Monitoring Temporal Rules Combined 

with Time Series, Proc. 2003 Computer Aided Verification 

Conference (CAV), pp. 4- 7.

[D3] D. Drusinsky- Semantics and Runtime Monitoring of 

TLCharts: Statechart Automata with Temporal Logic 

Conditioned Transitions. Proc. 4’th Runtime Verification 

workshop, RV’04 (invited). 

[D4] D. Drusinsky- Specs Can Handle Exceptions. 

Embedded Developers Journal, November 200 , pp. 0- 4.

(http://eet.com/embedsub/archive.html).

[DH] D. Drusinsky and David Harel. On the power of 

bounded concurrency I: Finite Automata. Journal of the 

ACM, 4 (3): 5 7-539, May 994.  

[Ha] D. Harel- Statecharts: A Visual Formalism for 

Complex Systems, Science of Computer Programming 8, 

pp. 23 -274, 987 

[HN] D. Harel and A. Naamad- The Statemate Semantics 

of Statecharts. ACM Tran. of Software Engineering and 

Methodology, 5(4) Oct 996.  

[EFHL] C. Eisner, D. Fishman, J. Havlicek, Y. Lustig, A. 

McIsaac, D. Van Campenhout-Reasoning with Temporal 

Logic on Truncated Paths, Proc. 2003 Computer Aided 

Verification Conference (CAV), pp. 27-39. 

[E]  M.Enciso, I. P. de Guzm´an, C.Rossi- Using Temporal 

Logic to represent Dynamic Behaviour of UML 

Statecharts, en: ECOOP 2002 Workshop on Integration and 

Transformation of UML Models (2002).  

[HU] J. Hopcroft. and J. Ullman- Theory of Formal 

Languages and Automata, Addison Wesley, 2’nd edition, 

200 , ISBN 0-20 -44 24- 

[Ka] Kahanna, C.A.- Statecharts with overlapping states, 

M.S. Thesis, Dept. of Mathematics and Computer Science, 

Bar-Ilan University, Ramat-Gan, Israel, 986 (Hebrew). 

[MP] Z. Manna, A. Pnueli - Verification of Concurrent 

Programs: Temporal Proof Principles, Proc. of the 

Workshop on Logics of Programs, Springer LNCS, 98

pp. 200-252.  

[Pn] A. Pnueli - The Temporal Logic of Programs, Proc. 

8’th IEEE Symp. on Foundations of Computer Science, 

977, 46-57.  

[RB] J. Rumbaugh, M. Blaha, W. Premerlani, E. Frederick, 

W. Lorensen - Object Oriented Modeling and Design, 

Prentice Hall, ISBN 0- 3-62984 -9.  

[SR] S. R. Sowmya and S. Ramesh -  Extending Statecharts 

with Temporal Logic,  

IEEE Transactions on Software Engineering, Vol. 24, No. 

3, March 998 – 998.  

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04) 

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 14:39 from IEEE Xplore.  Restrictions apply.


