

Realistic Fireteam Movement in Urban Environments

Chr istian J . Darken, Daniel McCue, and Michael Guer rero

MOVES Institute, Naval Postgraduate School, Monterey, California, USA
{cjdarken, djmccue, mjguerre} @ nps.edu

Abstract
Realistic simulations of the movement of infantry in urban
environments with 3D models and at interactive rates is of
wide and enduring interest. Many video games have
attempted it, and military simulations are increasingly doing
the same. Previous attempts have fallen short in two areas:
properly coordinating movement, and adequate modeling of
the detection of hostile targets. Novel algorithms to simulate
fireteam movement and visual scanning appropriate to
urban environments are described. Measurements of the
computational performance of the most expensive
components of the approach are provided.

 Introduction
Because of their complex geometry, urban environments
are some of the most dangerous for dismounted infantry.
The four men of an infantry fireteam appear to an outsider
to move chaotically. This is intentional; predictable
movement makes a sniper's job easy. In actuality, they are
moving according to a list of fairly well defined priorities:
taking advantage of cover afforded by walls and other
objects, staying far enough from teammates to avoid
simultaneous destruction by a grenade or bomb yet close
enough for mutual support and to receive commands from
the team leader. All the while, each fireteam member is
scanning the surroundings for any potential threat.
 Simulating the movement of infantry in urban
environments with 3D models and at interactive rates is of
wide and enduring interest. Many video games have
attempted it, and military simulations are increasingly
doing the same. Previous attempts have fallen short in two
areas: properly coordinating movement, and adequate
modeling of the detection of hostile targets. Both of these
areas are critical for many military training and analysis
applications. Furthermore, a solution to these problems
would afford designers of infantry-themed video games the
choice of greatly increased realism.
 From a technical point of view, three main obstacles
must be addressed. Realistic infantry modeling requires an
unprecedented amount of visibility testing. Line of sight

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tests are not adequate to support state-of-the-art target
detection algorithms, which require knowledge of both
how much of the target's surface is visible and how much
target to background contrast is present. Visibility checks
are not only necessary for target detection. They are also
needed for movement modeling. Visibility checks are
needed to evaluate positions for safety, the ability to see
targets in areas of interest, the ability to see other members
of the fireteam, and more. Because of the large number of
required visibility checks and the need to achieve
interactive rates, we have developed an off-line visibility
precomputation and caching scheme.

Figure 1: Montage containing live Marines on patrol during
training (upper left) and simulated Marines in our prototype
(right and detail lower left).

 Secondly, an algorithm for determining where a fireteam
member looks at any given time must be developed. A
fireteam does not even begin to detect a target before some
team member looks in its vicinity.
 Third, a realistic model of how the individual
infantryman's movement coordinates with that of the rest
of the fireteam is needed. We have developed a
hierarchical search model of fireteam movement. An
approximate path for the fireteam as a whole is generated
by a cover-weighted A* search. Then, alternating greedy
searches incorporating several additional factors are
periodically performed for each member of the fireteam to
determine their movement in detail.
 We have developed a demonstrable advanced prototype
that meets these requirements. Below, we describe the

previous work on which our approach is based. We then
describe our approach to each of the above issues in detail.

Related Work
Most video games and real-time military simulations use a
line-of-sight algorithm to determine whether a target is
detected or not. To save computation at run-time, lines-of-
sight may be precomputed for all pairs of navigation graph
nodes (Liden 2002). The state of the art in off-line military
simulations is to use the ACQUIRE algorithm, which gives
a probability of detection (and detection time, in the case
of positive detection) based on both the exposed solid
angle of the target and its contrast to its background. We
base our work on a previously existing adaptation of
ACQUIRE to detailed 3D environments (Darken and Jones
2007). These are the values that we precompute and cache.
The model of potential threats in the environment that we
use is an occupancy map-based (Darken and Anderegg
2008) variant of that described in Alt and Darken (2008), a
line of research that originated with Isla and Blumberg
(2002). As in Alt and Darken, a critical difference from
standard occupancy maps is that visible waypoints do not
generally have a zero possibility of being occupied by a
threat, since we are using a probabilistic model of target
detection, i.e. just because someone looks at a location and
does not see a threat does not provide certainty that no
threat is there.

Path planning in video games and military simulations
has a very large literature. Reece (2003) is very close to
our paper in spirit. Not only does he specifically address
fireteam movement, and model threat as a movement cost,
but he uses a two tiered architecture for determining
movement. However, the second tier he uses is steering.
Steering, as Reece points out, is subject to failure
sometimes, especially in cluttered environments, as city
streets often are. As Jurney (2008), Reece treats only the
movement of units moving in fixed formations, which is
not how infantry move in urban environments.

Straatman et. al. (2005) also deserves mention for
showing the extent to which various types of consideration
may be modeled as a movement cost, and also for
highlighting the selection of end-points of movement as an
important sub-problem of movement. Like Straatman et.
al., we use scoring to select the best end-points, though our
scoring criteria are different.

Visibility Precomputation
One simple method to determine the intervisibility between
two points in a 3D space is to cast a ray from the first point
toward the second point. If no collisions occur between
the two then both points are deemed as visible from the
other. The result is Boolean since the object will either be
visible or not. This method is often deceived (Darken and
Jones 2007).

 Instead, we use a method that depends upon the exposed
surface of the target (subjective to the viewer, i.e.
equivalent to the exposed solid angle of the target) as well
as its contrast with its background. We call the exposed
surface and contrast to background the "Intervis"
parameters. Even given a relatively uniformly spaced grid
of points across a terrain, the visibility as defined by
contrast and exposed surface between any pair is
asymmetric. A hidden person exposing only his eye may
nonetheless have a perfectly clear view of his target. For n
points, there will be a total of n*(n-1) ordered pairs. In
contrast, the ray cast approach does not account for this
aspect of visual perception (as well as others) and exhibits
symmetry. For large n, the possibility of adapting the
described technique to use cached depth and framebuffers
is intriguing (vam der Leeuw 2009).
 While ACQUIRE style detection is certainly more
accurate than lines-of-sight, precomputation can only be
done for a finite set of locations. If at run time arbitrary
locations are approximated by precomputed ones, this will
introduce some amount of error. Changes in the geometry
in run time will introduce additional errors, unless the set
of possible changes is small and can be included in the
precomputation.

Algorithm

We compute the Intervis parameters (contrast and visible
surface values) for each point as follows:

GenerateVisibilityForScene()
 For each waypoint n:
 GenerateVisibilityForWaypoint(n)

GenerateVisibilityForWaypoint(sourcePoint)
 For each sector d:
 Set camera position to position(sourcePoint)
 Set camera orientation to direction(d)
 Render scene
 Store scene color texture Referencecolor
 For each waypoint w in current field of view:
 RenderAndHarvestVisibility(w)

RenderAndHarvestVisibility(w)
 Let s(i,j) be the stencil buffer value of the pixel at (i,j).
 Clear the stencil buffer s.t. s(i,j) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑠𝑠
 Place target at position(w)
 Set up the stencil function s.t.:
 The stencil test always passes
 On depth test pass, set s(i,j) = 127
 On depth test fail, set s(i,j) = s(i,j) + 1
 Render the scene
 Store scene color and stencil textures
 GetBoundingBox (stencil)
 Compute nt, the number of target pixels in the bounding
 box such that s(i,j) ≥ 127
 Compute no, the number of occluded target pixels in the
 bounding box such that 0 < s(i,j) < 127

 Compute nb, the number of background pixels in the
 bounding box such that s(i,j) < 127
 Compute the brightness of the target, Bt. Sum r2+b2+g2
 over pixels such that s(i,j) ≥ 127. Divide by nt.
 Compute the brightness of the background, Bb. Sum
 r2+b2+g2 over pixels in the bounding box such that
 s(i,j) != 127. Divide by nb.
 Compute and store the contrast C = |Bt - Bb| / Bb
 Compute and store the size of exposed surface nt
 Compute and store the occlusion O = no / (nt + no)

GetBoundingBox(stencil)
 Determine the bounding i and j values for the target
 (imin, imax, jmin, jmax), the min and max values of i and j
 such that s(i,j) != 0.
 Let target isize = imax - imin, likewise for j
 Compute the limits of a 10% padded bounding box:
 bbimin = max(0, imin- 0.05 * isize),
 bbimax = min(maxi, imax + 0.05 * isize)
 likewise for j.

 Using the stencil buffer allows us to determine the pixels
that belong to the object of interest as well as those that
would have been rendered had they not been occluded.
The number of occluded pixels can be used to provide the
percentage of the object that was actually rendered and will
equal nt / (nt + no) where no is equal to the number of
occluded pixels. The stencil function used for passing the
depth test is straightforward as it just replaces the current
value with one that is identified with the object. The case
where the depth test fails is less intuitive as failure does not
necessarily imply that the object is not present at that
location. In cases where the object exhibits concavity or is
rendered without backface culling, overdraw will occur.
This may cause the object to occlude itself. In these cases,
incrementing the current value instead of replacing it
allows us to infer that the depth test passed for values
within a certain range. Since we have 28 possible values
for each pixel in the stencil buffer, an id value should be
chosen so that the id plus the number of possible
overdraws is less than 256.
 For our purposes, starting with the mean value of 127
and incrementing as described above was sufficient as the
maximum overdraw experienced for any given pixel of our
posed skeletal mesh was 8. In cases where the amount of
overdraw exceeds the capacity of this method, rendering
the back faces with the stencil operation set to decrement
(2-sided stencil) should keep the values contained. Contrast
values from a single point are visualized in figure 2.

Performance

 Contrast and exposed surface values are valuable
parameters for modeling intervisibility but current
approaches and hardware may not be suitable for
computation in realtime. Tabel 1 shows the computation
time required on our system for the visibility of a single
ordered pair.

 CPU

Time
GPU
Time

Ray Casting ~0.00015s 0.0s
Intervis ~0.00027s ~0.00561s

Table 1: Single frame computation (Intel Q6600 @ 2.40GHz,
2.00 GB RAM).

 Given a target frame rate of 60 frame / sec, a single
frame allows for ~16.7ms. The GPU cost for a single
Intervis frame is ~5.61ms or about 33.5% of the total frame
budget. This is largely consumed by the data transfer from
the GPU to the CPU of the color and stencil buffers. Since
this operation would only need to be performed once in a
single frame, no further GPU cost would be incurred for
additional calculations. Cost will scale in multiples of the
CPU time for both methods.
 If an application needs intervisibility information for
every waypoint combination, the data will need to
computed offline and made available for quick lookup by
the application. Due to symmetry, the total number of
waypoints requiring computation for ray casting and
Intervis differ by a factor of 2. Ray casting will require (n*
(n-1)) / 2 whereas Intervis will require n * (n-1) where n ≥
2. Table 2 shows the total computation time needed for a
set of 3,784 waypoints (2m spacing over 100m by 122m).

 Waypoints
Processed

CPU
Time

GPU
Time

Ray Casting 7,157,436 ~0.298hrs 0.0hrs
Intervis 14,314,872 ~1.08hrs ~22.3hrs
Table 2: Total time for n=3784 waypoints (Intel Q6600 @

2.40GHz, 2.00 GB RAM).

Assuming that the data will be precomputed and stored in
memory, data size becomes the next issue. Note that when
occlusion is total, no data storage is required for waypoints
that are not visible. This can result in a dramatic reduction
in the amount of storage required. For instance, in our
example with n = 3784, the resulting file size (which
includes several additional pieces of data per waypoint)
was 28.141MB which is ~75% reduced.

 Waypoints
Processed

Atomic
Data Size

Total Size

Ray Casting 7,157,436 1 bit .89468MB
Intervis 14,314,872 8 bytes 114.519MB

Table 3: Data storage.

 A current computational bottleneck is the transfer of
texture data (diffuse and stencil) from video memory to
system memory. This could be eliminated if the data was
generated on the GPU and only returned the results instead
of the source textures.

Figure 2: Precomputed contrast values from a single (red)

point, whiter is better contrast (left), Threat Probability Map of
one fireteam that has explored much of the upper region (right)

Visual Search
A dynamic model of the distribution of perceived threat is
maintained for purposes of directing gaze (visual search)
and aiming behavior. Even in sophisticated military
simulations such as Combat XXI, search is typically
modeled as a simple sweep from left to right. This is a very
poor model of how infantry actually search for targets in an
urban environment. The goal of the Threat Probability
Model (TPM) is to provide a basis for synthetic behavior to
more rationally scan an area, prioritizing locations that are
most likely to contain a threat. Threat in unobserved areas
accrues over time, so that when a fireteam enters the area
they are driven to scan it thoroughly until the act of
looking reduces the probability of threat in the immediate
area. In this fashion the TPM and looking behavior affect
each other in a feedback loop (Alt and Darken 2008).

Threat Probability Model (TPM)

The TMP used in this application is an Isla occupancy map
(cells containing probabilities and diffusing to neighbors),
but with two significant modifications. First, the positions
and neighbors of the cells are defined by the navigation
graph (Darken and Anderegg 2008) rather than being a
precisely regular grid. Secondly, when cells are brought in
view by a fireteam member, the probability is reduced
consistent with his ability to detect a target of the
appropriate visible size and contrast in the given amount of
time, rather than reducing it to zero. The amount of
reduction is controlled by an exponential decay model
driven by the detection probability. This is a simplification
of the standard AQUIRE detection model that has the
advantage of not requiring storage of any data beyond the
probability that a cell is occupied by a threat. For
debugging and demonstration purposes, the TPM can be
visualized as a heat map, with colors in a spectrum from
“hot” colors (such as red) denoting high values to “cold”
colors (such as dark blue) denoting low values being
rendered at each waypoint in the grid (see figure 2). The
TPM update cost is given in table 4.

Waypoints Mean Std Dev

1112 1.25ms 0.09ms
3785 4.07ms 0.20ms

Table 4: Threat Probability Model update cost (Intel Q6600 @
2.40GHz, 2.00 GB RAM)..

Search Algorithm

In each search frame, a fireteam member independently
looks in the direction that is most threatening. Threat is
aggregated over a fixed number of angular sectors. Only
threats that are potentially visible are taken into account;
the cached visibility data is critical in making this
summation efficient. After the sector is brought into view,
the threat probabilities in each visible cell are continuously
reduced as described above.

Movement

The BASE-IT application user interface allows the user to
command an entire fireteam as a unit. We focus
exclusively on the most typical command, which is to
move to an area and watch or provide suppressive fire on
an angular sector swept out by the user. Suppressive fire is
fire at an invisible threat intended to limit his ability to
move and shoot back. Shooting at visible threats is
automatic.

Cost Functions

All movement choices are governed by cost functions that
produce cost values for any node of the navigation graph
under consideration.

Distance: Total distance moved.

Time: Since waiting is possible, total time to the
destination must be minimized in addition to distance.

Cover : The exposed surface of an individual in this
location (visible solid angle) is weighted and summed up
for all other locations using the visibility data described
above. The resulting value is inverted.

Too little dispersion: Fireteam members must not get too
close to one another to avoid simultaneous attacks.

DispersionCost(FireTeam f, mover m, waypoint w, time t)
 shortestDistance = infinity
 For each mover n in f except m:
 distanceToOtherMover =
 length(posAtTime(n, t) - pos(w))
 shortestDistance =
 min(shortestDistance, distanceToOtherMover)
 cost =

 max(minDesiredDistance - shortestDistance, 0)

Too much dispersion: If someone takes fire, his
teammates should be close enough to respond.

ComeTogetherCost(FireTeam f, Mover m, waypoint w,
time t)
 longestDistance = 0
 For each mover n in f except m:
 distanceToOtherMover =
 length(posAtTime(n, t) - pos(w))
 longestDistance =
 max(longestDistance, distanceToOtherMover)
 cost =
 max(longestDistance - maximumDesiredDistance, 0)

Distance to leader : Each fireteam member needs to be
close enough to the team leader in order to see hand signals
or at least hear a verbal command.

FTLDistCost(FireTeam f, Mover m, waypoint w, time t)
 If m is not teamLeader(f):
 cost = length(posAtTime(teamLeader(f), t) - pos(w))
 Else:
 cost = 0

Progress: Determining progress along the fireteam path is
one of the trickier costs to specify.

StringPullCost(Mover m, FireTeam f, waypoint w,
waypoint goal)
 stringPullPoint = ComputeStringPullPoint(w, path(f),
CurrentSPPIndex(m))
 cost = length(pos(stringPullPoint) - pos(w))
 cost = cost + length(path(stringPullPoint, goal))

ComputeStringPullPoint(waypoint w, path p, int
currSPPIndex)
 newSPPIndex = currSPPIndex
 If CanSee(w, p[newSPPIndex]:
 While newSPPIndex + 1 < length(p) and CanSee(w,
p[newSPPIndex + 1]):
 newSPPIndex = newSPPIndex + 1
 Else:
 While newSPPIndex + 1 < length(p) and not
CanSee(w, p[newSPPIndex + 1]):
 newSPPIndex = newSPPIndex + 1
 Return p[newSPPIndex]

Target in view: Counts how many signficant waypoints
(likely threat locations) in the user-assigned sector are
visible to the individual.

Figure 3: Cover heatmap, redder is better cover (left), Path
generation, white is fireteam path, short colored lines are paths
for individuals (right).

Path Selection

When a fireteam is commanded to move to an area, an A*
algorithm is executed across the waypoints to plot a high-
level path from the fireteam leader to the waypoint closest
to the indicated goal. The cost function used for finding
this path includes distance between waypoints plus cover,
as described above. Once calculated, this path is then used
for reference when subsequently plotting the paths of
individual movers.
 To avoid problems with getting stuck in local minima
(due to a lack of look-ahead) that are associated with
steering, as well as the extreme complexity of plotting
complete coordinated paths for all team members before
beginning movement, a compromise was reached between
these two strategies. At regular intervals, each team
member performs a greedy search to find a short path of
fixed look-ahead to navigate closer towards the goal, and
proceeds to navigate along this path until the next search.
The times at which each mover finds their next path are
staggered, so as time progresses they earch regularly take
turns finding a new path, an approach inspired by Silver
(2005). If a mover somehow drags significantly behind his
teammates, an emergency catch-up fallback engages, and
he plans a minimalist A* path to quickly catch up.
 It is important that the paths found by individuals do not
intersect, since one of the points of this design is to avoid
collision checking and steering during movement
execution. An Estimated Time of Arrival (ETA) Manager
is used to track a schedule detailing the forecast location of
each mover at any given future time, which is revised as
individuals plan their paths, and which in turn is used for
reference when planning a path so as to avoid collisions
with other movers (and indeed to maintain dispersion and
other criteria). Because the other individuals are moving,
the search space explored is not merely O(num waypoints)
but O(num waypoints * available time), and so is
technically unbounded.
 Each of several factors are evaluated for each waypoint
considered as a candidate for being a segment on a mover

path, each assessed as a cost rating between 0 and 1, then
weighted and summed to determine the cost of that
waypoint at that time. Factors weighted include dispersion,
a punishment for movers grouping too close together; a
complementary factor for punishing movers for getting too
far apart; a “string pull” factor that rewards forward
progress along the main fireteam path; and an incentive to
maintain good cover by punishing paths that travel through
regions of poor cover, distance to leader, distance moved
and time consumed. Note that an individual may choose a
"wait" action of fixed duration instead of moving.
The computation requirements in our larger test level are
indicated below. For comparison, the longest possible
fireteam (conventional A*) paths from corner to corner
take about 4 msec to generate. Individual pathing is our
most expensive movement-related computation. A look-
ahead value of 5 or less is required to avoid "chugs".

Look-Ahead Mean Time Std Dev
3 2.6ms 0.6ms
5 13.4ms 2.8ms

10 123.6ms 25.0ms
Table 5: Look ahead vs. individual partial path generation time
(Intel Q6600 @ 2.40GHz, 2.00 GB RAM).

Destination Selection

 With the first team member to come within range of the
goal waypoint at the end of the fireteam path, a set of
destinations (one navigation graph node per team member)
is selected within a radius from the goal waypoint. This set
is determined by evaluating each set of waypoints equal in
number to the size of the fireteam within the radius
according to various criteria similar to our movement
criteria. The complete list of criteria considered includes q
cover, dispersion (too much and too little), and maintaining
that the target sector to be covered, if any, is easily visible.
 For each mover in our fireteam, we find the length of the
path (as computed via a conventional A* search with crow-
flies distance as the only heuristic) from that mover to each
of the waypoints in our selected set of best end waypoints,
and store all these distances in a table. Then we consider
each possible assignment of the members of the fireteam to
the best end waypoints. We add up the total distance
traveled by all the marines to get to their respective
destinations in each assignment. Of all the possible total
cumulative distances traveled by the fireteam in each
configuration, we choose the shortest as the best.

Conclusions
The algorithms described have been implemented in a
demonstrable prototype involving the simultaneous
movement of three fireteams (a Marine squad). The
fireteam members now clearly focus their attention on the
most threatening areas first, rather than sweeping in an

arbitrary pattern. The movement patterns are likewise
sensitive to cover and dispersion, and much improved from
fixed formations. Still, the simulated behavior is far from
perfect. A recent study of Marines exposed to the prototype
resulted in a list of a dozen or more items needing
improvement. Clearly, at least for these potential users of
the system to be pleased, the quest for ever more realistic
infantry simulations must go on.

Acknowledgements
Support for this work was provided by the of the Office of
Naval Research and the U.S. Army Training and Doctrine
Command Research and Analysis Center, Monterey. The
comments and suggestions of the anonymous reviewers
were greatly appreciated.

References
Alt, J. and Darken, C. (2008). A Reference Model of
Soldier Attention and Behavior. Proceedings of Behavior
Representation in Modeling and Simulation (BRIMS) 2008.

Darken, C. and Anderegg, B. (2008). Particle Filters and
Simulacra for More Realistic Opponent Tracking. In S.
Rabin (Ed.), Game AI Programming Wisdom 4, Boston :
Course Technology.
Darken, C. and Jones, B. (2007). Computer Graphics-
Based Target Detection for Synthetic Soldiers.
Proceedings of Behavior Representation in Modeling and
Simulation (BRIMS) 2007.
Isla, D. and Blumberg, B. (2002). Object persistence for
synthetic creatures. Proceedings of the First International
Joint Conference on Autonomous Agents and Multiagent
Systems.

Jurney, C. (2008). Company of Heroes Squad Formations
Explained. In S. Rabin (Ed.), AI Game Programming
Wisdom 4, Boston:Course Technology.

Liden, L. (2002). Strategic and Tactical Reasoning with
Waypoints. AI Game Programming Wisdom.

Reece, D. (2003). Movement Behavior for Soldier Agents
on a Virtual Battlefield. Presence 12:4.

Silver, D. (2005). Cooperative Pathfinding. Proceedings of
AI and Interactive Digital Entertainment (AIIDE) 2005.

Straatman, R., van der Sterren, W., and Beij, A. (2005).
Killzone's AI: Dynamic Procedural Combat Tactics.
Proceedings of the Game Developers Conference 2005.

vam der Leeuw, M. (2009) The PlayStation 3's SPU's in
the Real World - Killzone 2 Case Study,Game Developers
Conference 2009 presentation, accessible via
http://www.gdcvault.com.

