

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Blended Inverse Kinematics: Delta3D System Utilization

Michael Guerrero, Chris Darken PhD
MOVES Institute, Naval Postgraduate School

Monterey, CA
mjguerre@nps.edu, cjdarken@nps.edu

ABSTRACT

Traditional inverse kinematics systems are riddled with issues that make their use in real-time simulations
prohibitive. Foremost, the computational costs associated with these methods are too high to make their
widespread use practical. Furthermore, their usage typically results in the synthesis of animations that fail
to impart the sense of weight and timing that would be present in either motion captured or artist created
forward kinematic animation. This is a byproduct of using a mathematical technique to solve an artistic
problem.

 A new method we have developed succeeds in overcoming these shortcomings. By using a database of
predefined animation poses, a new animation can be derived to achieve the desired pose. At its simplest,
the technique can be used to manually control a character’s gaze for simulating environmental awareness
as well as directing a character’s gun to point in the desired direction for aiming or shooting. It does all of
this and more without burdening the CPU and can be easily enhanced using hardware skinning for optimal
performance.

ABOUT THE AUTHORS

Michael Guerrero is a research associate at the MOVES Institute of the Naval Postgraduate School in
Monterey, California. He specializes in graphics and simulation technologies and has contributed to
commercial games on both the Nintendo DS and the PC and is now currently pushing the state of the art in
simulation as a co-developer of the popular open source game engine Delta3D.

Dr. Chris Darken is currently an associate professor of computer science at the Naval Postgraduate
School in Monterey, California, where he collaborates intensively with the MOVES Institute. He was
previously a project manager at Siemens Corporate Research in Princeton, New Jersey, and was on the
programming team of what was perhaps the first 3D massively multiplayer online game, Meridian 59. He
received his Ph.D. in electrical engineering from Yale University in 1993.

2008 Paper No. 8078 Page 1 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Blended Inverse Kinematics: Delta3D System Utilization

Michael Guerrero, Chris Darken PhD
MOVES Institute, Naval Postgraduate School

Monterey, CA
mjguerre@nps.edu, cjdarken@nps.edu

BACKGROUND

Modern simulations frequently require avatars to
assume a variety of different poses that are derived
from a set of animations. These animations rigidly
define all of the possible ways that the avatar can move.
For instance, a basic soldier can be expected to have
animations allowing them to “walk”, “run”, or “aim”.
This provides three different ways to move which may
seem sufficient for providing the basic functionality,
and as far as walking and running are concerned, it is
sufficient. However, an “aim” animation only allows
an avatar to shoot in one specific direction from where
they are currently oriented. This is rarely useful since a
target is unlikely to be positioned exactly where the
avatar’s gun happens to be oriented in the animation.

An initial effort to overcome this might be to create
more “aim” animations that point in different
directions. But how many directions is enough? The
real answer to that depends on how much accuracy the
application requires and how far away the target is.
The useful answer is that a sufficient number may be in
the hundreds if not thousands of separate directions.
This is unacceptable due to the capacity required to
store the animations as well as the time needed to create
that many to begin with. A second approach might be
to rotate all or part of the avatar so that they can change
their aim direction. The main issue with this is the poor
aesthetic of seeing an avatar unnaturally rotate to face
the desired direction.

A more flexible approach is needed. The approach
must operate without the combinatorial explosion of
creating discrete animations and must also result in
movement that appears natural.

One of the most commonly employed class of methods
for dynamically posing an avatar (such as aiming) are
those that solve the inverse kinematics (IK) problem
(Watt & Watt 1998). In skeletal animation, IK is the
process of determining the positions and orientations of
the joints in a skeleton with the intent of specifically
moving one specific bone (often called the end-
effector) towards a desired position and/or orientation.

For example, if an artist wants to create an animation of
an avatar to pushing button, they could move the tip of
the index finger out in front of the avatar where the
button might be. In the process of doing so, the
application determines the position and orientation of
all of the joints between the end of the finger and torso
(knuckles, wrist, elbow, shoulder, etc.), often referred
to as the kinematic chain (Lander 1998).

TRADITIONAL SOLUTIONS

A multitude of solutions have been created for IK
(along with dozens of variations and enhancements),
but most of these have been primarily developed for
applications that can tolerate their shortcomings such as
digital content creation tools like 3D Studio Max and
Maya. These IK solutions are not suitable for real time
applications for two main reasons. The first is that IK
can produce unnatural poses (Hecker 2002), but in
these tools the artist can always manually adjust these
poses to meet their needs before they are deployed in a
live simulation. This manual adjustment is something
that the artist will not have the luxury of doing if the IK
were to be applied on-the-fly within the simulation.
This is likely to result in the user seeing unnaturally
posed avatars and will negatively impact the realism of
the game, which is the reason for adding avatar motion
to begin with. The second drawback is that the
necessary IK computations may take more CPU time
than the application can afford to budget. In the
relatively forgiving environment of a content creation
tool, an unstable frame rate may be acceptable, but the
same does not hold true for real-time applications
which require a consistently high frame rate.

BLENDED INVERSE KINEMATICS

Our solution to solving the problem utilizes skeletal
animation blending and provides an interesting
alternative for generating inverse kinematic poses.
Given an initial set of poses, it is possible to generate a
new set containing all possible blends of the initial set.
Consider a set consisting of the three poses: gazing to
the right, down and right, and down and left (Figure 1).
It would be possible to generate a new gaze pose for

2008 Paper No. 8078 Page 2 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008
anywhere in between by blending together a percentage
of each of the original poses. As an example, two
possible poses generated from the blend of the initial
set are shown below (Figure 2).

Figure 1. Space defined by a set of poses

Figure 2. Blending generated poses

Using skeletal blending for inverse kinematics has
several advantages that make it an appealing alternative
to traditional techniques (Edsall 2003). Foremost, it is
computationally inexpensive. A minimal amount of
processing is required to determine the correct
weighting values (i.e. the percentages) needed to
achieve the desired pose. Once the weights have been
determined, applying a blend of the poses to the avatar
skeleton is also a relatively cheap task, especially since
it is likely that some blends would be applied to an
avatar regardless of whether or not the inverse
kinematic system is used. Furthermore the process is
artist driven, as the initial set of poses will be
guaranteed to look as desired since they were manually
created by an artist rather than by a convoluted series of
computations as would be required using traditional IK
techniques (Edsall 2003). As long as the set of poses
were created to blend well with each other, the poses
that are generated from the initial set should also
preserve the same artistic quality.

Caveats

The process of determining the blend weights to
generate a desired pose is essentially a linear
approximation of a non linear space. As such, it is
subject to a certain degree of error. The pose mesh
provides this linear mapping to the nonlinear result of
blending different poses on the avatar skeleton. In
other words, the azimuth and elevation values from the
pose mesh serve as a guide to what the orientation of
the end-effector will be as a result of using a blend at
that location in the pose mesh. In many cases the
resulting error is negligible but in some use cases, like
the aiming of a gun, a higher degree of precision may
be required to attain satisfactory results. Fortunately,
this inadequacy can be overcome using methods
described later.

2008 Paper No. 8078 Page 3 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008
POSE MESHES

Organizing the set of artist produced poses can be done
by constructing a triangulated pose mesh. In this mesh,
poses are represented by vertices and each triangle

enclosed area represents the poses that can be generated
using its surrounding vertices (poses). For example, a
set of six poses could be generated to cover all the ways
that an avatar might turn their head. Figure 3 shows an
example of what this mesh might look like.

Figure 3. Pose mesh for gaze

Using these six poses, a new “gaze” pose can be
generated to orient the head in the desired direction.
The six poses used above were created to represent the
full range of motion for the human head.

Triangulation

Organizing the poses into non overlapping triangles has
several benefits. First, it allows poses that are the most
similar to each to other to be grouped together. This is
important in order to preserve the quality of
synthesized poses and minimize the degree of error to
which they deviate from the desired pose. Also using 3
poses provides a large range of possible poses that can
be generated by the blend.

DELTA3D SUPPORT

Although the theory behind this system can be applied
to any game or simulation engine, it was necessary to
choose one to build and test our ideas. We used the
popular open source game engine Delta3D which

provided us with a robust Cal3D based character
animation library. Our system has been integrated and
made available to the public in version 2.1 of Delta3D.
In addition to the basic system, the Delta3D Animation
Viewer tool has been augmented to visualize and
interact with the pose meshes in real-time. This makes
the system much more accessible to the artists on whom
this system depends on for providing the source
animations and poses.

Animation Viewer

The animation viewer is a convenient tool for analyzing
skeletal meshes and their accompanying animations. It
reads in an XML file that specifies all of the meshes,
materials, and animations that belong to a given
skeletal mesh and displays them.

2008 Paper No. 8078 Page 4 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Figure 4. Delta3D Animation Viewer

Pose Mesh Viewer Extension

The tool has also been outfitted with a system that
facilitates the usage of the blended inverse kinematics
system. Upon the loading of a character XML file, if
the file specifies a pose mesh file, the associated data
will be automatically loaded in and made available for
manipulation through a special panel that appears after
loading.

Figure 5. Viewer with IK panel

This panel provides some convenient visualization
features. A representation of the pose meshes are
displayed with yellow circles as vertices and black lines
(edges) connecting them to indicate how they are
triangulated. Below is an example of a mesh

constructed from the gaze poses mentioned earlier that
the viewer might show.

Figure 6. Viewer representation of gaze mesh

Each pose in this example mesh has been deconstructed
into an azimuth and elevation value for the direction of
the end-effector bone. Since this data is composed of
only two values, it easily maps to a traditional two
dimensional visualization as shown above.

Interface

Figure 7. IK Panel Toolbar

The IK panel provides a toolbar with four buttons that
affect either mouse control or the way the pose meshes
are displayed. Using this set of tools enables the user
to perform the following useful actions: translate the
pose meshes around the panel, pick a location in a pose
mesh and view the resulting avatar blend that
corresponds to the picked location (figure 8), toggle the
display of the pose mesh edges, and toggle the
visualization of the error samples taken across each
pose mesh.

Figure 8. Example of picking a point in blend mode

2008 Paper No. 8078 Page 5 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008
Error Display Visualization

The rightmost button may be toggled to show the error
visualization. It is color coded using a heat map where
cooler colors (e.g., blue and green) show little or no
error and warmer colors (e.g., yellow and red) show
increasing amounts. This provides an intuitive “at-a-
glance” view of potential problems in the constructed
mesh.

Figure 9. Viewer representation of gaze mesh

Pose Mesh File Specification

Pose meshes are specified via XML files. They contain
a list of triangulated poses (the mesh), which bone is
designated as the end-effector, and the orientation of
the bone when it is considered to be facing forward. An
example of what this file might look like for the mesh
in Figure 3 is shown to the right (figure 10).

Figure 10. Example pose mesh file

Context Options

Right clicking a point inside the rectangular border of
the pose mesh will bring up a context menu which
presents the following options: “zoom extents”,
“disable”, and “clear blend”. Selecting “zoom extents”
will cause the mesh that was clicked over to occupy as
much space in the panel as possible, thus allowing you
to see it better. Selecting “disable” will gray out the
mesh and make it unable to be interacted with.
Selecting “clear blend” will remove the current mesh
point (shown as a white circle) from the pose mesh and
clear any of the mesh’s contributing animations from
the character in the viewer. This is useful for isolating
only the meshes you’re interested in testing without
being affected by other meshes that are currently
applied.

IK Properties Tab

In addition to tabs already provided by the animation
viewer consisting of “Animation”, “Meshes”, and
“Materials”, the pose mesh extension creates an
additional tab titled “IK”. An example of the data
displayed for each mesh is shown below using the
previously discussed “gaze” mesh.

2008 Paper No. 8078 Page 6 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Figure 11. Pose mesh properties tab

The “IK” tab provides detailed information about every
loaded pose mesh that is displayed in the pose mesh
panel. At the top level, the name of the mesh is
displayed along with a checkbox that allows toggling
whether the mesh is enabled or disable (this
functionality is also provided as a context option by
right clicking). At the second level we have the items
“Bone”, “Vertices”, and “State”. “Bone” displays the
name and ID of the bone in the mesh that represents the
end effector. “Vertices” which in this context
corresponds to poses, displays their name, ID, data
consisting of azimuth and elevation of the “Bone” (end-
effector), and the percentage of the vertex (pose) that is
currently applied to the avatar. The “State” property
consists of the combined azimuth and elevation values
that result from currently blended vertices. In figure
11, the “State” shows that the head bone is currently
rotated 38.5775 degrees azimuth and 9.82929 degrees
elevation as a result of the currently applied blends
coming from vertices 4, 7, and 8.

ERROR CORRECTION

Depending upon the application’s needs, the degree of
error present in the blended inverse kinematic poses
may be unacceptable. For instance, the mesh shown in
figure 9 shows some regions color coded red. By
default, red represents error values of 7.5 degrees or

greater from the intended azimuth and elevation angles
whereas blue represents 0 degrees of error.

In assessing error, it is important to realize that for
every vertex location in the mesh, the error is 0. Error
only starts to accumulate as the distance from the
vertices increases (see figure 9). This realization leads
to one effective strategy for mitigating error, add more
vertices!

All of the tools discussed so far work well together in
determining where to place additional vertices in the
pose mesh. We start by loading in all of our meshes
and turning on the error visualization. From here,
either identify the point with the greatest error or pick a
central location from which error seems to abound.
Once you have spotted this point, left click on.

2008 Paper No. 8078 Page 7 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Figure12. Error assessment

Once the error hotspot has been picked, we can
determine the azimuth and elevation values
corresponding to this location. In this example we are
looking at the “gaze” mesh so the required information
can be found by looking at its corresponding properties
in the “IK” tab (in this case, “Poses_Head/State”). This
information can be used to generate a new pose where
the end-effector bone is oriented in the same direction
as the one where the error hotspot points.

After generating a new pose, the existing mesh must be
retriangulated to be properly incorporated. This can
easily be done by editing the pose mesh’s XML file
(see figure 10). Figure 13 shows the result of the
addition of this single pose and the drastic reduction of
error that occurs as a result.

Figure13. Adding a new pose to the mesh

This same approach can be performed iteratively until
an acceptable level of error has been attained. Figure
14 shows the results in applying this method a couple
through a couple more iterations.

2008 Paper No. 8078 Page 8 of 9

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2008

Figure14. Error refinement iterations

CONCLUSION

In this paper, we have demonstrated a unique system
that utilizes skeletal animation blending to provide a
solution to the inverse kinematics problem. The
strengths of the method lie in its ability to produce
aesthetically pleasing poses without burdening the
CPU. We have also shown one possible method for
overcoming its main weakness of not generating poses
close enough to the ones desired by adding more
strategically placed poses (vertices) to the pose mesh.
The system has been successfully deployed in
applications to control the direction an avatar gazes as
well as the direction of aiming a two handed weapon
for acquiring targets. These two cases are simple
examples of where the system has proven useful thus
far. It is in no way limited by them but they serve as
the foundation for the realization of more complex
utilization.

em
that utilizes skeletal animation blending to provide a
solution to the inverse kinematics problem. The
strengths of the method lie in its ability to produce
aesthetically pleasing poses without burdening the
CPU. We have also shown one possible method for
overcoming its main weakness of not generating poses
close enough to the ones desired by adding more
strategically placed poses (vertices) to the pose mesh.
The system has been successfully deployed in
applications to control the direction an avatar gazes as
well as the direction of aiming a two handed weapon
for acquiring targets. These two cases are simple
examples of where the system has proven useful thus
far. It is in no way limited by them but they serve as
the foundation for the realization of more complex
utilization.

ACKNOWLEDGEMENTS ACKNOWLEDGEMENTS

Thanks to the Delta3D team at the MOVES Institute
without whose time and support we could have not
have produced a tool suite with this level of refinement.

Thanks to the Delta3D team at the MOVES Institute
without whose time and support we could have not
have produced a tool suite with this level of refinement.

REFERENCES REFERENCES

Edsall, J. (2003). Achieving Inverse Kinematics and

More. Retrieved June 22, 2008, from
http://www.gamasutra.com/features/20030704/edsall

Edsall, J. (2003). Achieving Inverse Kinematics and
More. Retrieved June 22, 2008, from
http://www.gamasutra.com/features/20030704/edsall
_01.shtml

Lander, J. (1998). Oh My God, I Inverted Kine. Game

Developer Magazine. Retrieved June 22, 2008, from
http://graphics.cs.cmu.edu/nsp/course/15-
464/Spring07/assignments/jlander_gamedev_sept98.
pdf

Watt, A., & Watt, M. (1998). Advanced Animation and

Rendering Techniques, New York: ACM Press.

Hecker, C. (2002). My Adventures with Inverse
Kinematics. Game Developer’s Conference
Proceedings, Retrieved June 22, 2008, from
http://chrishecker.com/images/7/76/Gdc2002-ik.ppt

2008 Paper No. 8078 Page 9 of 9

http://www.gamasutra.com/features/20030704/edsall_01.shtml
http://www.gamasutra.com/features/20030704/edsall_01.shtml
http://www.gamasutra.com/features/20030704/edsall_01.shtml
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring07/assignments/jlander_gamedev_sept98.pdf
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring07/assignments/jlander_gamedev_sept98.pdf
http://graphics.cs.cmu.edu/nsp/course/15-464/Spring07/assignments/jlander_gamedev_sept98.pdf
http://chrishecker.com/images/7/76/Gdc2002-ik.ppt

	ABSTRACT
	ABOUT THE AUTHORS
	BACKGROUND
	TRADITIONAL SOLUTIONS
	BLENDED INVERSE KINEMATICS
	Caveats

	POSE MESHES
	Triangulation

	DELTA3D SUPPORT
	Animation Viewer
	Pose Mesh Viewer Extension
	Interface
	Error Display Visualization
	Pose Mesh File Specification
	Context Options
	IK Properties Tab

	ERROR CORRECTION
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

