
Level Annotation and Test by Autonomous Exploration

Christian J. Darken

MOVES Institute and Department of Computer Science
Naval Postgraduate School

 Monterey, CA 93943
cjdarken at nps dot edu

Abstract
This paper proposes the use of an autonomous exploring
agent to generate and annotate the waypoint graph as an off-
line process during level development. The explorer
incrementally generates the waypoint graph as it explores
the level via the same motion model used for player
movement, and then revisits the waypoints to annotate them
using image-based techniques. Points where the explorer
becomes stuck or falls off of the level are flagged for later
investigation by a level designer.

Introduction

AI-controlled characters (NPC's) typically need to move
about the geometry of a game's levels. Often they are
hunting or hiding from the player. A game level starts out
as a mere collection of polygons. NPC movement
algorithms require a graph of waypoints as an input to
some variant of A* search. Once the waypoint graph is
created, the next step is often to attach extra information to
the waypoints that will be used to drive run-time behavior,
e.g. how good of a hiding place or firing position a
waypoint is.

The quality of waypoint graph generation and annotation is
often a limiting factor in the quality of run-time NPC
behavior. Modern titles typically contain a lot of geometry,
and the pursuit of more realistic behavior has driven game
makers towards increasingly fine waypoint graphs. When
waypoint generation and annotation is done all or partly by
hand, it contributes to the ballooning cost of content
generation, and adds a significant barrier to user-generated
content. Proper waypoint generation and annotation
requires experience with the run-time AI behavior that can
challenge the AI creators, not to mention level designers
and mod makers. We discuss existing

This paper proposes the use of an autonomous exploring
agent to generate and annotate the waypoint graph as an
off-line process during level development. The explorer
incrementally generates the waypoint graph as it explores
the level via the same motion model used for player
movement, and then revisits the waypoints to annotate
them using image-based techniques. Points where the
explorer becomes stuck or falls off of the level are flagged

for later investigation by a level designer.

A side-effect of generating waypoints by movement
around the level is that problems with the level geometry
can be automatically detected and flagged. Some recent
AAA titles still have occasional problems where players
can become stuck in, or fall through, the geometry.

We believe the primary contributions of this work are:
● Waypoint placement based on exploring the level

using the player motion model. The AI only goes
where the player can go, and level geometry
problems can be flagged. Implementation is
relatively simple as compared to navigation mesh
techniques.

● Constant-time-per-waypoint assessment of cover
and view using image-based techniques

● Assessment of waypoints as hiding places or
sniper positions based on an empirical model of
human target detection that is takes fog, lighting,
and camouflage into account.

Related Work

Automated exploration of virtual environments is not a
new idea, dating back at least to Mauldin's TinyMUD
chatterbots (Mauldin 1994). These bots would constantly
traverse the virtual world updating their knowledge, and
could produce the shortest route between two points on
request from human players. The environment was not,
however, based on 3D geometry. It was created as a graph
from the beginning, so waypoint placement was not an
issue.

Today, the dominant method of automatic waypoint
generation is the navigation mesh (Snook 2000) (Tozour
2002) (Farnstrom 2006). In a nutshell, navigation mesh
techniques start from the raw polygons of the level and
produce a subset which constitute the navigation mesh.
Polygons are routinely split and sometimes merged in the
process of generating the mesh. Midpoints of edges of the
navigation mesh polygons are the waypoints. The beauty
of the navigation mesh is that the process of generating it
can be automated, at least to a large degree. The down-side
of the mesh is its difficulty of implementation. The mesh

generation algorithm must take into account the collision
geometry and motion model of the NPC's,. The
relationship between these data and the subset of the raw
geometry that belongs to the mesh is intricate, so much so
that we see this as a limitation of navigation meshes that
we would like to avoid.

Automated annotation of waypoints for visibility and cover
was first described by Liden (2002). This work performed
ray traces (line-of-sight checks) off-line and cached the
results for use at run-time, e.g. for finding cover or firing
positions. Additional off-line analysis of the ray trace data
could be used to find and label sniping positions.
Straatman et al. (2006) describes an extension of Liden's
approach with a description of a compression strategy for
the ray-trace data and several examples of how this data
can be exploited on-line to produce various interesting
behaviors. Our work uses image-based methods rather than
ray-tracing to annotate waypoints. This approach has both
computational and performance advantages. From a
computation cost point of view, it replaces the O(N) per
waypoint cost of all-pairs ray tracing with O(1) approach
based on rendering a fixed number of views from each
waypoint. Note that the cover and visibility information we
cache is not intended to completely replace runtime chacks
as in Liden (2002). From a performance point of view,
rendered views provide an unprecedented opportunity to
evaluate hiding positions based on how likely a player
would be to detect an NPC located at a particular
waypoint. Darken and Paull (2006) describe some of the
problematic aspects of pre-computing cover information
and propose run-time augmentation of the waypoint graph
as a solution.

The automated processing of images from a virtual
environment, i.e. “synthetic vision” (Renault et al. 1990),
was applied to run-time navigation in a computer game by
Blumberg (1997). To our knowledge, this is its first
application to automated level annotation.

System Architecture

The autonomous level explorer has a similar architecture to
an artificial creature such as the famous fish of Tu and
Terzolpoulos (1994). It takes an image of the world as
input and interacts with world via (simplified) physics. Of
course, our motivation is not to create artificial life, but to
perform a task, and therefore knowledge of the true
positions of dummy targets placed in the world and even
control of the target color is allowable. The architecture of
the explorer appears as Figure 1. Note that the explorer
only runs off-line. Only the waypoint graph and
annotations are used at run-time.

Figure 1: Explorer architecture.

Waypoint Finding

Given the geometry of a level and a single waypoint (or set
of waypoints) provided by the user, we describe a method
for covering the entire accessible portion of the level with
waypoints. Our technique assumes that an NPC motion
model has been defined (possibly the same one as is used
for player movement). We assume additionally that a finite
set of actions (terminating programs to drive the motion
model) is available. Each action represents a way to
explore that might result in accessing a new part of the
level. As a concrete example and the primary one we use in
practice, there might be six actions, each of which explores
a different point of the compass separated by 60 degrees.
The action set is a novel requirement of our technique, and
we discuss it further below. An example of a waypoint
graph produced by the explorer is given as Figure 2.

MAIN ALGORITHM

Add user waypoint(s) to list

For each waypoint on list
 For each action:
 Execute action until termination
 Are we somewhere new?
 If so, add new waypoint to list
 Add new edge to waypoint graph

The “somewhere new” test requires some discussion. We
use a 3D Euclidean distance test against the waypoint set
for this purpose. We found the naïve O(N) approach of
testing against each existing waypoint to be unacceptably
slow. Efficient algorithms for “range queries” of this type
and their supporting data structures have been well studied
in the field of computational geometry, and there are many
good approaches. We implemented a kd-tree (Bentley and

Friedman 1979) for this purpose, reducing the computation
required on average (for points “in general position”) to
O(log N), though the worst case (all waypoints in a circle
around the query point) still requires O(N).

Figure 2: A small part of the waypoint graph generated for
a full-sized level. The graph extends to all accessible parts
of the level, including building interiors.

Implementing a set of actions need not be a difficult task.
The actions produce inputs to the motion model, and
respond to whatever outputs are available from the game
engine, so a general prescription for them cannot be given.
A guarantee of termination is required, and is easily
provided by implementing a time out for each action.

Our motion model requires a requested velocity as input.
The resulting motion must be checked by determining the
change in position of the motion model and its status
(walking, sliding, or falling). All six of our actions are
based on a single primitive action: moving in a straight line
to a specified x-y position. Our motion model allows
sliding along obstacles that do not squarely block the
requested step. After each requested step, the actual
progress achieved is checked. If the motion model is not
closer to the goal by at least half the expected distance
given the requested velocity and inter-frame time, the
action aborts. If the goal is reached, but the model is out of
control (sliding or falling), the action aborts. Otherwise,
the requested x-y position is achieved.

Level Test

A little more processing on top of the waypoint finding
algorithm discussed above provides a method of finding
two common types of problems with newly-created levels:
sticking points and holes. A sticking point is a place that is
accessible to the player, but which are impossible to leave.
The result of visiting a sticking point is usually that the
player is forced to restart the game, a very annoying
experience. A hole in a level is a place where the player

can fall through the geometry of the level. Once again, the
only remedy is usually a restart. Both types of problem are
encountered, even in some recent AAA titles.

Our algorithm for level testing is very simple. In the course
of exploring a level, if all actions available to the explorer
at a given waypoint fail to move it to a new location, that
waypoint is considered a sticking point. If any action
causes the agent to fall further than a specified maximum
distance, that waypoint is considered to be near a hole.
Waypoints that are sticking points or near holes are colored
red in the GUI (see Figure 3), enabling them to be quickly
detected by a level creator and corrected.

Figure 3: Visualization of the waypoint graph produced for
a simple test level with inaccessible region at right, fall
points around the edge, and a sticking point at center with
one-way edges surrounding it.

Viewshed and Cover Annotation

We annotate each waypoint with numbers to indicate how
much can be seen and how much protection from fire they
provide in each of the six directions. These annotations
will be used at run-time in conjunction with additional
checks in order to help an NPC perform various tasks such
as find cover or a good firing position. The basis for both
types of annotation are rendered images, of the same type
as would be provided to a human player.

The camera is positioned at each waypoint at eye height
faced in a specific direction and an image is generated. The
depth map corresponding to the image is then accessed.
The depth map is an array of floats with the same
dimensions as the rendered image. The value at each pixel
corresponds to the distance from the camera to the polygon
rendered at that pixel. The number is not an actual
distance, but is rather a distance passed through a nonlinear
function and scaled so that values of 0.0 and 1.0 represent
the near and far clipping planes. Using a custom shader it
would be possible to get actual distances, e.g. measured in

meters, but we have not found this necessary so far.

The viewshed value is computed by summing over the
depth buffer. Larger values mean that more is visible. The
cover value is computed by summing over the lower half
of the buffer only. Lower values correspond to more cover.
See Figure 4 for an example. We use these values for
relative comparison only, e.g. to determine which of two
waypoints has a better view to the north.

After both values are computed, the camera is rotated 60
degrees and the process is repeated until a full 360 degree
sweep is completed.

Visibility Annotation

We annotate each waypoint with a single number
indicating how difficult it is to see a character at that
location. We accomplish this by making use of the GBBA
(Graphics Buffer Based ACQUIRE) target acquisition
algorithm, described below. In prior work (Liden 2002)
with a similar goal of finding sniping positions, ray trace-
based (line-of-sight) models of visibility were used. Ray
traces assess a character as visible if an uninterrupted line
can be drawn between the eye points of the two characters
involved, regardless of fog, lighting conditions or
camouflage. GBBA takes these factors into consideration.

Figure 4: Cover from threats in the north (top of picture),
where black represents maximum cover and white no
cover.

ACQUIRE is a standard target acquisition model (Reece,
1996). It is capable of producing the probability of
detecting a target in a given amount of observation time.
ACQUIRE computes the detection probability as a
function of the brightness (irradiance in watts per square
meter) of the target, the brightness of the background of
the target, and the subjective size of the target, in terms of
its “number of resolvable cycles”. While not officially
recommended as a model of optical target detection, it has

been used for that purpose many times in military
simulations. Constructive simulations, lacking detailed 3D
models of combatants and terrain, obviously must use
nominal brightness values, for example using a constant
brightness for the background depending on geographic
location and time of day, and looking up target
brightnesses by target type from a table.

GBBA is an application of ACQUIRE to simulations that
are being rendered on conventional graphics cards. It is
applicable to any simulation that has full control of the
visual rendering of the models and access to the
framebuffer.

Figure 5: Detail from wide shot of target in a building and
partially visible through a window.

GBBA's computation is based on a rendering of the target
from the agent's point of view that is generated in the same
manner as the rendering of the environment that a human
user of the simulation sees. See Figure 5 for an example.
The angles and colors of lights and the textures applied to
the surface are all taken into account, together with any
occluding objects, smoke, and fog. For each agent/target
pair, a rendering of the target from the agent's point of
view is produced. Since only a tight view of the target is
required, we call this image a “mini-render”. This image
does not ever need to be shown on a screen; it's sole
purpose is to provide the data that will feed GBBA's
algorithm.

Figure 6: Normal color mini-render (left), false color mini-
render (right).

The mini-render contains complete information on the
appearance of the target and background, but ACQUIRE
requires us to separate the two. Segmentation of images

into objects as practiced in computer vision is a
computationally expensive and error prone operation.
Fortunately, in this context we can get pixel-perfect
segmentation at the cost of a second mini-render. For the
second render, we use our control of the rendering to color
the figure bright red. This false-color mini-render is
generated for the same scene conditions as the first, and so
is in perfect registration with it. We use the false-color
mini-render to tighten the view of the target to the
minimum rectangular window that includes all target
pixels. To include a modest amount of background, we
then expand this minimum rectangle by 5% in all
directions. The normal color mini-render is cropped
identically to maintain registration between the normal
color and false color images. The images in Figure 6 have
both been cropped according to this procedure.

Not all pixels in the expanded mini-render are considered
valid parts of the background, however. One insight behind
GBBA is that not all contrast between target and
background is equally valuable. Where the “background”
is actually closer to the observer than the target, high
contrast means that we see the contour of the background
well, but not necessarily the target. Experimental testing
showed that this aspect of GBBA was helpful in matching
the performance of human subjects (Darken 2007).

GBBA uses the depth buffer to exclude any part of the
background that is in front of the target from consideration.
It does this by first making a pass over all the target pixels
(identified using the false-color mini-render) and finding
the one that is closest to the camera. Then a pass over the
non-target pixels in the false-color mini-render colors them
depending on whether how far they are relative to the
closest target pixel. In the example presented as Figure 7,
the background pixels that are closer than the target, the
edge of the window to the right and below the target, are
colored blue.

Figure 7: False color mini-render including depth buffer
information. The blue pixels on the right and bottom of the
image are closer to the camera than the target.

ACQUIRE produces a probability of detection that is based
on the brightness and size of the target, as well as the
brightness of the target's background. Adapting ACQUIRE

to a video game or game-like simulation requires
specifying exactly what values will be provided to
ACQUIRE in all circumstances.

ACQUIRE's requirement for target size information is a bit
unusual. The subjective size of the target must be specified
to ACQUIRE in terms of its “number of resolvable
cycles”. Imagine painting the target with alternating black
and white bars and asking the observer to report the
number of bars. Obviously, as the bars become very fine,
the observer will eventually see them as a solid gray and be
unable to count them. The number of resolvable cycles of a
target is based on the maximum number of bars that the
observer can count before they become too fine. This
number is then divided by two to represent the number of
complete cycles, one cycle including both a white bar and
its neighboring black bar.

Consider a target that is represented on the computer
screen as a single row of pixels. If we assume that a human
observer is placed sufficiently close to the screen, stripes
that are one-pixel wide should be resolvable. We estimate
the number of resolvable cycles as twice the number of
pixels in the target, giving full benefit of the doubt to the
observer's eye.

Most targets are not a single pixel wide, of course. For a
square target, the number of pixels on an edge is the
appropriate number, i.e. the square root of the number of
pixels. Following Reece (1996), we use the square root of
the number of pixels in all cases, regardless of target shape.

ACQUIRE requires the brightness (irradiance) of both
target and background in Watts/m2. This is problematic for
two reasons. First, while we assume we have access to the
framebuffer, and thus to the color values of every pixel of
an image that is actually or potentially displayed to the
screen, those color values are not in units of Watts/m2.
Secondly, while we assume access to all of the pixel color
information contained in the framebuffer, ACQUIRE
wants only one number to characterize the brightness of
the target and background.

Using camera light meters, we have empirically
determined that the irradiance of a pixel in Watts/m2 is well
approximated to within a multiplicative constant by the
sum of the pixel color values squared. Since ACQUIRE
depends only on ratios of irradiance values, we can
therefore plug in squared sum-of-color values wherever an
irradiance value is called for.

For GBBA, we simply take the average sum of squares of
the pixel color values over the all target and background
pixels in the mini-render as the input to ACQUIRE. Full
details of the algorithm are provided elsewhere (Darken
2007) (Jones 2006).

For each waypoint under consideration as a hiding place or
sniper location and for each posture to be assessed, a
random subset of waypoints are selected to be camera
positions, and the visibility of the figure is assessed from
each. The average visibility is then used to annotate the
waypoint.

Conclusions and Future Work

We have described an autonomous exploring agent that
positions waypoints, discovers which are accessible from
which, and annotates them. The annotations include
numeric values describing how much can be seen from the
waypoint, the amount of cover provided to a character at
the waypoint, and how visible a character at that waypoint
is. We are continuing to develop our explorer for
production use in various training and analysis simulations
under development in our lab using the Delta3D
game/simulation engine. Our current explorer
implementation does not come close to fully exploiting the
system architecture. Jumping could be added to the set of
actions attempted by the explorer. Since the explorer runs
off-line, we believe much more can be done with computer
vision-like techniques to enhance it. For example, the 60
degree intervals which the explorer attempts are fairly
coarse. It should be possible to use rendered images to
hypothesize additional interesting directions to try in order
to find, e.g., narrow catwalks at odd angles.

Acknowledgments

The author wishes to thank Bradley Anderegg and the
Delta3D development team for technical assistance. This
work was partially funded by grants from the Naval
Modeling and Simulation Management Office via the
Office of Naval Research and the US Army TRADOC
Analysis Center Monterey.

References

Bentley, J. and Friedman, J. 1979 “Data Structures for
Range Searching”, ACM Computing Surveys, Vol. 11,
Issue 4, pp. 397-409.

Blumberg, B. 1997. “Go with the Flow: Synthetic Vision
for Autonomous Animated Creatures”, Proceedings of
AAAI 1997.

Darken, C. and Paull, G. 2006. “Finding Cover in Dynamic
Environments”, AI Game Programming Wisdom 3, Charles
River Media, pp. 405-416.

Darken, C. 2007. “Computer Graphics-Based Target
Detection for Synthetic Soldiers”, unpublished manuscript,
submitted to Behavior Representation in Modeling and
Simulation (BRIMS) 2007.

Farnstrom, F. 2006. “Improving on Near-Optimality: More
Techniques for Building Navigation Meshes”, AI Game
Programming Wisdom 3, Charles River Media, pp.113-
128.

Jones, B. (2006) A Computer Graphics Based Target
Detection Model. Master's Thesis, Naval Postgraduate
School.

Liden, L. 2002. “Strategic and Tactical Reasoning with
Waypoints”, AI Game Programming Wisdom, Charles
River Media, pp. 211-220.

Reece, D. and Wirthlin, R. (1996). Detection Models for
Computer Generated Individual Combatants. In
Proceedings of the 6th Conference on Computer Generated
Forces and Behavioral Representation.

Renault, O., and N. Magnenat-Thalmann, D. Thalmann.
1990. “A vision-based approach to behavioral animation”,
The Journal of Visualization and Computer Animation
1(1).

Snook, G. 2000. “Simplified 3D Movement and
Pathfinding Using Navigation Meshes”, Game
Programming Gems, Charles River Media, pp. 288-304.

Straatman, R., Beij, A., and Van der Sterren, W. 2006
“Dynamic Tactical Position Evaluation”, AI Game
Programming Wisdom 3, Charles River Media, pp. 389-
404.

Tozour, P. 2002. “Building a Near-Optimal Navigation
Mesh”, AI Game Programming Wisdom, Charles River
Media, pp. 171-185.

Tu, Xiaoyuan and D. Terzopoulos. 1994. “Artificial
Fishes: Physics, Locomotion, Perception, Behavior”,
Proceedings of SIGGRAPH 94.

