
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9, NO. 7, JULY 1990 119

Short Papers

Symbolic Cover Minimization of Fully I/O Specified
Finite State Machines

DORON DRUSINSKY-YORESH

Abstract-Symbolic cover minimization is an important step within
a well-known state-assignment technique for finite state machines
(FSM’s) 121. Currently, multiple-valued-input logic minimization tech-
niques are used to find a minimum symbolic cover. The former prob-
lem, however, is computationally intractable, so heuristics are used.
We show a simplified technique, based on an extension of the FSM
minimization technique, which enables an efficient deterministic solu-
tion for fully I/O specified FSM’s.

I. INTRODUCTION
Finite state machines (FSM’s) are one of the most popular

models for VLSI control systems. FSM’s have a well-known hard-
ware implementation which consists of two components: a com-
binational circuit and a memory. The memory stores the (binary)
representation of the FSM state throughout computation whereas
the combinational circuit generates machine output and next-state
representation as a function of the inputs and the present state.

Programmable logic arrays (PLA’s) are a regular and structured
technique for implementing the combinational circuit. PLA area,
however, tends to grow nonlinearly with FSM size. In fact, the
number of PLA rows might be as great as the number of edges in
the FSM which is O (n *) , where n is the number of FSM states.

It is well known that the binary representation of the FSM state
set has tremendous effect on PLA size. The corresponding opti-
mization problem (i.e., to find the binary state representation that
minimizes PLA area) is the state assignment problem. State as-
signment has been a subject of extensive research (see [2] for an
extensive reference list). A recent approach to state assignment [2]
consists of two major steps: symbolic cover minimization, and the
constrained encoding problem. Currently, symbolic cover mini-
mization is computed using multiple-valued logic minimization.
This problem, however, is computationally intractable, so less ac-
curate heuristics are used. This technique remains computationally
intractable even when the input FSM is ful ly I/O spec$ied (but has
many states). An alternative approach to computationally intrac-
table problems is to reduce their generality such that the simpler
problem has a tractable solution. Accordingly, this paper suggests
a deterministic approach for the symbolic cover minimization prob-
lem for fully I/O specified FSM’s. We prove a uniqueness theorem
for a hierarchical extension of FSM’s and use this result to derive
our algorithm.

11. PRELIMINARIES A N D DEFINITIONS
Following the notation in [2] , an FSM is a 6-tuple (yo, X, Y, Z,

6, A) where X, Y, and Z are (finite) sets of primary inputs, states
and primary outputs, respectively, 6 : X X Y 4 Y is the next-state

Manuscript received December 15, 1988; revised February 28, 1989
and June 26, 1989. This paper was recommended by Editor M. R. Light-
ner.

The author is with the CAD Department, Sony Corporation, Atsugi-shi.
Kanagawa-ken, 243 Japan.

IEEE Log Number 8934109.

function, A : X X Y --* Z is the output function,’ and yo E Y is the
initial state. Following the definitions in [I] let X and Z consist of
tuples of symbolic variables, X = Si X . . . X SA and Z = Sp X
. . . X S,“. In the general case 6 (A) is given as a partial function
with incomplete specification over X or Y. In this paper however,
we assume that these functions are total.2 Hence, we say our input
FSM’s are fully I/O-spec$ed.

A symbolic cover is a set of primitive elements called symbolic
implicants. Each symbolic implicant consists of 4 fields of sym-
bolic strings, corresponding to the primary inputs, present states,
next states, and primary outputs, respectively. A symbolic impli-
cant represents a transition from one or more states to a next state,
under some input conditions. Hence, an example of a symbolic
cover is [2]

la START state - 6 a
1 0 1 state - 2 state - 5 a
la state - 3 state - 5 a
la state - 4 state - 6 a
l a state - 5 START f i
1 0 1 state - 6 START y
l a state - 7 state - 5 a

a START state - 4 y
a state - 2 state - 3 f i
a state - 3 state - 7 p
a state - 4 state - 6
a state - 5 state - 2 a
a state - 6 state - 2 a
a state - 7 state - 6 a.

A minimum symbolic cover is one of minimum cardinality, i.e.,
consisting of a minimum number of symbolic implicants. Symbolic
minimization consists of finding such a minimum symbolic cover.

The state assignment problem consists of choosing a Boolean
representation of the internal states of the machines so that PLA
size is minimized. The state assignment method suggested in [2]
consists of symbolic cover minimization followed by a constrained
encoding problem. Symbolic cover minimization is carried out in
[2] by transforming the symbolic cover into a multiple-valued cover
which is a representation of the symbolic cover in multiple-valued
logic, followed by a multiple-valued cover minimization proce-
dure. The effect of symbolic minimization is to group together the
states that are mapped by some input into the same next state and
assert the same output [2] .

We define a hierarchical FSM (HFSM) as an extension of a FSM
in which edges run between subsets of states, called superstates.
An edge from superstate q1 to superstate q2 in an HFSM S, is equiv-
alent to all possible edges with the same label and same output from
an element of q1 to an element of q2 within the original (extended)
FSM A. We say S is determinktic iff A is deterministic. Clearly, if
S is deterministic, then every such q2 must be a singleton.

Consider the FSM A in the example above. It has an equivalent

‘Throughout, we shall refer to deterministic FSM’s only, thus 6 and h
are functions.

’Note that A’s range must be fully specified, otherwise (when h maps
to “subtuples” of elements of Z) a nondeterministic behavior is implied.
This also follows from the definitions of h as a function rather than a re-
lation.

0278-0070/90/0700-0779$01 .OO 0 1990 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

780 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9, NO. 7, JULY 1990

HFSM S with the superstates {START, 4}, { 2 , 3 , 7 }. and { 5 ,
6) as well as all singletons. Hence, for example, S has an edge
from { 2 , 3 , 7 } to { 5 } labeled 1 0 1 that asserts output a. This edge
“represents” three edges in A . 3 HFSM’s are actually a special case
of Harels’ statecharts which are FSM’s extended with hierarchy
and concurrency. See [3]-[SI for details.

The superstates of an HFSM S together with the set inclusion
relation, form a grid which is represented by a directed acyclic
graph (DAG) denoted DAG(S) . Note that for an HFSM S that
extends an FSM A , the set of leaves of DAG (S) (called also atomic
states) is equal to A’s set of state^.^ We call superstates with an
outgoing edge labeled a that assert output 0, an a ; 0-superstate,
and the corresponding edge an a; 0-edge. Hence, in our example
{ 2 , 3 , 7) is a la; a-superstate, and { 5, 6) is an a ; a-superstate.
Clearly, if S is deterministic then every two a; 0-superstates are
either disjoint or their outgoing a; 0-edges lead to the same (atomic)
state.

A j n i t e automaton (FA) is an acceptor version of an FSM. For-
mally a FA is a 5-tuple (yo, X , Y , 6, F) , where X , Y , yo , and 6
stand for an FSM, and F is a set o f j n a l states. A FA M accepts
an input string x iff M reaches a final state when it finishes scanning
x , starting from yo (we also say that M has a run on x that reaches
q) [6] . It accepts a set (language) of strings L , iff every string x in
L is individually accepted. FA is an extremely convenient tool for
proving theoretical properties of FSM’s [6] .

A hierarchical FA (HFA) is a straightforward hierarchical ex-
tension of FA. Hence, an HFA relates to a FA the same way an
HFSM relates to an FSM. Clearly, in this case it suffices to con-
sider a-superstates and a-edges. An edge-minimum (stare-mini-
mum) HFA for a language L is an HFA with a minimum amount
of edges (atomic states) that accepts L. An edge-minimal HFA is
a unique edge-minimum HFA.

111. THE UNIQUENESS OF THE MINIMAL SYMBOLIC COVER FOR

FULLY I/O-SPECIFIED MACHINES
For simplicity, we shall present the minimality result for accep-

tors only. Clearly, when all fields of an implicant are symbolic (and
assuming fully I/O-specified machines), then the effect of symbolic
minimization is to group together the states that are mapped by
some input into the same next state. Hence, symbolic minimization
corresponds to finding an edge-minimum HFA.

Extending Nerodes [6] , [8] definition, we define the following
equivalence relation for a language L and an input symbol a: xR?y
iff for every z E X * , x . a . z E L i f fy . a . z E L. Let RL be
Nerodes equivalence relation, that is XRLY iff for every z E X * x .
z E L iffy . z E L . Let [X I , and [x] denote the R: and R, equiv-
alence classes that include x , respectively. Clearly, for every a , R,
refines’ RE. We define S, as the following HFA. Its set of super-
states consists of all R;1 equivalence classes for all a c X , and all RL
equivalence classes. The HFA grid DAG(S,) is naturally defined
over these classes with the set inclusion relation. S L includes an a-
edge between [x] , and’[x * a] for every input symbol a. Clearly,
this is a consistent definition (namely, if does not depend on the
choice of x) . S,’s initial atomic state is [E] , and its set of (atomic)
final states is the set of all states [x] such that x is in L. Clearly,
S,’s run on x leads to [X I , thus x is accepted by S, iff it is in L.

Let S be a deterministic HFA. We define the relation: x R f y iff
the run of S on x and the run of S on y lead to the same a-superstate.
Clearly, RP is reflexive and symmetric. It is not necessarily tran-
sitive because x and y might lead to an a-superstate q , whereas y
and z lead to an a-superstate q2, where q , and q2 are nondisjoint
a-superstates that have an outgoing edge labeled a that leads to a

3Note how each superstate actually corresponds to a face in [2].
‘A DAG(S) node is a leaf iff it precedes the empty-set node in the grid.
‘Formally, R , refiles RF iff xR,y implies xRYy.

common (atomic) state q3.6 Clearly, when R,* is an equivalence
relation, its index is equal to the amount of wedges in S.6

The following theorem is a “hierarchical” extension of the fa-
mous Myhill-Nerode theorem [6] , [8].

Theorem 1: The edge-minimum deterministic HFA that accepts
a regular set L is unique up to superstate renaming and is given by
S,. Moreover, SL is state-minimum.

Proof: We prove edge-minimality first. Assume by negation
that a different HFA S is edge-minimum. Clearly, for every a ,
RF must be an equivalence relation. Otherwise, RP is not transitive,
which implies that either S is nondeterministic, or there are two
nondisjoint a-superstates whose outgoing wedges lead to the same
(atomic) state. By unifying these superstates we can reduce one
edge, hence, S is not edge-minimum. A contradiction.

As stated earlier, the number of edges within S is equal to the
sum of indexes of all RP, and similarly for SL and RT. R,*, however
refines R;I. Therefore, Rf’s index and R f ’ s index must be equal.
Hence, each of the superstates of S can be identified with a super-
state of S,. Let q be a superstate of S. There must be some string
x such that S’s run on x reaches q , otherwise we can remove q . We
identify q with superstate q’ of SL for which the run of SL on x
reaches q ’ . This 1-1 identification is consistent, and defines super-
state renaming. Note that this renaming preserves hierarchy,
namely, whenever q and q’ are mapped together, so are their ances-
tors. That SL is state-minimum follows from the fact that it extends
the minimal Nerode a u t ~ m a t o n . ~

Note that Theorem 1 is actually a minimization theorem for se-
quential statecharts.

An interesting observation is the fact that the depth of hierarchy
in the minimal deterministic HFA is limited by the size of Y. More
specifically, the size of Y is always at least the maximum, over all
S, leaves s, of the sum of lengths of all paths from the root to s in
DAG(&) . This is because for every leafs and every input a , there
do not exist two a-superstates on any of these paths, otherwise the
HFA is nondeterministic.

IV. A SYMBOLIC COVER MINIMIZATION TECHNIQUE FOR
FULLY 110-SPECIFIED MACHINES’

It follows from Theorem 1 (extended to HFSM’s), that a
straightforward algorithm for symbolic cover minimization is to
minimize the (unique) minimal FSM (see [7] , or [6] for FA min-
imization), and then to find the (unique) minimal HFSM. For the
later step we define, for every input a , output 0, and all states p,
q : p = e , ~ q iff 6 (p , a) = 6 (q , a) and X (p , a) = h (q , a) = P .
Clearly, = is an equivalence relation and each equivalence class
corresponds to an a ; 0-superstate and to its corresponding a ; p-
edge. Each such a ; 0-edge, however, corresponds to a symbolic
implicant in the minimal symbolic cover. Hence, the minimal sym-
bolic-cover for our example is

1 0 1 {START,state 4) state - 6 a
l a {state - 2 , state - 3, state - 7) state - 5 a
l a state - 5 START 0
l a state - 6 START y
a START state - 4 y

a state - 2
a state - 3
a state - 4
a
a state - 7

{state - 5 , state - 6)

state - 3 0
state - 7 0
state - 6 0
state - 2 a
state - 6 a.

6q3 is common, otherwise the HFA is nondeterministic.
’Therefore, it is not state-minimal.
*The method presented herein is part of a pending U.S patent

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9, NO. 7. JULY 1990 781

V. CONCLUSION
We have presented an efficient deterministic solution for sym-

bolic-cover minimization for fully U 0 specified FSM’s. The effect
of this algorithm on symbolic-cover minimization is described as
the following competition between two state-assignment algo-
rithms. Consider a large fully specified FSM (say with more than
100 states). First we carry out symbolic-cover minimization using
the ideas presented in this paper, thus finding the (unique) cover in
reasonable time. In contrast, a straightforward application of the
symbolic-cover minimization algorithm of [2] for such a large FSM
must be heuristic, thus most probably generating an inferior solu-
tion. It is this part of the state-assignment algorithm that deter-
mines the number of terms in the resulting PLA. Thus we can ex-
pect a PLA generated by the first algorithm to have fewer terms
than a PLA generated by the second. Next, for both competitors,
we continue with the constrained encoding algorithm of [2] which
determines the number of columns in the resulting PLA. Clearly,
we can now expect the first competitor to do at least as well as the
second.

ACKNOWLEDGMENT
The author would like to thank the anonymous referees for their

helpful suggestions and guidance.

REFERENCES

[I] G. De Micheli, “Symbolic design of combinational and sequential logic
circuits implemented by two-level logic macros,” IEEE Trans. Com-
puter-Aided Design, vol. CAD-5, pp. 597-616, Oct. 1986.

[2] G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. “Op-
timal state assignment for finite state machines,” IEEE Trans. Com-
purer-Aided Design, vol. CAD-4, pp. 269-285, July 1985.

[3] D. Drusinsky and D. Harel, “Using statecharts for hardware descrip-
tion,” in Proc. IEEE Con$ on CAD, Santa Clara, pp. 162-165, 1987.

[4] D. Drusinsky and D. Harel, “Using statecharts for hardware descrip-
tion and synthesis,” IEEE Trans. Computer-Aided Design. vol. 8, pp.

[SI D. Harel, “Statecharts: A visual approach to complex systems,’’ Sci.

[6] J . E. Hopcroft and J . D. Ullman, Introduction to Automara Theory,
Reading, MA: Addison-Wesley , 1979.

[7] Z. Kohavi, Swirching and Finite Automata Theory. New York:

[8] A. Nerode, “Linear automaton transformations,” in Proc. AMS, vol.

798-807, July 1989.

Comput. Programming, vol. 8, pp. 231-274, 1987.

Languages, and Compuration.

McGraw Hill, 1978.

9, pp. 541-544.

A Fast Transistor-Chaining Algorithm for CMOS
Cell Layout

CHI-YI HWANG, YUNG-CHING HSIEH, YOUN-LONG LIN, A N D

YU-CHIN HSU

Abstract-We propose a fast algorithm for the transistor-chaining
problem in CMOS functional cell layout based on Uehara and van

Manuscript received January 4, 1989; revised May 31, 1989. This work
was supported in part by ERSO under Contract SF-C-010-1 and by the

Cleemput’s layout style [lZ]. Our algorithm takes a transistor-level
circuit schematic and outputs a minimum set of transistor chains. Pos-
sible diffusion abutments between the transistor pairs are modeled as
a bipartite graph. A depth-first search algorithm is used to search for
the optimal chaining. Theorems on the set of branches needed to be
explored at each node of the search tree are derived. A theoretical lower
bound on the size of the chain set is derived. This bound enables us to
prune the search tree efficiently. The algorithm has been implemented
and tested. It is able to find optimal solutions almost instantly for all
the cases available to us from the literature.

Keywords-CMOS cell layout, optimal chaining, transistor placement,
depth-first search.

I . INTRODUCTION
As CMOS VLSI technology [13] and cell-based layout meth-

odology [11, [4] gain popularity, the automatic layout generation
of CMOS functional cells becomes very important and attracts at-
tention from many VLSI/CAD researchers. In [12], Uehara and
van Cleemput proposed a paradigm for CMOS functional cell lay-
out, which has inspired much research.

In [12]’s layout style, the transistors are placed in two parallel
rows, where all the P-type transistors are in one row while all the
N-type transistors are in the other. Power rails are routed along the
rows on the outside and intracell routing runs between the rows.
Since the height of a cell is usually fixed, the primary concern is
to place transistors in such a way that gate signals are aligned and
the drain/source diffusions of adjacent transistors are abutted as
much as possible, thereby minimizing the number of separations
between diffusion strips, which in turn minimizes the layout area.
Much research has been done to improve the original proposal [2],
[61-[101, [14l.

In this paper, we propose a fast algorithm for the problem of
chaining the transistor pairs using a minimum number of chains.
The input of our algorithm is a CMOS circuit schematic at the tran-
sistor level. The output from the algorithm is a minimum set of
chains, where each chain can be realized using only one P-type
diffusion strip and one N-type diffusion strip.

We group transistors into pairs with each pair consisting of a
P-type and an N-type transistor and then model the possible abut-
ments between the pairs as a bipartite graph. On the graph, a depth-
first search algorithm is used to find a maximum set of edges which
correspond to a maximum number of realizable abutments. There
is a tight upper bound on the number of realizable abutments, and
hence, the lower bound on the number of chains needed for an
optimal solution, is derived. Theorems are proven to help to reduce
the size of the search tree.

In the next section, we will survey some previous work. In Sec-
tion 111, we will present the bipartite graph model. Section IV de-
fines some terminology and derives a number of theorems which
will speedup the search process. A theoretical lower bound on the
number of chains in an optimal solution is derived in Section V.
Section VI describes the algorithm. Section VI1 presents our im-
plementation and some experimental results. Concluding remarks
and future work are discussed in Section VIII.

11. PREVIOUS WORK
National Science Council, Republic of China, under Contract NSC79-0404-
1007-25. This paper was recommended by Associate Editor A. E. Dunlop.

Computer Science, Tsing Hua University, Hsin-Chu, Taiwan.

Industry and Technology Research Institute, Hsin-Chu, Taiwan.

A heuristic method for finding a good’ but not necessary ‘’ti-

[12]. A CMOS gate is represented by two multigraphs (one for the
€‘-network and the other for the N-network), where each vertex
corresponds to a source/drain connection and each edge represents
a transistor. The objective is to minimize the number of dual Euler

C,-T, Hwang, y,.L, Lin, and y,.C, Hsu are with the Department of mum, chaining based On the path algorithm was proposed in

Y.-C. Hsieh is with the Electronic Research and Service Organization,

IEEE Log Number 89341 12.

0278-0070/90/0700-0781$01 .OO O 1990 IEEE

Authorized licensed use limited to: Naval Postgraduate School. Downloaded on October 14, 2008 at 13:55 from IEEE Xplore. Restrictions apply.

