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Abstract Models of eye movements of an observer searching for human tar-
gets are helpful in developing accurate models of target acquisition times and
false positive detections. We develop a new model describing the distribution
of gaze positions for an observer which includes both bottom-up (salience) and
top-down (task dependent) factors. We validate the combined model against
a bottom-up model from the literature and against the bottom up and top
down parts alone using human performance data on stationary targets. The
new model is shown to be significantly better. The new model requires a large
amount of data about the terrain and target that is obtained directly from the
3D simulation through an automated process.

Keywords Eye Movements · Human Behavior Modeling · Eye Tracking ·
Target Detection · Visual Search

1 Introduction

The modeling of target acquisition and detection has always been a major
concern for military simulations. In the past, the capabilities of systems were
the focus of attention; now the capabilities and the performance of humans
need attention. As noted by Evangelista et al (2010), current simulation models
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of individual soldiers assume that they search a scene using a fixed pattern, e.g.
a sweep from left to right. Anyone who has observed soldiers, especially in an
urban environment, surely realizes that this is not an accurate model. Failure
to model search accurately results in target acquisition times that are not
accurate. Worse, it provides a poor basis for modeling detection phenomena
such as false positive detections, i.e. seeing a target where none is present,
which can have a significant impact on an operation. Current models of false
positive detection can do little better than sprinkle false targets uniformly
across the simulated battlefield. If we understood what parts of a scene were
challenging for an observer, false targets could be placed in these locations
instead.

To improve target detection mechanisms in military simulations, this work
proposes to model human eye-movement behavior during target search as a
basis for future enhancements in overall models of search and target acqui-
sition. We provide a new model of eye movements and show that it is more
accurate than the dominant model in the literature. This model can extract
its needed data from a 3D simulation through a process that has been largely
automated.

Human visual perception is dependent on the receptive qualities of the
retina. The fovea, which is the center of the retina, provides high visual acu-
ity and subtends about 2◦ of visual angle. This acuity rapidly decreases with
higher eccentricity from the center (Rayner and Pollatsek, 1992). The high
acuity of the center is necessary for reliable object recognition. It follows that
in order for humans to perceive the whole world around them with high acuity
they have to perform eye movements. While the gist of a scene can be de-
termined with a single glance, eye-movements allow humans to serially fixate
objects in the visual field one after the other to extract high level details from
fixated locations Henderson (2003).

This implies that a target can only be detected if the eyes are directed to-
wards that target and attention is deployed to this location. Also, false targets
can only be generated at locations fixated with the eyes.

Eye-movements and deployment of visual attention are both necessary to
perceive objects (Itti and Koch, 2001a), and they are closely tied to each other
(Hoffman and Subramaniam, 1995). According to Itti (2003), there are several
factors influencing the deployment of visual attention. These are bottom-up
factors, which are visual scene features, for example salient edges or contrast-
ing colors. Visually salient locations in a scene capture attention and the eyes
of an observer. In addition to that, there are top-down, task dependent fac-
tors driving attention allocation. Humans can voluntarily direct their eyes to
locations they want to examine or need to look at based on their current task.

Eye-movement and visual attention modeling is not a new endeavor. One
of the best known computational models of visual attention has been described
by Itti et al (1998). This model is based on the idea of a saliency map that
highlights the locations of a scene that stand out from their background. It
has been shown that such salient locations attract the gaze of human observers
and that they contribute to the attention allocation of humans (Itti, 2003).
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Unfortunately, the model of Itti et al (1998), as well as other state of the
art models of visual attention and eye-movements, do not take task depen-
dent information into account. Extensions to this model try to capture some
top-down aspects. For example Navalpakkam and Itti (2005) add top-down
modulation to the basic model. Top-down modulation refers to the fact that
humans are faster to find targets in visual search if they know the target
features beforehand. However, this is at best a partial way of capturing task-
dependent information.

So far, not a lot of research has been conducted as to how semantically rel-
evant locations influence eye movements. In addition, there is not any visual
attention or eye movement model incorporating this type of information. This
being said, there is empirical bottom up work on the distribution of fixations
of web pages (Buscher et al, 2009) that could potentially be combined with
top down task models such as that of Veksler and Gray (2007) to produce a
combined model in the spirit of the one presented here. One related model,
the contextual guidance model shows that scene features co-occurring with
fixated locations can be learned, and these features can be used to modulate a
salience map Torralba et al (2006). The major difference between this model
and the work proposed here is that the contextual guidance model has to rely
on low-level visual features and can only capture task relevant scene locations
by learning which low level scene features co-occur with relevant locations.
These locations need to be marked manually for the training set and extensive
training of the model based on eye-tracking data from human observers is nec-
essary, such that the model can learn the association between target locations
and low-level scene features. In contrast, the relevance maps, which will be
introduced in this work, capture the meaning of scene locations for the search
task directly without having to rely on low-level scene features and without
any training.

Previous experiments confirmed that scene elements which one would ex-
pect based on first principles to have a meaning for the task are actually
examined by viewers. This has been observed on a qualitative basis in the
experimental data of Wainwright (2008), and subsequent experiments showed
that scene locations with semantic content for the task are prioritized over
scene locations which stand out from the background due to their visual fea-
tures (Jungkunz, 2009).

The model described in the next section describes how semantically rele-
vant scene locations for the task of finding human targets can be captured.

2 Modeling

The eye-movement model described in this work needs a 3-dimensional graph-
ical simulation environment with its underlying geometry as input. This kind
of environment is similar to the ones used in first person shooter games, but
also in software for military applications which use 3D graphical displays, e.g.
the Maneuver Battle Lab (MBL) in Fort Benning, Georgia.
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The model that is presented in the following is based on the observation
that humans searching for a human enemy target tend to fixate two types
of scene locations. First, locations at which a ground soldier could take cover,
such as small walls, and vertical edges, such as window or door frames. Second,
locations at which a target would blend in well with the environment and would
therefore be hard to detect.

The model will capture these two types of locations in a map that highlights
the locations with semantic relevance for the search task. Hence, the map is
called relevance map.

2.1 Relevance Maps

To capture semantically relevant information from the simulation environ-
ment, which is the basis for the relevance maps of the proposed eye movement
model, two applications based on the Delta3D game engine are used. These
two applications directly operate on a simulation environment which provides
the stimuli or scenes for a human observer as well as the input for the eye-
movement model. These two applications are the waypoint explorer application
and the intervisibility application. The waypoint explorer application (Darken,
2007b) creates a dense hexagonal waypoint mesh which is used in conjunction
with the simulation environment by the intervisibility application to create
the relevance map.

The Waypoint Explorer Application The waypoint explorer creates the way-
point mesh in the following way. Starting from one or more waypoint seeds, the
explorer travels through the simulation environment. It is able to reach every
location within the environment which could be reached by a human. Every
location the explorer visits is marked with a waypoint. From any location the
explorer reaches it tries to step into six different directions by a given step size.
The six directions have a regular angular separation of 60 degrees. Thus the
resulting waypoint mesh has a hexagonal structure (see Fig.1). The explorer
only performs a step if the desired location can be reached by a human. The
applications stops when all reachable locations of the simulation environment
have been explored. The output of the application is a set of waypoints with
its interconnecting links. The model described in this work makes use of the
waypoints only.

The Intervisibility Application The set of waypoints and the simulation envi-
ronment are the input for the second application, the intervisibility application.
The output of this program is the so-called pixelbank, which is used to derive
the relevance map. For a given observer’s viewpoint the application renders a
scene, which is an image or a frame of a visual simulation. The image in Fig.
2 shows the simulation environment from the given viewpoint. A scene is ren-
dered once for each waypoint visible from the current viewpoint. Each time, a
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Fig. 1 An example of a waypoint mesh laid out in the environment used in this work.
The green lines indicate links between waypoints which can be traversed by a person. The
waypoints themselves are located at the intersections of the green lines.

target figure is placed in standing position at a different waypoint before the
rendering takes place.

For this target, visibility information is collected, and for every pixel of the
target, an entry is made at the respective pixel coordinate in the pixelbank.
The pixelbank is a 3-dimensional data structure where the x- and y-coordinates
of the pixelbank are image coordinates, i.e., the horizontal and the vertical
position in the rendered image or frame of that scene. The z-coordinate of the
pixelbank represents the distance of the target from the camera viewpoint in
terms of the z-buffer value of that portion of the target. The z-buffer value is
a representation of the distance from the viewpoint internal to the computer
graphics buffer derived by applying a monotonic function to the Euclidean
distance.

The visibility information that is computed for each target pixel and stored
in the pixelbank includes the fraction of visible pixels (ratio of pixels visible
to an observer to the total number of pixels that would be visible if there
were no obstructions) and the contrast of the target to its background. The
fraction of visible target pixels can be used to determine locations at which a
target can hide behind something. If the fraction of visible pixels is zero, no
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Fig. 2 A scene of the environment used in this work rendered with the target at one of the
waypoints. The waypoints are not displayed.

portion of the target is exposed. If it is one, the target is fully exposed. Any
number in between indicates that the target is partially covered. The contrast
of the target to its background is a measure of the visibility of a target. High
contrasts indicate clearly visible targets and low contrasts indicate targets that
blend with the background very well. The contrast computation is performed
as defined by Darken (2007a). For each color channel, the target ‘intensity’ for
all pixels p of the target is computed using the following formulae:

RT =
1

nT

∑
p∈T

r2(p) (1)

GT =
1

nT

∑
p∈T

g2(p) (2)

BT =
1

nT

∑
p∈T

b2(p) (3)

The background ‘intensities’ RB , GB , and BB are computed analogously,
where the background comprises all pixels within a rectangle around the target,
which have a larger scene depth than the target. The rectangle is 5% larger
than the smallest rectangle, which would include the target completely (see
Fig. 3).

Then, the contrast is computed for each color channel separately:

CR =
|RT −RB |

RB
(4)
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CG =
|GT −GB |

GB
(5)

CB =
|BT −BB |

BB
(6)

and the average of the three contrasts is the resulting contrast value.

C =
CR + CG + CB

3
(7)

Fig. 3 A
target hidden behind a wall (left). A rectangular cutout of the target 5% larger than the
smallest rectangle completely including the target (center). The same cutout with the

target, background and foreground false colored in red, green, and blue respectively (right).

Two maps are computed from the pixelbank. One map, which is based on
the fraction of visible pixels, contains the information about hiding locations.
The second map, based on the contrast information, indicates locations at
which targets blend in well with the environment.

The hiding location map is derived from the pixelbank by taking the min-
imum fraction of visible pixels from the list at every pixel. This yields a two-
dimensional map ranging from 0 to 1. The width and height of this map are
the same as the width and the height of the image rendered from the simu-
lation environment. Pixels with small numbers indicate locations at which at
least one target position is occluded and is therefore a likely hiding location.
This map is inverted, mapping the range of 0 to 1 to the range of 1 to 0 such
that 0 represents a fully exposed target and the numbers close to 1 indicate
hiding locations.

Similarly, the contrast map is a two-dimensional map with the same width
and height as the hiding location map and the pixelbank. For each x and y
image position, the minimum contrast is picked from the pixelbank list at
this position. The range of pixel values of this map starts at 0 and can be
arbitrarily high. In practice, however, the numbers range from 0 to 1 in most
cases. Therefore, all values above 1 are set to one and the result is mapped
to the range of 1 to 0. Thus, numbers close to 1 represent locations at which
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the target can blend in well with the environment and numbers close to 0
represent locations at which a target stands out well from the background.

The final relevance map is derived by additively combining the hiding lo-
cation map and the contrast map. Fig. 4 shows an example of a relevance map
and Fig. 5 illustrates the derivation of the relevance map from the pixelbank.

Fig. 4 The relevance map for one scene. White pixels indicate the relevant scene locations.

2.2 Salience Map

Since the control of eye-movements does not only depend on task dependent
information, but also on visual scene features, the proposed model includes a
salience map in the spirit of Itti et al (1998) as well. The salience map used
in this work closely follows the implementation of Itti et al (1998) with a few
modifications. Similar to the model of Itti et al (1998) this model considers
three basic features: intensity, color and orientation. The details of the salience
map computation have been described in Itti et al (1998) and therefore only the
changes to the salience map computation will be described here. These changes
pertain to the computation of the intensity channel, to the computation of the
color center-surround maps and to the normalization scheme used.

The computation of the intensity channel uses the ITU-R 601-2 luma trans-
form to convert the RGB-color values of each pixel into one intensity value.

I = 0.299 · r + 0.587 · g + 0.114 · b (8)
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Fig. 5 Derivation of the relevance map from the pixelbank.

This transform takes the different luminance perception of various colors
into account.

The implementation of the salience map proposed here follows the sugges-
tion of Frintrop (2006). Instead of using two center-surround channels, four
color center-surround maps, one for each color, are used. The computation
used to create the basic color feature maps is still as defined by Itti et al
(1998).

R = r − g + b

2
(9)

G = g − r + b

2
(10)

B = b− r + g

2
(11)

Y =
r + g

2
− |r − g|

2
+ b (12)

The center surround differences are then computed on six different spatial
scales for each color.

R (f, c) = |R (f)	R (c)| (13)

G (f, c) = |G (f)	G (c)| (14)

B (f, c) = |B (f)	B (c)| (15)

Y (f, c) = |Y (f)	 Y (c)| (16)
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Where f refers to the fine scale and c = f + δ to the coarse scale and f ∈
{2, 3, 4} , δ ∈ {3, 4}. The operator 	 denotes the across scale difference as
defined by Itti et al (1998). This means that two maps of a Gaussian pyramid
are subtracted from each other. Layer 0 of the pyramid is the original image
and the subsequent layers are numbered in ascending order. Before subtraction
the coarser map is interpolated to the scale of the finer map.

For every spatial scale, the center surround maps are added up across col-
ors yielding one center surround color map for each spatial scale. These maps
are downsampled to scale 4 and added up resulting in the final color conspicu-
ity map. This map is subsequently fused with the intensity and orientation
conspicuity maps as defined in Itti et al (1998).

The original bottom-up salience model uses a normalization scheme which
is applied to all center-surround maps before being fused into the conspicu-
ity maps of their respective channel. The same normalization is applied to all
conspicuity maps before they are combined into the final salience map (Itti
et al, 1998). The motivation for normalization is to account for the different
dynamic ranges of different modalities and to avoid having locations which are
salient in several maps but nonetheless suppressed due to noise in other maps.
Different normalization methods have been proposed, but none of them are
very convincing (Frintrop, 2006; Itti and Koch, 2001b; Itti et al, 1998). There-
fore, an alternate approach is used to compensate for the different dynamic
ranges. At first, after basic feature extraction, i.e. after creating the intensity
map and the four initial color maps, the maps are scaled from 0 to 1 based on
the knowledge that the raw color values range from 0 to 255. Then, each time
an operation is applied to a map or several maps are fused, the range of the
output is determined by considering the possible range of the input maps and
the range the resulting maps could have, based on the applied operator. Next,
based on this information the intermediate map is scaled to the range of 0 to
1. If, for example, two maps with minimum values of 0 and maximum values
of 1 are added to each other, then the values in the resulting map can range
from 0 to 2. This resulting map is then scaled to the range of 0 to 1 again by
dividing by 2. The scaling does not depend on the actual values in the map,
but on the possible minimum and maximum values a map could have based
on the operations performed on the input map up to this point. This ensures,
that the ranges of all intermediate maps are confined to the range of 0 to 1,
and the final salience map will be in the range of 0 to 1 as well. This mecha-
nism not only ensures that all input maps contribute with equal strength, but
also that final salience maps can be compared between images. A map with a
green dot on a red background, for example, should have a different salience
value at the location of the green dot than a red dot on a background with a
slightly different shade of red.
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3 Assessing the Model

To assess the quality of the relevance and salience map they will now be
compared to eye-tracking data captured from human observers looking for hu-
man enemy targets. The data was collected from participants viewing realistic
scenes containing one to four targets. These scenes were used to derive the
relevance maps as well.

The baseline for assessing the quality of the models are the saliency maps
of the Visual Attention model of Itti et al (1998).

3.1 Eye Movement Experiment

An eye-tracking experiment was conducted to record the fixations of human
observers looking for a stationary human target.

Participants Nineteen students and faculty of the Naval Postgraduate School
in Monterey participated in the experiment after providing informed consent.
All participants were members of the U.S. Armed Forces across the four ser-
vices Army, Marine Corps, Air Force and Navy. The participants were volun-
teers and did not receive any compensation. All participants were naïve with
respect to the hypotheses of the experiment.

Apparatus The stimuli were presented on a 24 inch TFT monitor set to 60 Hz
at a resolution of 1920x1200 pixels measuring 52cm x 32.5cm. The stimulus
display software was running on a Dell XPS 720 floorstand PC with a Intel
Core 2 Quad processor at 2.4 GHz.

Eye tracking was performed with the Seeing Machines FaceLab4 eye tracker.
Eye tracking sampling occurred at 60 Hz and the experiment was only con-
ducted for participants for which the screen calibration resulted in a mean
error of 1.0◦ of visual angle or better.

Participants were placed at a viewing distance of 71 cm resulting in the
screen covering a visual angle of 40◦. The viewing distance was maintained
with a modified chinrest used as a chestrest against which participants leaned
during the experiment. The head movements were unrestricted.

Stimuli The stimuli presented in this experiment were designed as scenes a
ground soldier could possibly encounter in an urban environment. However,
all scenes were static, i.e., no movement occurred and all targets were sta-
tionary. The targets in the scenes were enemy soldiers in camouflage uniform
hiding in structures, behind walls, or other objects in the scene. Enemy soldiers
could also be present in open areas. Each scene contained one to four targets.
The targets used could appear in four different postures: standing, kneeling,
crouching or prone. Sixteen scenes were presented for a maximum of fifteen
seconds each. The stimuli can be found in the Appendix1.

1 The stimuli have been designed to be displayed on a computer monitor and such that
some of the targets are hard to spot. Therefore, the targets in the stimuli are hard to discern
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Design and Procedure This experiment was the second part of a series of ex-
periments conducted in one session. After the completion of the first part, the
participants continued with this experiment. They were briefed that the scenes
of this part of the experiment would be realistic scenes containing one to six
instances of the target they already knew from the first part of the experiment.
The participants were also informed that the targets could appear in the open
or that they could be hiding or taking cover behind other objects, and that
the targets could assume four different postures. To familiarize the partici-
pants with the possible target appearances, examples of the different postures
as well as examples of partially occluded targets were presented. Then, the
participants viewed one training scene before starting with the experiment.
The scenes were displayed until participants indicated that they had found all
targets by saying ‘next’, but not longer than 15 seconds. Before each scene, a
fixation cue consisting of black crosshairs in a white circle on black background
was presented to participants. They were asked to fixate the crosshairs until
the search scene was displayed.

Although a maximum of four targets were present in each scene, partici-
pants were told that there could be one to six targets to avoid search termi-
nation based on the number of targets found. Also, the instructions stressed
that it was important to find all targets by pointing out that missed targets
could be of continuous danger in future.

Before the start of the experiment, the participant’s understanding of the
task was tested by asking a few questions addressing the key points of the
task. After that, the sixteen scenes were presented without any interruption.

Fixation Determination The fixation determination is performed by first find-
ing saccade starting points and end points. Then, all gaze points in between
saccades are considered part of one fixation. The fixation location is estab-
lished by computing the center of gravity of all gaze locations belonging to the
fixation. The detection of saccade start and end times is performed using a
speed threshold of 8.75◦ of visual angle per second over two consecutive gaze
points. Visual inspection of scene overlays shows that this threshold separates
saccades from fixations sufficiently well.

Fixation Maps To compare the participant’s fixations with the salience and
relevance maps, fixations on one scene over all participants are fused into one
fixation map per scene. The fixation maps have the same width and height as
the stimuli presented: 1920x1200 pixels. The fixation maps are binary maps
containing either values of 0 or 1. Each location of the fixation map for which
a fixation was recorded is set to 1. All other pixels of the fixation map are set
to 0. This means that a 1 in the fixation map indicates a fixated location and
a 0 indicates a location which was never fixated. On average, the percentage
of the pixels fixated in a scene is approximately 0.3%.

especially in print. They are best viewed in color. Electronic images of the stimuli can be
obtained from the corresponding author.
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3.2 Comparison

The fixation maps are compared to the salience and relevance maps using the
area under the curve (AUC) of a receiver operating characteristic (ROC) curve
following Tatler et al (2005) and Einhäuser et al (2008). An ROC curve plots
the false positive rate against the hit rate of a classifier or predictor by scanning
through all thresholds applied to that classifier. The hit rate is also referred to
as the true positive rate. For the fixation maps, the total number of negative
instances for one scene are the number of zeros in the fixation maps, which are
all the locations that were not fixated by any participant. Conversely, the total
number of positive instances for one scene is the number of ones in the fixation
map. These are all the locations that were fixated by at least one participant.
The salience maps and the relevance map are treated as predictors of fixations.
All values in the map above a certain threshold indicate that this location will
be fixated. All values below that threshold indicate that these locations will
not be fixated. The locations which are above that threshold and are marked
as fixations in the fixation map are hits based on that threshold. All locations
which are above the threshold and not marked as fixations in the fixation
map are false positives. This assumption is very conservative, since in reality
a fixation provides effective viewing for more than just one pixel. Pixels with
values above the threshold that are not fixated but lie in the immediate vicinity
of the fixation location, will be counted as false positives and not as hits. As
a result, the values of the metric used (area under the ROC curve, described
in the following paragraphs) will be lower than they should be. However, the
proposed comparison metric is still appropriate, since the evaluation of the
maps is based on a comparison of the values, not their absolute magnitudes.

Based on the numbers of hits and false positives the false positive and
hit rate for a given threshold can be determined and establish one point of
the ROC curve. Varying the threshold over the range of the predictor, in this
case the salience and the relevance maps (ranging from 0 to 1), yields a set of
points forming the ROC curve. A more detailed explanation of the ROC curve
creation can be found in Fawcett (2006).

One way of employing the ROC curve to compare classifiers or predictors
is to use the area under the curve (AUC). It is easy to determine which of
two AUCs is larger. The important thing is, however, that the AUC has a
very interesting statistical property. It is equivalent to a Wilcoxcon rank-sum
test. This means that the AUC represents the probability with which posi-
tive instances can be distinguished from negative instances by using the value
thresholded by the classifier in question (Hanley and McNeil, 1982). Applied
to the salience and relevance maps, this means that the AUC tells how well
these maps correctly distinguish between fixations and non-fixations. There-
fore, it is suitable for comparing the predictive power of the bottom-up and
top-down maps.

For the comparison of the fixation maps with the predictor maps the eye-
tracking error needs to be taken into account. Therefore, the predictor maps
are convolved with a Gaussian kernel with the size of 97 × 97 pixels. This
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amounts to 1◦ of visual angle around every pixel, which is approximately the
size of the eye-tracking error. This results in smoothed maps which contain
information of the surrounding pixels within 1◦ of visual angle or 48 pixels at
each pixel location.

4 Results

A total of four maps are compared to the fixation maps of each of the 16
scene. This yields one AUC per map and per scene, i.e., 16 AUCs for each
map. The ROC curves of all scenes are depicted per map in Fig. 6, and the
ROC curves for every scene can be found in the Appendix. The assessed maps
are the bottom-up salience map of the original implementation of the model
described in Itti et al (1998)2 (referred to as the Itti map from here on); the
re-implemented salience map, which follows the specification of the Itti model
with the changes as described in section 2.2, the relevance map and an additive
combination of the re-implemented salience map and the relevance map called
the combined map. This combined salience/relevance map is computed by
adding up the two input maps both weighted with 0.5.
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Fig. 6 ROC curves of all sixteen scenes and all four predictor maps. It can be clearly seen
how the relevance map and the map combining relevance and salience dominate the pure
salience maps.

2 Implementation derived from http://ilab.usc.edu/toolkit/downloads.shtml, last ac-
cessed 23JUL2010
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The decision to weight the two maps equally is based on a qualitative
analysis of the AUCs of all scenes over a range of 9 different weighting factor
combinations (0.1/0.9 up to 0.9/0.1). This analysis did not show any indication
of improved AUCs when weighting one map stronger than the other. Instead,
it could be observed that equal weights for the top-down and bottom-up map
resulted in the best performance averaged over all scenes. A more detailed
analysis of combination strategies and schemes is left for future work.

To be a useful predictor, the AUC of the maps needs to be larger than
0.5. An area of 0.5 would be achieved by random guessing. The average areas
under the curve of the Itti map (µ=0.54, σ=0.04, p=0.0007), the salience map
(µ=0.69, σ=0.05, p<0.0001), the relevance map (µ=0.72, σ=0.07, p<0.0001)
and the combined map (µ=0.74, σ=0.03, p<0.0001) all statistically signifi-
cantly exceed 0.5. This means that all of them predict eye fixations better
than chance. However, it is apparent that there is a large difference between
the average AUCs of the four maps. Therefore, the maps are compared to each
other to see if they differ in their predictive power.

The comparison is performed by counting how often each of the maps
has a higher AUC, i.e, the number of scenes in which one map outperforms
another. The comparisons are based on a sign test using a significance level
of 0.05. Comparing the Itti map with the salience map shows that the Itti
map is doing better in no scene, and the salience map is doing better in
all 16 scenes. The same result is found for the comparison of the Itti map
with the combined relevance and salience map. This difference is statistically
significant (p<0.0001). As compared to the relevance map, the Itti map is
doing better in 1 case and the relevance map in 15 cases. Again, the difference
is statistically significant (p=0.0003). Clearly, the Itti map is inferior to all
other maps. Looking at the salience map, one can see that it predicts eye
fixations better than the relevance map on 4 scenes, whereas the relevance
map is a better predictor for 12 of the total 16 scenes. A sign test of this ratio
shows statistical significance (p=0.0262). The salience map is also a worse
predictor than the combined relevance and salience map. The proportion here
is 1:15, which is significant as well (p=0.0003). This means that the salience
map performs better than the Itti map only. The other two maps, which both
contain information about semantically relevant scene locations, are better
predictors of eye fixations than the salience map. Finally, the comparison of
the relevance map with the combined map shows that each map is doing better
than the other for 8 of the 16 scenes. This proportion is obviously not showing
a difference of predictive power (p=0.5). A summary of these results can be
found in Table 1.

5 Discussion and Conclusions

The most apparent result of the map comparison is that the Itti map, which is
the most well-known model of visual attention allocation and eye movements,
is outranked by all other maps. This begs the question of whether the stimuli
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Table 1 Comparison of the prediction performance of all maps with all other maps. Each
cell shows the fraction of how often the row-map outperforms the column-map over how often
the column-map outperforms the row-map. The performance is determined using the area
under the ROC curve (AUC). Asterisks indicate fractions which are statistical significant
based on a sign test (significance level α=0.05).

Itti Salience Relevance Salience +
Relevance

Itti 0:16∗ 1:15∗ 0:15∗

Salience 16:0∗ 4:12∗ 1:15∗

Relevance 15:1∗ 12:4∗ 8:8
Salience + Relevance 16:0∗ 15:1∗ 8:8

used for this study are special in some way and not representative of actual
environments causing the Itti map to do worse than it would on real world
stimuli. Previous research of eye movements on real world photographs using
the AUC as a metric as well obtained very similar results (Einhäuser et al,
2008). They report that the Itti map predicts fixations above chance (AUC >
0.5) in 77 out of 93 scenes, which is 82.8% and an average AUC of 57.8% ±
7.6%. For the scenes in this experiment, the Itti maps predict fixations above
chance in 87.5% of all scenes (14 of 16), and the average AUC amounts to 54.0%
± 4.1%. This means that the performance of the Itti maps in the experiment of
Einhäuser et al (2008) is almost exactly the same as the performance observed
here.

The most important result of the map comparison is the predictive power
the relevance map achieves. The average AUC of the relevance map (71.9% ±
7.1%) is larger than the average AUC of the salience map (68.9% ± 4.8%),
and the relevance map outranks the salience map on a statistically significant
number of scenes. This shows very clearly that semantically relevant scene
locations are better predictors of eye fixations than visual salience alone. In
addition, the result shows that the novel approach of using information from
the simulation environment to determine the semantically relevant locations is
highly effective. An even better predictor than the relevance map alone is the
combined salience and relevance map. This map outperforms the salience map
on 15 scenes and reaches an average AUC of 74.1%± 3.0%. This is the expected
result based on the assessment of bottom-up and top-down factors on the eye
movements in visual search described by Jungkunz (2009) which showed that
both visually salient distractors as well as task-dependent influences affect
gaze allocation. It is interesting that the combined map does not perform
statistically significantly better than the relevance map alone although the
average AUC of the combined map is higher than the average AUC of the
relevance map.

Looking at the individual scenes more closely reveals that for scenes in
which one of the constituent maps has poor performance, the combined map
will perform worse than the best constituent map. In cases in which the per-
formance of both maps is rather good, the combined performance increases.
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Since the salience map is doing worse than the relevance map for most of the
scenes, the salience map can reduce the performance of the combined map
as compared to the relevance map alone. In contrast, the contribution of the
relevance map to the salience map in the combined map improves performance
as compared to the salience map alone.

In other words, there are scenes for which the visual scene features are the
governing factor. In this case the salience map predicts fixations better than
any of the other two maps.. Then, there are scenes for which the task influence
is the governing factor and the relevance map is the best predictor. Lastly, there
are scenes, where both visual features and relevant scene information play a
significant role, which yields better performance of the combined map than
any of the individual maps. The results indicate that in the minority of the
scenes, the bottom-up information is the governing factor. In this experiment,
there is only 1 of 16 scenes for which the visual information governs the eye
movement. This highlights the importance of the semantically relevant scene
location over visually salient locations.

In summary, it becomes evident from this research effort that the most
influential factor for the prediction of eye fixations is the set of semantically
relevant scene locations. In addition, the model presented in this work employs
a novel method which allows the direct extraction of semantically relevant
information from a simulation environment. This information is fused into the
relevance map, which has very good prediction performance.

6 Future Work

Although it is very well known that any kind of movement easily captures
visual attention, the effect of moving targets has not yet been included into
the described model. Since completely static scenes are rarely encountered
in real life, the effect of movement with respect to semantic induced gaze
allocation has to be explored.

The model described here does not include any knowledge about target
features. Previously, Pomplun (2006) has shown that image locations that con-
tain target features receive a higher proportion of eye-fixations than locations
which do not. Therefore, it would be interesting to include such a mechanism
to see how this changes the prediction performance of the model.

Furthermore, it would be very interesting to explore additional inputs for
the creation of the relevance map. At the moment, the relevance map is based
on the fraction of visible target pixels and on the contrast of the target to the
background. For the contrast input, the size of the target is currently neglected.
However, it is not hard to conceive that blending in with the environment
is not just a function of contrast, but is also modulated by target size. For
example, it would be interesting to explore how a relevance map including the
influence ‘contrast × target size’ might be constructed, and how the prediction
performance of such a map would compare to the currently used maps.
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So far, the model has only been assessed with respect to fixation densi-
ties. The next step would be to examine fixation order and its relationship
to salience and relevance maps. A model for generating fixations including
a sequence of fixations could be created based on the following ideas. Cur-
rently, the model assigns values to scene locations indicating how strongly a
location attracts the gaze in the predictor maps. These maps can be used
to generate the scan paths, that is the order of fixations on a scene. Based
on earlier findings that one stimulus image elicits very different scan paths
for different observers and even for the same observer over different sessions
(Mannan et al, 1997), the generation of fixation sequences must not be de-
terministic. To achieve this, the predictor map is interpreted as a likelihood
map. This means each value of the predictor map assigned to a certain pixel
is considered to reflect the probability that this particular location is fixated.
The initial fixation is determined based on the probabilities assigned to each
location. If a location is fixated the likelihood of that pixel and its surround-
ing area is reduced during the fixation, since a location already fixated is less
informative than a location not yet examined. The likelihood of the fixated
location decreases over time during that fixation. Thus, the original prediction
map is modified over the course of simulated scene viewing. A saccade will
occur once the likelihood of the fixated location is less than the likelihood of
another location. In addition, based on the observation that human fixations
are of limited lengths (Henderson et al, 1999), a cost is associated with the
length of the next saccade. To determine the time of the next saccade, this
cost is subtracted from each scene pixel based on its distance from the current
fixation location. The time of the saccade and the saccade endpoint will be
determined based on the probabilities of all pixels of the modified predictor
map. The saccade will take place when the currently fixated location does not
have the highest likelihood in the map any more. The saccade endpoint will be
at the location which does have the highest likelihood at that point in time.
The exact details of this model are left for future work.

Finally, the model could be extended to not only predict fixations but
also to predict target detection probabilities and generate false positives. First
of all, it is apparent, that targets which never receive a single fixation will
have a detection probability of zero. Furthermore, false positive detections
should occur only where a fixation occurred. In addition, the results of the eye-
tracking experiment contain false positive predictions. This information can
be further analyzed to learn which factors influence false positive generations
and detection probabilities.
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Appendix: Stimuli and Corresponding ROC curves
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