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Abstract 
Realistic simulations of the movement of infantry in urban 
environments with 3D models and at interactive rates is of 
wide and enduring interest. Many video games have 
attempted it, and military simulations are increasingly doing 
the same. Previous attempts have fallen short in two areas: 
properly coordinating movement, and adequate modeling of 
the detection of hostile targets. Novel algorithms to simulate 
fireteam movement and visual scanning appropriate to 
urban environments are described. Measurements of the 
computational performance of the most expensive 
components of the approach are provided. 

 Introduction   
Because of their complex geometry, urban environments 
are some of the most dangerous for dismounted infantry. 
The four men of an infantry fireteam appear to an outsider 
to move chaotically. This is intentional; predictable 
movement makes a sniper's job easy. In actuality, they are 
moving according to a list of fairly well defined priorities: 
taking advantage of cover afforded by walls and other 
objects, staying far enough from teammates to avoid 
simultaneous destruction by a grenade or bomb yet close 
enough for mutual support and to receive commands from 
the team leader. All the while, each fireteam member is 
scanning the surroundings for any potential threat. 
 Simulating the movement of infantry in urban 
environments with 3D models and at interactive rates is of 
wide and enduring interest. Many video games have 
attempted it, and military simulations are increasingly 
doing the same. Previous attempts have fallen short in two 
areas: properly coordinating movement, and adequate 
modeling of the detection of hostile targets. Both of these 
areas are critical for many military training and analysis 
applications. Furthermore, a solution to these problems 
would afford designers of infantry-themed video games the 
choice of greatly increased realism. 
 From a technical point of view, three main obstacles 
must be addressed. Realistic infantry modeling requires an 
unprecedented amount of visibility testing. Line of sight 
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tests are not adequate to support state-of-the-art target 
detection algorithms, which require knowledge of both 
how much of the target's surface is visible and how much 
target to background contrast is present. Visibility checks 
are not only necessary for target detection. They are also 
needed for movement modeling. Visibility checks are 
needed to evaluate positions for safety, the ability to see 
targets in areas of interest,  the ability to see other members 
of the fireteam, and more. Because of the large number of 
required visibility checks and the need to achieve 
interactive rates, we have developed an off-line visibility 
precomputation and caching scheme. 
 

 
Figure 1: Montage containing live Marines on patrol during 
training (upper left) and simulated Marines in our prototype 
(right and detail lower left). 

 Secondly, an algorithm for determining where a fireteam 
member looks at any given time must be developed. A 
fireteam does not even begin to detect a target before some 
team member looks in its vicinity.  
 Third, a realistic model of how the individual 
infantryman's movement coordinates with that of the rest 
of the fireteam is needed. We have developed a 
hierarchical search model of fireteam movement. An 
approximate path for the fireteam as a whole is generated 
by a cover-weighted A* search. Then, alternating greedy 
searches incorporating several additional factors are 
periodically performed for each member of the fireteam to 
determine their movement in detail. 
 We have developed a demonstrable advanced prototype 
that meets these requirements. Below, we describe the 



 

 

previous work on which our approach is based. We then 
describe our approach to each of the above issues in detail. 

Related Work 
Most video games and real-time military simulations use a 
line-of-sight algorithm to determine whether a target is 
detected or not. To save computation at run-time, lines-of-
sight may be precomputed for all pairs of navigation graph 
nodes  (Liden 2002). The state of the art in off-line military 
simulations is to use the ACQUIRE algorithm, which gives 
a probability of detection (and detection time, in the case 
of positive detection) based on both the exposed solid 
angle of the target and its contrast to its background. We 
base our work on a previously existing adaptation of 
ACQUIRE to detailed 3D environments (Darken and Jones 
2007). These are the values that we precompute and cache. 
The model of potential threats in the environment that we 
use is an occupancy map-based (Darken and Anderegg 
2008) variant of that described in Alt and Darken (2008), a 
line of research that originated with Isla and Blumberg 
(2002). As in Alt and Darken, a critical difference from 
standard occupancy maps is that visible waypoints do not 
generally have a zero possibility of being occupied by a 
threat, since we are using a probabilistic model of target 
detection, i.e. just because someone looks at a location and 
does not see a threat does not provide certainty that no 
threat is there. 

Path planning in video games and military simulations 
has a very large literature. Reece (2003) is very close to 
our paper in spirit. Not only does he specifically address 
fireteam movement, and model threat as a movement cost, 
but he uses a two tiered architecture for determining 
movement.  However, the second tier he uses is steering. 
Steering, as Reece points out, is subject to failure 
sometimes, especially in cluttered environments, as city 
streets often are. As Jurney (2008), Reece treats only the 
movement of units moving in fixed formations, which is 
not how infantry move in urban environments. 

Straatman et. al. (2005) also deserves mention for 
showing the extent to which various types of consideration 
may be modeled as a movement cost, and also for 
highlighting the selection of end-points of movement as an 
important sub-problem of movement. Like Straatman et. 
al., we use scoring to select the best end-points, though our 
scoring criteria are different. 

Visibility Precomputation 
One simple method to determine the intervisibility between 
two points in a 3D space is to cast a ray from the first point 
toward the second point.  If no collisions occur between 
the two then both points are deemed as visible from the 
other.  The result is Boolean since the object will either be 
visible or not.  This method is often deceived (Darken and 
Jones 2007). 

 Instead, we use a method that depends upon the exposed 
surface of the target (subjective to the viewer, i.e. 
equivalent to the exposed solid angle of the target) as well 
as its contrast with its background. We call the exposed 
surface and contrast to background the "Intervis" 
parameters.  Even given a relatively uniformly spaced grid 
of points across a terrain, the visibility as defined by 
contrast and exposed surface between any pair is 
asymmetric.  A hidden person exposing only his eye may 
nonetheless have a perfectly clear view of his target. For n 
points, there will be a total of n*(n-1) ordered pairs.  In 
contrast, the ray cast approach does not account for this 
aspect of visual perception (as well as others) and exhibits 
symmetry. For large n, the possibility of adapting the 
described technique to use cached depth and framebuffers 
is intriguing (vam der Leeuw 2009).   
 While ACQUIRE style detection is certainly more 
accurate than lines-of-sight, precomputation can only be 
done for a finite set of locations. If at run time arbitrary 
locations are approximated by precomputed ones, this will 
introduce some amount of error. Changes in the geometry 
in run time will introduce additional errors, unless the set 
of possible changes is small and can be included in the 
precomputation. 
 
Algorithm  
 
We compute the Intervis parameters (contrast and visible 
surface values) for each point as follows:     
 
GenerateVisibilityForScene() 
 For  each waypoint n: 
  GenerateVisibilityForWaypoint(n) 
 
GenerateVisibilityForWaypoint(sourcePoint) 
 For  each sector d: 
  Set camera position to position(sourcePoint) 
  Set camera orientation to direction(d) 
  Render scene 
  Store scene color texture Referencecolor 
  For  each waypoint w in current field of view: 
   RenderAndHarvestVisibility(w) 
 
RenderAndHarvestVisibility(w) 
 Let s(i,j) be the stencil buffer value of the pixel at (i,j). 
 Clear the stencil buffer s.t. s(i,j) = 0 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝑠𝑠   
 Place target at position(w) 
 Set up the stencil function s.t.: 
  The stencil test always passes 
  On depth test pass, set s(i,j) = 127 
  On depth test fail, set s(i,j) = s(i,j) + 1 
 Render the scene 
 Store scene color and stencil textures 
 GetBoundingBox (stencil) 
 Compute nt, the number of target pixels in the bounding     
     box such that s(i,j) ≥ 127 
 Compute no, the number of occluded target pixels in the  
     bounding box such that 0 < s(i,j) < 127 



 

 

 Compute nb, the number of background pixels in the    
     bounding box such that s(i,j) < 127 
 Compute the brightness of the target, Bt. Sum r2+b2+g2    
      over pixels such that s(i,j) ≥ 127. Divide by nt. 
 Compute the brightness of the background, Bb. Sum   
      r2+b2+g2 over pixels in the bounding box such that  
      s(i,j) != 127.  Divide by nb.      
 Compute and store the contrast C = |Bt - Bb| / Bb 
 Compute and store the size of exposed surface nt 
 Compute and store the occlusion O = no / (nt + no) 
 
GetBoundingBox(stencil) 
 Determine the bounding i and j values for the target   
     (imin, imax, jmin, jmax), the min and max values of i and j    
     such that s(i,j) != 0. 
    Let target isize = imax - imin, likewise for j 
 Compute the limits of a 10% padded bounding box:  
     bbimin = max(0, imin- 0.05 * isize),  
     bbimax = min(maxi, imax + 0.05 * isize) 
  likewise for j. 
 
 Using the stencil buffer allows us to determine the pixels 
that belong to the object of interest as well as those that 
would have been rendered had they not been occluded.  
The number of occluded pixels can be used to provide the 
percentage of the object that was actually rendered and will 
equal nt / (nt + no) where no is equal to the number of 
occluded pixels.  The stencil function used for passing the 
depth test is straightforward as it just replaces the current 
value with one that is identified with the object.  The case 
where the depth test fails is less intuitive as failure does not 
necessarily imply that the object is not present at that 
location.  In cases where the object exhibits concavity or is 
rendered without backface culling, overdraw will occur.  
This may cause the object to occlude itself.  In these cases, 
incrementing the current value instead of replacing it 
allows us to infer that the depth test passed for values 
within a certain range.  Since we have 28 possible values 
for each pixel in the stencil buffer, an id value should be 
chosen so that the id plus the number of possible 
overdraws is less than 256. 
 For our purposes, starting with the mean value of 127 
and incrementing as described above was sufficient as the 
maximum overdraw experienced for any given pixel of our 
posed  skeletal mesh was 8.  In cases where the amount of 
overdraw exceeds the capacity of this method, rendering 
the back faces with the stencil operation set to decrement 
(2-sided stencil) should keep the values contained. Contrast 
values from a single point are visualized in figure 2. 
 
Performance 
  
 Contrast and exposed surface values are valuable 
parameters for modeling intervisibility but current 
approaches and hardware may not be suitable for 
computation in realtime.  Tabel 1 shows the computation 
time required on our system for the visibility of a single 
ordered pair. 

 
 CPU 

Time 
GPU 
Time 

Ray Casting ~0.00015s 0.0s 
Intervis ~0.00027s ~0.00561s 

Table 1: Single frame computation (Intel Q6600 @ 2.40GHz, 
2.00 GB RAM). 

 Given a target frame rate of 60 frame / sec, a single 
frame allows for ~16.7ms.  The GPU cost for a single 
Intervis frame is ~5.61ms or about 33.5% of the total frame 
budget.  This is largely consumed by the data transfer from 
the GPU to the CPU of the color and stencil buffers. Since 
this operation would only need to be performed once in a 
single frame, no further GPU cost would be incurred for 
additional calculations.  Cost will scale in multiples of the 
CPU time for both methods. 
 If an application needs intervisibility information for 
every waypoint combination, the data will need to 
computed offline and made available for quick lookup by 
the  application.  Due to symmetry, the total number of 
waypoints requiring computation for ray casting and 
Intervis differ by a factor of 2.  Ray casting will require (n* 
(n-1)) / 2 whereas Intervis will require n * (n-1) where n ≥ 
2.  Table 2 shows the total computation time needed for a 
set of 3,784 waypoints (2m spacing over 100m by 122m). 
 

 Waypoints 
Processed 

CPU 
Time 

GPU 
Time 

Ray Casting 7,157,436 ~0.298hrs 0.0hrs 
Intervis 14,314,872 ~1.08hrs ~22.3hrs 
Table 2: Total time for n=3784 waypoints (Intel Q6600 @ 

2.40GHz, 2.00 GB RAM). 

Assuming that the data will be precomputed and stored in 
memory, data size becomes the next issue.  Note that when 
occlusion is total, no data storage is required for waypoints 
that are not visible.  This can result in a dramatic reduction 
in the amount of storage required.  For instance, in our 
example with n = 3784, the resulting file size (which 
includes several additional pieces of data per waypoint) 
was 28.141MB which is ~75% reduced.  
 

 Waypoints 
Processed 

Atomic 
Data Size 

Total Size 

Ray Casting 7,157,436 1 bit .89468MB 
Intervis 14,314,872 8 bytes 114.519MB 

Table 3: Data storage.  

 A current computational bottleneck is the transfer of 
texture data (diffuse and stencil) from video memory to 
system memory.  This could be eliminated if the data was 
generated on the GPU and only returned the results instead 
of the source textures.   



 

 

 
Figure 2: Precomputed contrast values from a single (red) 

point, whiter is better contrast (left), Threat Probability Map of 
one fireteam that has explored much of the upper region (right) 

Visual Search 
A dynamic model of the distribution of perceived threat is 
maintained for purposes of directing gaze  (visual search) 
and aiming behavior. Even in sophisticated military 
simulations such as Combat XXI, search is typically 
modeled as a simple sweep from left to right. This is a very 
poor model of how infantry actually search for targets in an 
urban environment. The goal of the Threat Probability 
Model (TPM) is to provide a basis for synthetic behavior to 
more rationally scan an area, prioritizing locations that are 
most likely to contain a threat. Threat in unobserved areas 
accrues over time, so that when a fireteam enters the area 
they are driven to scan it thoroughly until the act of 
looking reduces the probability of threat in the immediate 
area. In this fashion the TPM and looking behavior affect 
each other in a feedback loop (Alt and Darken 2008). 
 
Threat Probability Model (TPM) 
 
The TMP used in this application is an Isla occupancy map 
(cells containing probabilities and diffusing to neighbors), 
but with two significant modifications. First, the positions 
and neighbors of the cells are defined by the navigation 
graph (Darken and Anderegg 2008) rather than being a 
precisely regular grid. Secondly, when cells are brought in 
view by a fireteam member, the probability is reduced 
consistent with his ability to detect a target of the 
appropriate visible size and contrast in the given amount of 
time, rather than reducing it to zero. The amount of 
reduction is controlled by an exponential decay model 
driven by the detection probability. This is a simplification 
of the standard AQUIRE detection model that has the 
advantage of not requiring storage of any data beyond the 
probability that a cell is occupied by a threat. For 
debugging and demonstration purposes, the TPM can be 
visualized as a heat map, with colors in a spectrum from 
“hot” colors (such as red) denoting high values to “cold” 
colors (such as dark blue) denoting low values being 
rendered at each waypoint in the grid (see figure 2). The 
TPM update cost is given in table 4. 

 
Waypoints Mean Std Dev 

1112 1.25ms 0.09ms 
3785 4.07ms 0.20ms 

Table 4: Threat Probability Model update cost (Intel Q6600 @ 
2.40GHz, 2.00 GB RAM).. 

 
Search Algorithm 
 
In each search frame, a fireteam member independently 
looks in the direction that is most threatening. Threat is 
aggregated over a fixed number of angular sectors. Only 
threats that are potentially visible are taken into account; 
the cached visibility data is critical in making this 
summation efficient. After the sector is brought into view, 
the threat probabilities in each visible cell are continuously 
reduced as described above. 
 

Movement 
 
The BASE-IT application user interface allows the user to 
command an entire fireteam as a unit. We focus 
exclusively on the most typical command, which is to 
move to an area and watch or provide suppressive fire on 
an angular sector swept out by the user. Suppressive fire is 
fire at an invisible threat intended to limit his ability to 
move and shoot back. Shooting at visible threats is 
automatic. 
 
Cost Functions 
 
All movement choices are governed by cost functions that 
produce cost values for any node of the navigation graph 
under consideration. 
 
Distance: Total distance moved. 
 
Time: Since waiting is possible, total time to the 
destination must be minimized in addition to distance. 
 
Cover : The exposed surface of an individual in this 
location (visible solid angle) is weighted and summed up 
for all other locations using the visibility data described 
above. The resulting value is inverted. 
 
Too little dispersion: Fireteam members must not get too 
close to one another to avoid simultaneous attacks. 
 
DispersionCost(FireTeam f, mover m, waypoint w, time t) 
 shortestDistance = infinity 
 For  each mover n in f except m: 
  distanceToOtherMover =  
   length(posAtTime(n, t) - pos(w)) 
  shortestDistance =  
   min(shortestDistance, distanceToOtherMover) 
 cost =  



 

 

   max(minDesiredDistance - shortestDistance, 0) 
 
Too much dispersion: If someone takes fire, his 
teammates should be close enough to respond. 
  
ComeTogetherCost(FireTeam f, Mover m, waypoint w, 
time t) 
 longestDistance = 0 
 For  each mover n in f except m: 
  distanceToOtherMover =  
   length(posAtTime(n, t) - pos(w)) 
  longestDistance =  
   max(longestDistance, distanceToOtherMover) 
 cost =  
  max(longestDistance - maximumDesiredDistance, 0) 
 
Distance to leader : Each fireteam member needs to be 
close enough to the team leader in order to see hand signals 
or at least hear a verbal command. 
 
FTLDistCost(FireTeam f, Mover m, waypoint w, time t) 
 If m is not teamLeader(f): 
  cost = length(posAtTime(teamLeader(f), t) - pos(w)) 
 Else: 
  cost = 0 
 
Progress: Determining progress along the fireteam path is 
one of the trickier costs to specify. 
 
StringPullCost(Mover m, FireTeam f, waypoint w, 
waypoint goal) 
 stringPullPoint = ComputeStringPullPoint(w, path(f), 
CurrentSPPIndex(m)) 
 cost = length(pos(stringPullPoint) - pos(w)) 
 cost = cost + length(path(stringPullPoint, goal)) 
 
ComputeStringPullPoint(waypoint w, path p, int 
currSPPIndex) 
 newSPPIndex = currSPPIndex 
 If CanSee(w, p[newSPPIndex]: 
  While newSPPIndex + 1 < length(p) and CanSee(w, 
p[newSPPIndex + 1]): 
   newSPPIndex = newSPPIndex + 1 
 Else: 
  While newSPPIndex + 1 < length(p) and not 
CanSee(w, p[newSPPIndex + 1]): 
   newSPPIndex = newSPPIndex + 1 
 Return p[newSPPIndex] 
 
Target in view: Counts how many signficant waypoints 
(likely threat locations) in the user-assigned sector are 
visible to the individual. 
 

 
Figure 3: Cover heatmap, redder is better cover (left), Path 
generation, white is fireteam path, short colored lines are paths 
for individuals (right). 

Path Selection 
 
When a fireteam is commanded to move to an area, an A* 
algorithm is executed across the waypoints to plot a high-
level path from the fireteam leader to the waypoint closest 
to the indicated goal. The cost function used for finding 
this path includes distance between waypoints plus cover, 
as described above. Once calculated, this path is then used 
for reference when subsequently plotting the paths of 
individual movers. 
 To avoid problems with getting stuck in local minima 
(due to a lack of look-ahead) that are associated with 
steering, as well as the extreme complexity of plotting 
complete coordinated paths for all team members before 
beginning movement, a compromise was reached between 
these two strategies. At regular intervals, each team 
member performs a greedy search to find a short path of 
fixed look-ahead to navigate closer towards the goal, and 
proceeds to navigate along this path until the next search. 
The times at which each mover finds their next path are 
staggered, so as time progresses they earch regularly take 
turns finding a new path, an approach inspired by Silver 
(2005). If a mover somehow drags significantly behind his 
teammates, an emergency catch-up fallback engages, and 
he plans a minimalist A* path to quickly catch up. 
 It is important that the paths found by individuals do not 
intersect, since one of the points of this design is to avoid 
collision checking and steering during movement 
execution. An Estimated Time of Arrival (ETA) Manager 
is used to track a schedule detailing the forecast location of 
each mover at any given future time, which is revised as 
individuals plan their paths, and which in turn is used for 
reference when planning a path so as to avoid collisions 
with other movers (and indeed to maintain dispersion and 
other criteria). Because the other individuals are moving, 
the search space explored is not merely O(num waypoints) 
but O(num waypoints * available time), and so is 
technically unbounded. 
 Each of several factors are evaluated for each waypoint 
considered as a candidate for being a segment on a mover 



 

 

path, each assessed as a cost rating between 0 and 1, then 
weighted and summed to determine the cost of that 
waypoint at that time. Factors weighted include dispersion, 
a punishment for movers grouping too close together; a 
complementary factor for punishing movers for getting too 
far apart; a “string pull” factor that rewards forward 
progress along the main fireteam path; and an incentive to 
maintain good cover by punishing paths that travel through 
regions of poor cover, distance to leader, distance moved 
and time consumed. Note that an individual may choose a 
"wait" action of fixed duration instead of moving. 
The computation requirements in our larger test level are 
indicated below. For comparison, the longest possible 
fireteam (conventional A*) paths from corner to corner 
take about 4 msec to generate. Individual pathing is our 
most expensive movement-related computation. A look-
ahead value of 5 or less is required to avoid "chugs". 
 

Look-Ahead Mean Time Std Dev 
3 2.6ms 0.6ms 
5 13.4ms 2.8ms 

10 123.6ms 25.0ms 
Table 5: Look ahead vs. individual partial path generation time 
(Intel Q6600 @ 2.40GHz, 2.00 GB RAM). 

Destination Selection 
 
 With the first team member to come within range of the 
goal waypoint at the end of the fireteam path, a set of 
destinations (one navigation graph node per team member) 
is selected within a radius from the goal waypoint. This set 
is determined by evaluating each set of waypoints equal in 
number to the size of the fireteam within the radius 
according to various criteria similar to our movement 
criteria. The complete list of criteria considered includes q 
cover, dispersion (too much and too little), and maintaining 
that the target sector to be covered, if any, is easily visible. 
 For each mover in our fireteam, we find the length of the 
path (as computed via a conventional A* search with crow-
flies distance as the only heuristic) from that mover to each 
of the waypoints in our selected set of best end waypoints, 
and store all these distances in a table. Then we consider 
each possible assignment of the members of the fireteam to 
the best end waypoints. We add up the total distance 
traveled by all the marines to get to their respective 
destinations in each assignment. Of all the possible total 
cumulative distances traveled by the fireteam in each 
configuration, we choose the shortest as the best. 

Conclusions 
The algorithms described have been implemented in a 
demonstrable prototype involving the simultaneous 
movement of three fireteams (a Marine squad). The 
fireteam members now clearly focus their attention on the 
most threatening areas first, rather than sweeping in an 

arbitrary pattern. The movement patterns are likewise 
sensitive to cover and dispersion, and much improved from 
fixed formations. Still, the simulated behavior is far from 
perfect. A recent study of Marines exposed to the prototype 
resulted in a list of a dozen or more items needing 
improvement. Clearly, at least for these potential users of 
the system to be pleased, the quest for ever more realistic 
infantry simulations must go on. 
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