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Abstract
This  paper  proposes  the use of  an autonomous exploring 
agent to generate and annotate the waypoint graph as an off-
line  process  during  level  development.  The  explorer 
incrementally generates the waypoint graph as it  explores 
the  level  via  the  same  motion  model  used  for  player 
movement, and then revisits the waypoints to annotate them 
using  image-based  techniques.  Points  where  the  explorer 
becomes stuck or falls off of the level are flagged for later 
investigation by a level designer.

Introduction

AI-controlled  characters  (NPC's)  typically  need  to  move 
about  the  geometry  of  a  game's  levels.  Often  they  are 
hunting or hiding from the player. A game level starts out 
as  a  mere  collection  of  polygons.  NPC  movement 
algorithms  require  a  graph  of  waypoints  as  an  input  to 
some variant  of  A* search.  Once the waypoint  graph is 
created, the next step is often to attach extra information to 
the waypoints that will be used to drive run-time behavior, 
e.g.  how  good  of  a  hiding  place  or  firing  position  a 
waypoint is. 

The quality of waypoint graph generation and annotation is 
often  a  limiting  factor  in  the  quality  of  run-time  NPC 
behavior. Modern titles typically contain a lot of geometry, 
and the pursuit of more realistic behavior has driven game 
makers towards increasingly fine waypoint graphs. When 
waypoint generation and annotation is done all or partly by 
hand,  it  contributes  to  the  ballooning  cost  of  content 
generation, and adds a significant barrier to user-generated 
content.  Proper  waypoint  generation  and  annotation 
requires experience with the run-time AI behavior that can 
challenge the AI creators, not to mention level designers 
and mod makers. We discuss existing 
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A  side-effect  of  generating  waypoints  by  movement 
around the level is that problems with the level geometry 
can  be  automatically  detected  and  flagged.  Some recent 
AAA titles  still  have occasional  problems where players 
can become stuck in, or fall through, the geometry.

We believe the primary contributions of this work are:
● Waypoint placement based on exploring the level 

using the player motion model. The AI only goes 
where  the  player  can  go,  and  level  geometry 
problems  can  be  flagged.  Implementation  is 
relatively simple as compared to navigation mesh 
techniques.

● Constant-time-per-waypoint  assessment  of  cover 
and view using image-based techniques

● Assessment  of  waypoints  as  hiding  places  or 
sniper positions based on an empirical model of 
human target detection that is takes fog, lighting, 
and camouflage into account.

Related Work

Automated  exploration  of  virtual  environments  is  not  a 
new  idea,  dating  back  at  least  to  Mauldin's  TinyMUD 
chatterbots (Mauldin 1994).  These bots would constantly 
traverse the  virtual  world updating their  knowledge,  and 
could  produce  the  shortest  route  between two points  on 
request  from human  players.  The  environment  was  not, 
however, based on 3D geometry. It was created as a graph 
from the  beginning,  so  waypoint  placement  was  not  an 
issue.

Today,  the  dominant  method  of  automatic  waypoint 
generation is  the navigation mesh (Snook 2000) (Tozour 
2002)  (Farnstrom  2006).  In  a  nutshell,  navigation  mesh 
techniques  start  from the  raw polygons of  the  level  and 
produce  a  subset  which  constitute  the  navigation  mesh. 
Polygons are routinely split and sometimes merged in the 
process of generating the mesh. Midpoints of edges of the 
navigation mesh polygons are the waypoints. The beauty 
of the navigation mesh is that the process of generating it 
can be automated, at least to a large degree. The down-side 
of the mesh is its difficulty of implementation. The mesh 



generation algorithm must take into account the collision 
geometry  and  motion  model  of  the  NPC's,.  The 
relationship between these data and the subset of the raw 
geometry that belongs to the mesh is intricate, so much so 
that we see this as a limitation of navigation meshes that 
we would like to avoid.

Automated annotation of waypoints for visibility and cover 
was first described by Liden (2002). This work performed 
ray  traces  (line-of-sight  checks)  off-line  and  cached  the 
results for use at run-time, e.g. for finding cover or firing 
positions. Additional off-line analysis of the ray trace data 
could  be  used  to  find  and  label  sniping  positions. 
Straatman et al. (2006) describes an extension of Liden's 
approach with a description of a compression strategy for 
the ray-trace data and several examples of how this data 
can  be  exploited  on-line  to  produce  various  interesting 
behaviors. Our work uses image-based methods rather than 
ray-tracing to annotate waypoints. This approach has both 
computational  and  performance  advantages.  From  a 
computation cost point of view, it  replaces the O(N) per 
waypoint cost of all-pairs ray tracing with O(1) approach 
based  on  rendering  a  fixed  number  of  views  from each 
waypoint. Note that the cover and visibility information we 
cache is not intended to completely replace runtime chacks 
as  in  Liden  (2002).  From a  performance  point  of  view, 
rendered views provide an unprecedented  opportunity  to 
evaluate  hiding  positions  based  on  how  likely  a  player 
would  be  to  detect  an  NPC  located  at  a  particular 
waypoint. Darken and Paull (2006) describe some of the 
problematic  aspects  of  pre-computing  cover  information 
and propose run-time augmentation of the waypoint graph 
as a solution.

The  automated  processing  of  images  from  a  virtual 
environment, i.e. “synthetic vision” (Renault et al. 1990), 
was applied to run-time navigation in a computer game by 
Blumberg  (1997).  To  our  knowledge,  this  is  its  first 
application to automated level annotation.

System Architecture

The autonomous level explorer has a similar architecture to 
an  artificial  creature such as  the  famous fish of  Tu and 
Terzolpoulos  (1994).  It  takes  an  image  of  the  world  as 
input and interacts with world via (simplified) physics. Of 
course, our motivation is not to create artificial life, but to 
perform  a  task,  and  therefore  knowledge  of  the  true 
positions of dummy targets placed in the world and even 
control of the target color is allowable. The architecture of 
the explorer  appears  as  Figure  1.  Note that  the  explorer 
only  runs  off-line.  Only  the  waypoint  graph  and 
annotations are used at run-time.

Figure 1: Explorer architecture.

Waypoint Finding

Given the geometry of a level and a single waypoint (or set 
of waypoints) provided by the user, we describe a method 
for covering the entire accessible portion of the level with 
waypoints.  Our  technique  assumes  that  an  NPC motion 
model has been defined (possibly the same one as is used 
for player movement). We assume additionally that a finite 
set  of  actions (terminating programs to drive the motion 
model)  is  available.  Each  action  represents  a  way  to 
explore that  might result  in  accessing a new part  of the 
level. As a concrete example and the primary one we use in 
practice, there might be six actions, each of which explores 
a different point of the compass separated by 60 degrees. 
The action set is a novel requirement of our technique, and 
we discuss  it  further  below.  An example  of  a  waypoint 
graph produced by the explorer is given as Figure 2.

MAIN ALGORITHM

Add user waypoint(s) to list

For each waypoint on list
 For each action:
  Execute action until termination
  Are we somewhere new?
  If so, add new waypoint to list
  Add new edge to waypoint graph

The “somewhere new” test requires some discussion. We 
use a 3D Euclidean distance test against the waypoint set 
for  this  purpose.  We found the  naïve  O(N)  approach of 
testing against each existing waypoint to be unacceptably 
slow. Efficient algorithms for “range queries” of this type 
and their supporting data structures have been well studied 
in the field of computational geometry, and there are many 
good approaches. We implemented a kd-tree (Bentley and 



Friedman 1979) for this purpose, reducing the computation 
required on average (for  points “in  general  position”)  to 
O(log N), though the worst case (all waypoints in a circle 
around the query point) still requires O(N).

Figure 2: A small part of the waypoint graph generated for 
a full-sized level. The graph extends to all accessible parts 
of the level, including building interiors.

Implementing a set of actions need not be a difficult task. 
The  actions  produce  inputs  to  the  motion  model,  and 
respond to whatever outputs are available from the game 
engine, so a general prescription for them cannot be given. 
A  guarantee  of  termination  is  required,  and  is  easily 
provided by implementing a time out for each action. 

Our motion model requires a requested velocity as input. 
The resulting motion must be checked by determining the 
change  in  position  of  the  motion  model  and  its  status 
(walking,  sliding,  or  falling).  All  six  of  our  actions  are 
based on a single primitive action: moving in a straight line 
to  a  specified  x-y  position.  Our  motion  model  allows 
sliding  along  obstacles  that  do  not  squarely  block  the 
requested  step.  After  each  requested  step,  the  actual 
progress achieved is checked. If the motion model is not 
closer  to  the  goal  by at  least  half  the expected distance 
given  the  requested  velocity  and  inter-frame  time,  the 
action aborts. If the goal is reached, but the model is out of 
control  (sliding  or  falling),  the  action  aborts.  Otherwise, 
the requested x-y position is achieved.

Level Test

A little  more processing on top of  the waypoint  finding 
algorithm discussed above provides  a  method of  finding 
two common types of problems with newly-created levels: 
sticking points and holes. A sticking point is a place that is 
accessible to the player, but which are impossible to leave. 
The result  of visiting a sticking point  is  usually that  the 
player  is  forced  to  restart  the  game,  a  very  annoying 
experience. A hole in a level is a place where the player 

can fall through the geometry of the level.  Once again, the 
only remedy is usually a restart. Both types of problem are 
encountered, even in some recent AAA titles.

Our algorithm for level testing is very simple. In the course 
of exploring a level, if all actions available to the explorer 
at a given waypoint fail to move it to a new location, that 
waypoint  is  considered  a  sticking  point.  If  any  action 
causes the agent to fall further than a specified maximum 
distance,  that  waypoint  is  considered  to  be  near  a  hole. 
Waypoints that are sticking points or near holes are colored 
red in the GUI (see Figure 3), enabling them to be quickly 
detected by a level creator and corrected.

Figure 3: Visualization of the waypoint graph produced for 
a  simple test  level  with inaccessible region at  right,  fall 
points around the edge, and a sticking point at center with 
one-way edges surrounding it.

Viewshed and Cover Annotation

We annotate each waypoint with numbers to indicate how 
much can be seen and how much protection from fire they 
provide  in  each  of  the  six  directions.  These  annotations 
will  be  used  at  run-time  in  conjunction  with  additional 
checks in order to help an NPC perform various tasks such 
as find cover or a good firing position. The basis for both 
types of annotation are rendered images, of the same type 
as would be provided to a human player.

The camera is positioned at each waypoint at eye height 
faced in a specific direction and an image is generated. The 
depth map corresponding to  the  image is  then accessed. 
The  depth  map  is  an  array  of  floats  with  the  same 
dimensions as the rendered image. The value at each pixel 
corresponds to the distance from the camera to the polygon 
rendered  at  that  pixel.  The  number  is  not  an  actual 
distance, but is rather a distance passed through a nonlinear 
function and scaled so that values of 0.0 and 1.0 represent 
the near and far clipping planes. Using a custom shader it 
would be possible to get actual distances, e.g. measured in 



meters, but we have not found this necessary so far.

The  viewshed  value  is  computed  by  summing  over  the 
depth buffer. Larger values mean that more is visible. The 
cover value is computed by summing over the lower half 
of the buffer only. Lower values correspond to more cover. 
See  Figure  4  for  an  example.  We  use  these  values  for 
relative comparison only, e.g. to determine which of two 
waypoints has a better view to the north.

After both values are computed, the camera is rotated 60 
degrees and the process is repeated until a full 360 degree 
sweep is completed.

Visibility Annotation

We  annotate  each  waypoint  with  a  single  number 
indicating  how  difficult  it  is  to  see  a  character  at  that 
location. We accomplish this by making use of the GBBA 
(Graphics  Buffer  Based  ACQUIRE)  target  acquisition 
algorithm,  described  below.  In  prior  work  (Liden  2002) 
with a similar goal of finding sniping positions, ray trace-
based (line-of-sight)  models of  visibility were used. Ray 
traces assess a character as visible if an uninterrupted line 
can be drawn between the eye points of the two characters 
involved,  regardless  of  fog,  lighting  conditions  or 
camouflage. GBBA takes these factors into consideration.

Figure 4: Cover from threats in the north (top of picture), 
where  black  represents  maximum  cover  and  white  no 
cover.

ACQUIRE is a standard target acquisition model (Reece, 
1996).  It  is  capable  of  producing  the  probability  of 
detecting a target in a given amount of observation time. 
ACQUIRE  computes  the  detection  probability  as  a 
function of the brightness (irradiance in watts per square 
meter) of the target, the brightness of the background of 
the target, and the subjective size of the target, in terms of 
its  “number  of  resolvable  cycles”.  While  not  officially 
recommended as a model of optical target detection, it has 

been  used  for  that  purpose  many  times  in  military 
simulations. Constructive simulations, lacking detailed 3D 
models  of  combatants  and  terrain,  obviously  must  use 
nominal  brightness  values,  for  example  using a constant 
brightness  for  the  background  depending  on  geographic 
location  and  time  of  day,  and  looking  up  target 
brightnesses by target type from a table.

GBBA is an application of ACQUIRE to simulations that 
are  being  rendered on  conventional  graphics  cards.  It  is 
applicable  to  any  simulation that  has  full  control  of  the 
visual  rendering  of  the  models  and  access  to  the 
framebuffer. 

Figure 5: Detail from wide shot of target in a building and 
partially visible through a window.

GBBA's computation is based on a rendering of the target 
from the agent's point of view that is generated in the same 
manner as the rendering of the environment that a human 
user of the simulation sees. See Figure 5 for an example. 
The angles and colors of lights and the textures applied to 
the surface are all  taken into account,  together  with any 
occluding objects,  smoke, and fog. For each agent/target 
pair,  a  rendering  of  the target  from the  agent's  point  of 
view is produced. Since only a tight view of the target is 
required, we call this image a “mini-render”. This image 
does  not  ever  need  to  be  shown  on  a  screen;  it's  sole 
purpose  is  to  provide  the  data  that  will  feed  GBBA's 
algorithm.

Figure 6: Normal color mini-render (left), false color mini-
render (right).

The  mini-render  contains  complete  information  on  the 
appearance of the target and background, but ACQUIRE 
requires us  to  separate  the two. Segmentation of  images 



into  objects  as  practiced  in  computer  vision  is  a 
computationally  expensive  and  error  prone  operation. 
Fortunately,  in  this  context  we  can  get  pixel-perfect 
segmentation at the cost of a second mini-render. For the 
second render, we use our control of the rendering to color 
the  figure  bright  red.  This  false-color  mini-render  is 
generated for the same scene conditions as the first, and so 
is  in  perfect  registration  with  it.  We  use  the  false-color 
mini-render  to  tighten  the  view  of  the  target  to  the 
minimum  rectangular  window  that  includes  all  target 
pixels.  To  include  a  modest  amount  of  background,  we 
then  expand  this  minimum  rectangle  by  5%  in  all 
directions.  The  normal  color  mini-render  is  cropped 
identically  to  maintain  registration  between  the  normal 
color and false color images. The images in Figure 6 have 
both been cropped according to this procedure.

Not all pixels in the expanded mini-render are considered 
valid parts of the background, however. One insight behind 
GBBA  is  that  not  all  contrast  between  target  and 
background is equally valuable. Where the “background” 
is  actually  closer  to  the  observer  than  the  target,  high 
contrast means that we see the contour of the background 
well,  but  not  necessarily  the target.  Experimental  testing 
showed that this aspect of GBBA was helpful in matching 
the performance of human subjects (Darken 2007).

GBBA uses  the  depth buffer  to  exclude  any part  of  the 
background that is in front of the target from consideration. 
It does this by first making a pass over all the target pixels 
(identified using the false-color  mini-render)  and finding 
the one that is closest to the camera. Then a pass over the 
non-target pixels in the false-color mini-render colors them 
depending  on  whether  how  far  they  are  relative  to  the 
closest target pixel. In the example presented as Figure 7, 
the background pixels that are closer than the target, the 
edge of the window to the right and below the target, are 
colored blue.

Figure 7:  False color  mini-render  including depth buffer 
information. The blue pixels on the right and bottom of the 
image are closer to the camera than the target.

ACQUIRE produces a probability of detection that is based 
on  the  brightness  and  size  of  the  target,  as  well  as  the 
brightness of the target's background. Adapting ACQUIRE 

to  a  video  game  or  game-like  simulation  requires 
specifying  exactly  what  values  will  be  provided  to 
ACQUIRE in all circumstances.

ACQUIRE's requirement for target size information is a bit 
unusual. The subjective size of the target must be specified 
to  ACQUIRE  in  terms  of  its  “number  of  resolvable 
cycles”. Imagine painting the target with alternating black 
and  white  bars  and  asking  the  observer  to  report  the 
number of bars. Obviously, as the bars become very fine, 
the observer will eventually see them as a solid gray and be 
unable to count them. The number of resolvable cycles of a 
target is based on the maximum number of bars that the 
observer  can  count  before  they  become  too  fine.  This 
number is then divided by two to represent the number of 
complete cycles, one cycle including both a white bar and 
its neighboring black bar.

Consider  a  target  that  is  represented  on  the  computer 
screen as a single row of pixels. If we assume that a human 
observer is placed sufficiently close to the screen, stripes 
that are one-pixel wide should be resolvable. We estimate 
the number of  resolvable cycles  as  twice the number of 
pixels in the target, giving full benefit of the doubt to the 
observer's eye.

Most targets are not a single pixel wide, of course. For a 
square  target,  the  number  of  pixels  on  an  edge  is  the 
appropriate number, i.e. the square root of the number of 
pixels. Following Reece (1996), we use the square root of 
the number of pixels in all cases, regardless of target shape.

ACQUIRE  requires  the  brightness  (irradiance)  of  both 
target and background in Watts/m2. This is problematic for 
two reasons. First, while we assume we have access to the 
framebuffer, and thus to the color values of every pixel of 
an image that  is  actually  or  potentially  displayed to  the 
screen,  those  color  values  are  not  in  units  of  Watts/m2. 
Secondly, while we assume access to all of the pixel color 
information  contained  in  the  framebuffer,  ACQUIRE 
wants only one number to characterize the brightness of 
the target and background.

Using  camera  light  meters,  we  have  empirically 
determined that the irradiance of a pixel in Watts/m2 is well 
approximated  to  within  a  multiplicative  constant  by  the 
sum of the pixel  color values squared. Since ACQUIRE 
depends  only  on  ratios  of  irradiance  values,  we  can 
therefore plug in squared sum-of-color values wherever an 
irradiance value is called for.

For GBBA, we simply take the average sum of squares of 
the pixel color values over the all target and background 
pixels in the mini-render as the input to ACQUIRE. Full 
details  of  the  algorithm are  provided  elsewhere  (Darken 
2007) (Jones 2006).



For each waypoint under consideration as a hiding place or 
sniper  location  and  for  each  posture  to  be  assessed,  a 
random  subset  of  waypoints  are  selected  to  be  camera 
positions, and the visibility of the figure is assessed from 
each.  The average visibility is  then used to annotate the 
waypoint.

Conclusions and Future Work

We  have  described  an  autonomous  exploring  agent  that 
positions waypoints, discovers which are accessible from 
which,  and  annotates  them.  The  annotations  include 
numeric values describing how much can be seen from the 
waypoint, the amount of cover provided to a character at 
the waypoint, and how visible a character at that waypoint 
is.  We  are  continuing  to  develop  our  explorer  for 
production use in various training and analysis simulations 
under  development  in  our  lab  using  the  Delta3D 
game/simulation  engine.  Our  current  explorer 
implementation does not come close to fully exploiting the 
system architecture. Jumping could be added to the set of 
actions attempted by the explorer. Since the explorer runs 
off-line, we believe much more can be done with computer 
vision-like techniques to enhance it. For example, the 60 
degree  intervals  which  the  explorer  attempts  are  fairly 
coarse.  It  should  be  possible  to  use  rendered  images  to 
hypothesize additional interesting directions to try in order 
to find, e.g., narrow catwalks at odd angles. 
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