
INTEGRATED ON- AND OFF-LINE COVER FINDING AND EXPLOITATION

KEYWORDS
AI, First-Person Shooter (FPS), Finding Cover

ABSTRACT

Most first-person shooter game AI's are poor at quickly
getting out of lines of fire. AI agents that pass up
obvious opportunities to hide or take cover can ruin a
game's immersiveness. We will present a system that
combines the sensor grid algorithm (Darken 2004) with
pathnode-based information. This system relies on cover
information stored in the path nodes placed throughout
the level and performs a focused run-time search in the
immediate vicinity of the agent if the node based
information is insufficient. This allows it to be both fast
and able to react to changes in the environment.

BACKGROUND

Taking cover is a universal human response to threat.
However, it is not innate; children must learn to hide. It is
also not totally understood; psychologists are still
investigating a critical part of hiding, which is what we
know of what other people can or cannot see (Kelly et. al.).
Nonetheless, nearly everyone is able to quickly and
effectively duck to safety when threatened. The use of
cover is also not purely defensive in nature. A person can
be taught to take advantage of cover when moving to make
invisible shifts in their position and to minimize their
exposure to danger when shooting.

The ability to use cover effectively is one of the skills that
separate the best real players in first-person shooters from
the average players. Unfortunately in the current state of
gaming it is also one of the ways to distinguish between
live players and game agents. Game agents do not use
cover effectively. Typical problems include running right
by good sources of cover, and failing to consistently take
the most direct route to safety.

This paper describes an approach that relies on a
combination of data stored in waypoints throughout the
level, and a focused dynamic (i.e. run-time) search in the
immediate vicinity of the agent when the node data is
insufficient. Waypoints used throughout the level for
pathfinding contain information that is used by the system
to help make more “intelligent” decisions regarding
concealment and cover. This information includes data
such as appropriate stance to assume, direction in which the

cover provides protection, and types of weapons this cover
provides protection from. Pre-computed visibility
information is also stored in each node that greatly
increases run-time performance. If an adequate waypoint is
not immediately found the sensor grid algorithm is run to
find a safe destination for the agent. This system is both
fast and able to react to changes in the geometry of the
environment that occur during play. We first describe some
related techniques already in the literature. Then, we give a
brief overview of the sensor grid algorithm which is
described in detail in Darken et. al. 2004. Next, we
describe the various types of waypoints used in the system.
Finally, we describe a few extensions that could be made to
the system in the future.

RELATED WORK

Previous approaches to the hiding problem involve
searching a fixed set of potential hiding locations. Often
this is the set of waypoints used to plot movement.

Typically, navigation is accomplished in high-resolution
shooter games by the use of a set of locations we call
“waypoints”. An agent gets from point A to point B by
moving from A to a nearby waypoint. Then the agent
moves from waypoint to waypoint until a waypoint close to
B is reached. The waypoint set may be selected by hand, as
is typical of games based on the Unreal engine, or the set
may be selected by various algorithms (Stout 2000)(Snook
2000). It was early recognized that one key to keeping the
computational requirements of searching the waypoint set
manageable was to keep it as small as possible (Rabin
2000). Since waypoint infrastructure is so commonly
available, it seems only natural to reuse it for determining
places to hide (Reece 2003)(Reece 2000)(van der Sterren
2002).

The primary advantage of waypoint-based techniques is
ease of implementation and low run-time computational
complexity. Unfortunately, the latter benefit is only gained
when the set of waypoints is small, and when it is small, the
likelihood that the best place to quickly duck out of fire is a
waypoint is also small. To see why this is so, consider a
map consisting of an open plane with one tall rock sitting in
the center. By appropriately placing the observer and the
hiding agent, one can make virtually any point the nearest
place to hide! An additional difficulty, and one that will
become more important in the future, is that a sparse set of
potential hiding places fixed in advance is especially
vulnerable to becoming invalid in dynamic environments

Christian J. Darken
MOVES Institute and

Computer Science Department
Naval Postgraduate School

Monterey, CA 93943
cjdarken@nps.edu

Gregory H. Paull
Secret Level Inc.

123 Townsend St., Suite 300
San Francisco, CA 94107

greg@secretlevel.com

because of vehicle motion, destruction of buildings, and
creation of new hiding places such as piles of rubble, to
name a few examples. Thus waypoint-based techniques
typically result in agents that can behave very counter-
intuitively when searching for cover.

In military simulations, space is typically represented by a
fine rectangular grid (Reece 2003) (Reece 2000)
(Richbourg and Olson 1996). This avoids the difficulties
caused by a sparse spatial representation as described
above, but at the cost of computational complexity that may
be beyond the budget of many games. The memory
required to store the grid may also be an issue for very
constrained computational platforms, like game consoles.

SENSOR GRID OVERVIEW

The sensor grid approach differs from its predecessors in
that the set of possible hiding places is not fixed, but is
instead generated dynamically at run-time. This allows it to
be relatively dense close to the agent and sparse further out,
while keeping the total size of the set small. Thus, this
approach has the potential to provide some of the benefit of
a large set of potential hiding places while avoiding the
computational complexity. Additionally, this approach
mirrors the fact that humans can generally perceive nearby
opportunities to hide more easily than ones in the distance,
and furthermore, the nearer ones are more likely to be
useful.

The sensor grid approach takes its name from the fact that
the set of potential hiding places that are tested by the
algorithm is fixed relative to the agent. It is as if the agent
had a collection of observer-detecting sensors fixed with
regard to the agent and one another moving wherever the
agent moves. A simplified overview of the algorithm is
provided in Figure 1.

Figure 1

Figure 1: Top-down diagram illustrating the sensor grid
approach. The agent (blue) is at right and a single observer
(red) is at left. The array of sensors (plus signs) surrounds
the agent. A single vision-obstructing object is present (the
green square). If a sensor cannot see the enemy, its
location is hidden (bold plus signs). The agent chooses the
nearest hidden sensor that is accessible (e.g. not inside an
object),and moves there (green arrow).

WAYPOINT SYSTEM OVERVIEW

Waypoint systems for pathfinding are quite common in
First Person Shooter games. They provide fairly good

results when using A*, the usual game industry pathfinding
algorithm. However, waypoints can be used for much more
than just pathfinding.

We have extended the standard Unreal waypoint system to
include not only standard nodes used for pathfinding, but
the following as well:

1. Cover nodes
2. Formation nodes
3. Peek-out nodes
4. Tree nodes

Figure 2 depicts a typical cover node setup.

Figure 2

Figure 2: Cover node A is shown with 3 formation nodes
to the left and a peek-out node to the right. The 2 handles
used to create the angle of coverage are depicted as vectors
connected tangentially to the cover node. The angle
between these 2 vectors would be the computed angle of
coverage for cover node A.

We have also added an initial step to the Unreal waypoint
system that is run when paths are built in the Unreal editor.
This step pre-computes the visibility amongst all nodes in
the level with the exception of formation and peek-out
nodes. This provides each node with an easily accessible
list of nodes it can “see” at runtime. This optimization
greatly reduces the number of rays that need to be cast for
line of sight checks which can make standard node-based
systems unusable on consoles such as the PlayStation 2.

Cover Nodes

Cover nodes are placed at points in the level which provide
adequate cover against some set of weapons. They contain
data which provides the agent with an idea of which
direction the nodes provides cover towards, what stance to
assume for maximum coverage, and what types of weapons
it provides cover against.

When a designer places a cover point in the editor he is
presented with a circular node that has two vectors we call
“handles” connected (see diagram below.) These handles
are used by the designer to create the angle of coverage for
the given node. By rotating the handles to the desired
positions the designer creates an arc. This arc, easily
computed using 2D vector algebra, represents the angle that

A

the given node provides cover against. When the designer
runs the pre-computed visibility check each node casts a
line of sight ray to each other node to see if it is visible.
Each node then stores a list of nodes that it can see.
Finally, nodes are marked as to whether or not they are in
the given nodes angle of coverage. If they do not fall
within the angle of coverage they are marked as being
dangerous. While this is an N2 operation it is only run on
the entire set of nodes once. After the initial run, only
nodes that have been modified will be rebuilt when pre-
computed visibility is calculated. It should be noted that
cover nodes assume a static environment. They are not
designed to work with deformable terrain or other types of
dynamic world geometry.

At runtime it is a trivial task to query a given nodes list of
dangerous nodes. When being fired upon an agent queries
the list of dangerous nodes for the node he currently
occupies. If the enemy firing at him occupies a node that is
not in the dangerous nodes list the agent simply assumes
the correct posture for cover at his present node. If the
enemy’s node is in the dangerous nodes list the agent has to
weigh the cost of either moving to a location that provides
cover from the enemy, or returning fire and hoping for the
best. If either agent does not occupy a node the node they
are closest to can be used for determining cover.
Alternatively, a line of sight check could be used. Similar
techniques have already been implemented and tested
(Liden 2002).

Formation Nodes

Formation nodes are used by fireteams to determine where
each member of a fireteam should go when the fireteam
leader occupies a cover node. Each cover node has a set of
formation nodes associated with it by a level designer using
the Unreal editor. A fireteam is a group of 4-5 soldiers who
are all under the control of a designated fireteam leader.
Only the leader uses the pathfinding system, all other
fireteam members have a distance and orientation they
maintain from the fireteam leader at all times. When a
fireteam leader determines the team needs to take cover he
moves to a cover node, and the other members move to the
formation nodes that have been associated with the given
cover node. Formation nodes are not included in the pre-
computed visibility step. They share the same visibility as
the cover node they are associated with.

Peek-out Nodes

Peek-out nodes are used by agents to move out from behind
cover and return fire at the enemy. During level creation
the level designer can associate up to two peek-out nodes
with each cover node. Whenever an agent wants to return
fire from a cover node he would follow these steps:

1. Lean out from the cover node, cast a ray, and see if
the enemy is visible. If he is visible fire, if not
proceed to step 2.

2. Check to see if at least one peek-out node is
unoccupied. If there is an available peek-out node
proceed to step 3.

3. Move a pre-set distance along the path between
the cover node and the peek-out node.

4. Cast a ray towards the enemy. If the enemy is
visible, fire. If the enemy is not visible return to
step 3.

These steps would continue until either the agent had a
clear line of sight to the enemy, or he had moved all the
way to the peek-out node location and still could not see the
enemy. As with formation nodes, peek-out nodes are not
included in the pre-computed visibility step.

Tree Nodes

Tree nodes are very similar to cover nodes except they are
used specifically around trees found in the level. They
function exactly the same as a standard cover node except
that they never have any formation or peek-out nodes
associated with them. All trees in our current game have a
small enough diameter that an agent never has to move out
from behind them to return fire. He merely has to lean out
in a given direction.

INTEGRATING THE SENSOR GRID AND
WAYPOINT SYSTEMS

In a previous paper we discussed how the sensor grid
approach was motivated as a replacement for navigating to
safety on sparse waypoint graphs. We also discussed
integration with waypoints as an extension to the sensor
grid system. This combined approach is being
implemented in a currently unannounced Unreal engine
based first person shooter. While the sensor grid approach
is highly effective at finding cover, it relies on numerous
line of sight checks for each agent. Casting rays to check
for line of sight is a very expensive computation, and with
the limited resources inherent to consoles such as the Xbox
and PlayStation 2 this approach is not feasible. By
combining the sensor grid approach with a waypoint system
we have created a system that is both fast and fairly
inexpensive, but also yields very realistic results.

The major modification to the pure sensor grid approach is
that now, when an agent needs to find cover, all cover
nodes within some pre-set distance from the agent’s
location are checked first. If an adequate cover node is
found the agent proceeds to that node. If no nodes are
found, then the standard sensor grid algorithm is run. By
only running the full sensor grid algorithm when no
adequate cover nodes are found we greatly reduce the
number of rays cast per frame. The beauty of the system is
that it can be throttled by adding more nodes to the
waypoint graph. If the system is being used on high end
PCs with a lot of cheap memory simply reduce the
granularity of the waypoint graph to allow the sensor grid
algorithm to run more often. Or, if running the system on a
console with limited resources, increase the granularity of
the graph to reduce the usage of the sensor grid algorithm.
An additional advantage is that even when the sensor grid
is used to locate cover, the waypoints can be used to
improve pathfinding to the covered point. This
improvement is particularly significant in highly
constrained environments (e.g. helping navigate through
doorways).

EXTENSIONS

Disabling Waypoints in a Dynamic Environment

One disadvantage to using a standard waypoint system for
cover is that it cannot handle dynamic environments. For
example, if you have cover point A behind a wall, and that
wall is destroyed by artillery, point A is no longer a valid
cover point. Since waypoint graphs are computed at build
time, and are static, there is no way to update the graph and
notify agents that point A is no longer usable for cover.

The sensor grid deals with this problem by constantly
scanning the environment for cover locations via line of
sight checks. Thus, it can easily handle dynamic changes to
the environment.

An interesting extension to the system we describe in this
paper would be a method of disabling nodes when the
environment changes. Going back to the example given
above, after the wall is destroyed cover point A would be
disabled and excluded from any further pathfinding
searches. Now, when the agent is in the area near cover
point A he uses the sensor grid algorithm to find adequate
cover in the rubble of the former wall.

EXPERIMENTS AND RESULTS

The algorithm was implemented on top of America’s Army
version 2.0, which uses the Unreal Warfare engine. The
core of the sensor-grid code was written in UnrealScript,
and is approximately 500 lines in length. The extensions to
the waypoint system were primarily made in C++ code, and
added about another 1000 lines of code. All tests were
carried out on a desktop PC with a Pentium 4 processor, 1
GB of RAM, and a GeForce 5600FX with 256 MB of
RAM.

Running the algorithm provided nearly instantaneous
results, and no slowdown in gameplay was noticed. Agents
were able to successfully find cover behind various types of
objects such as trees, rocks, buildings, and vehicles. In
addition, agents now successfully traversed doorways
which they were unable to do in the sensor-grid only
approach.

The one area that can slow the running time of the
algorithm down noticeably is the reliance on ray casting for
the line-of-sight checks used by the sensor-grid. Ray
casting is a very expensive operation in the Unreal engine.
When multiple agents are all casting multiple rays each
frame in an effort to find cover there is a noticeable drop in
the framerate of the game. This is an even more serious
problem on consoles such as the PlayStation 2 where the
limited amount of memory and CPU resources make it
virtually impossible to perform the sensor-grid part of the
algorithm in its current form. We are currently working on
a scheduling system for ray-casting which will time-slice
the process and spread the casting of rays over multiple
frames. We hope this scheduling system, used in
conjunction with the pre-computed visibility system, will
make this a viable cover finding algorithm for console
based first-person shooter games.

CONCLUSIONS

We have presented a system that combines the ease of use
and quick access to data of a waypoint system with the
sensor grid approach and its robustness in dealing with
dynamic environments.

The technique we describe is very fast when only node data
needs to be queried to discover an adequate cover point.
The efficiency at runtime is achieved by pre-computing
node visibility at build time, as well as embedding key data
in each node. When an adequate node is not discovered the
extremely robust sensor grid algorithm is run which is very
effective at finding cover quickly.

The sensor grid algorithm can sometimes make mistakes
which are described in our previous paper (Darken 2004).
Additionally, the waypoint system is subject to the
constraint that in order for it to be completely effective,
agents must reside on a waypoint anytime they check for
cover. The pre-computed visibility relies on the fact that
agents are always on a waypoint. They system will work if
agents use their closest waypoint for cover calculations,
however errors may creep in. To counteract this problem
the sensor grid algorithm could be scheduled to run anytime
an agent needs cover and he is not on a node.

Computing lines of sight is already a major component of
the computational budget devoted to AI for many computer
games. We feel this system greatly reduces the need for a
large number of line of sight checks, but when necessary
can use them to great effect.

ACKNOWLEDGEMENTS
Portions of this work were supported by funds from the
Naval Postgraduate School, the Navy Modeling and
Simulation Management Office, and the U.S. Army
Training and Doctrine Analysis Center, Monterey.

BIOGRAPHY

GREGORY PAULL received his Masters Degree in
Computer Science from Boston University in 2002. He is
currently pursuing a PhD in AI through the MOVES
Institute at the Naval Postgraduate School. He is also a
full-time AI programmer at Secret Level Inc., a small
computer game company located in San Francisco, CA. He
has previously worked at Electronic Arts and Looking
Glass Studios.

REFERENCES

Darken, C., Morgan, D., and Paull, G. “Efficient and Dynamic
Response to Fire”, Proceedings of the AAAI Workshop on
Challenges in Game AI, 2004.

Darken, C. 2004. “Visibility and Concealment Algorithms for 3D
Simulations”, Proceedings of Behavior Representation in
Modeling and Simulation (BRIMS) 2004.

Kelly, J., Beall, A., and Loomis, J. To appear. “Perception of

Shared Visual Space: Establishing Common Ground in Real
and Virtual Environments”, to appear in Presence.

Liden, L. 2002 “Strategic and Tactical Reasoning with
Waypoints”, AI Game Programming Wisdom, Charles River
Media, pp. 211-220.

Rabin, S. 2000. “A* Speed Optimizations”, Game Programming

Gems, Charles River Media, pp. 272—287.

Reece, D., Dumanoir, P. 2000. “Tactical Movement Planning for

Individual Combatants”, Proceedings of the 9th Conference on
Computer Generated Forces and Behavioral Representation.
Available at http://www.sisostds.org.

Reece, D. 2003. “Movement Behavior for Soldier Agents on a

Virtual Battlefield.” Presence, Vol. 12, No. 4, pp. 387—410,
August 2003.

Richbourg, R., and Olson, W. 1996. “A Hybrid Expert System that

Combines Technologies to Address the Problem of Military
Terrain Analysis,” Expert Systems with Applications, Vol. 11,
No. 2, pp. 207—225.

Snook, G. 2000. “Simplified 3D Movement and Pathfinding Using

Navigation Meshes”, Game Programming Gems, Charles
River Media, pp. 288—304.

van der Sterren, W. 2002. “Tactical Path-Finding with A*”, Game

Programming Gems 3, Charles River Media, pp. 294—306.

