

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MOBILE SECURITY ENCLAVES

by

Kevin J. LaFrenier

September 2011

 Thesis Co-Advisors: Gurminder Singh
 John H. Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Mobile Security Enclaves
6. AUTHOR(S) Kevin J. LaFrenier

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A__________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
There are currently no access control methods to permit personnel, such as military members, government agencies,
or first-responders, access to restricted resources and applications that are only available when certain conditions are
satisfied. Such conditions include user authentication, authorized geographic locations, and connections to specific
base transceiver stations or base station controllers. This work defines mobile security enclaves, which are designed
to provide this access control, are adaptable and compatible with mobile cellular infrastructures, and can operate
without being connected to a dedicated back-end network. The goal of this proposed architecture is to permit users
who satisfy specific pre-conditions access to resources and applications to which they otherwise normally would not
be granted access. An example where this research is beneficial is during crisis response. Disasters require first
responders the need to have immediate access to resources available in a specific location. Another example is
agencies requiring mobile communication device use on classified networks or to access classified resources. These
mobile security enclaves not only provide strict security by authenticating the user and device location, they also
prevent access to networks or resources outside of authorized areas and restrict unauthorized users.

15. NUMBER OF
PAGES

95

14. SUBJECT TERMS Mobile Communication Devices, Mobile Security, Mobile Enclaves, Security
Applications, GSM Security Applications, Mobile Base Station Subsystems, Mobile Access Controls,
Mobile Authentication, SIM Authentication

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution unlimited

MOBILE SECURITY ENCLAVES

Kevin J. LaFrenier
Captain, United States Marine Corps

B.S., United States Naval Academy, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Kevin J. LaFrenier

Approved by: Gurminder Singh
Thesis Co-Advisor

John H. Gibson
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

There are currently no access control methods to permit personnel, such as military

members, government agencies, or first-responders, access to restricted resources and

applications that are only available when certain conditions are satisfied. Such conditions

include user authentication, authorized geographic locations, and connections to specific

base transceiver stations or base station controllers. This work defines mobile security

enclaves, which are designed to provide this access control, are adaptable and compatible

with mobile cellular infrastructures, and can operate without being connected to a

dedicated back-end network. The goal of this proposed architecture is to permit users

who satisfy specific pre-conditions access to resources and applications to which they

otherwise normally would not be granted access. An example where this research is

beneficial is during crisis response. Disasters require first responders the need to have

immediate access to resources available in a specific location. Another example is

agencies requiring mobile communication device use on classified networks or to access

classified resources. These mobile security enclaves not only provide strict security by

authenticating the user and device location, they also prevent access to networks or

resources outside of authorized areas and restrict unauthorized users.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. SECURE ENCLAVES ..1
B. OBJECTIVES ..2
C. ORGANIZATION ...2

II. BACKGROUND ..5
A. INTRODUCTION..5
B. CELLULAR NETWORKS AND GSM...5

1. Core Network Communication...9
2. Base Station Subsystem ...10
3. GSM Security ...12
4. MCD Applications ...13

C. ANDROID’S APPLICATION PROGRAMMING INTERFACES
(API) ..14

D. LOCATION-BASED APPLICATIONS..15
E. SUMMARY ..16

III. ARCHITECTURE AND DESIGN...17
A. INTRODUCTION..17
B. LOCATION-VERIFICATION APPLICATION18

1. Cell ID ...19
2. GPS Coordinates..19

C. AUTHENTICATION OF APPLICATION TO MCD20
D. ENCLAVE STRUCTURING ...21
E. SUMMARY ..22

IV. IMPLEMENTATION ...25
A. INTRODUCTION..25
B. LOCATION-VERIFICATION APPLICATION25

1. Main Activity..28
2. GPSActivity ..29
3. CIDActivity...31
4. AuthActivity ...32

C. AUTHENTICATION OF APPLICATION TO MCD33
1. Required Elements And Concepts..33
2. Application-embedded Authentication Algorithm34
3. Communication With the SIM ...35
4. Transition To Enclave ...38

D. ENCLAVE STRUCTURING ...38
1. Transition From Authentication To Enclave38
2. Enclave Securities ..40
3. Enclave Framework...41

E. SUMMARY ..42

 viii

V. CONCLUSION AND FUTURE WORK ...43
A. CONCLUSIONS ..43
B. FUTURE WORK...44

1. Network Integration ..44
2. Component Integration ...45
3. Software Integration..45

APPENDIX A. MAIN ACTIVITY..47

APPENDIX B. MAIN XML...49

APPENDIX C. GPS ACTIVITY ...51

APPENDIX D. GPS XML..55

APPENDIX E. MANIFEST ...57

APPENDIX F. CID ACTIVITY ..59

APPENDIX G. CID XML ..61

APPENDIX H. AUTH ACTIVITY ...63

APPENDIX I. AUTH XML ...65

APPENDIX J. A3/A8 ALGORITHM ...67

LIST OF REFERENCES..75

INITIAL DISTRIBUTION LIST ...79

 ix

LIST OF FIGURES

Figure 1. GSM network architecture (From [1])...6
Figure 2. Android architecture (From [17]) ..14
Figure 3. Proposed use case ..17
Figure 4. Architectural flow chart ...23
Figure 5. Location-verification application home activity..26
Figure 6. Location-verification application GPS and Cell ID check27
Figure 7. Location-verification application authentication activity28
Figure 8. Android system architecture (From [30]) ..37

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF ACRONYMS AND ABBREVIATIONS

AUC Authentication Center

APDU Application Protocol Data Unit

API Application Programming Interface

BCCH Broadcast Control Channel

BSC Base Station Controller

BSS Base Station Subsystem

BTS Base Transceiver Station

EIR Equipment Identity Register

GPS Global Positioning System

GSM Global System For Mobile Communications

HLR Home Location Register

ICCID Integrated Circuit Card Identifier

IEC International Electrotechnical Commission

IOS International Organization For Standardization

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscribers Identity

ISDN Integrated Services Digital Network

LAC Location Area Code

LAI Location Area Identity

MANET Mobile Ad-hoc Network

MCC Mobile Country Code

MCD Mobile Communications Device

MNC Mobile Network Code

 xii

MSC Mobile Switching Center

MSISDN Mobile Subscribers ISDN

MVPN Mobile Virtual Private Network

NSS Network Subsystem

OS Operating System

PLMN Public Land Mobile Network

PSTN Public Switched Telephone Network

RAND Random Challenge

SDK Software Development Kit

SIM Subscriber Identity Module

SRES Signed Response

TMSI Temporary Mobile Subscriber Identity

VLR Visitor Location Register

VPN Virtual Private Network

 xiii

ACKNOWLEDGMENTS

Many thanks to both of my advisors, Dr. Gurminder Singh and Mr. John Gibson,

for making this rewarding experience possible. Thank you both for continuously keeping

me on track and having patience with my many questions. Professor Singh, thank you

for taking me in and helping me develop this amazing topic and area of work. Mr.

Gibson, thank you for always being available for advice and answering questions right

away, considering your very busy schedule. The time spent on this has been an

experience I will never forget and I hope to maintain many of the skill sets I have learned

throughout this research and development.

I would like to thank Charles Prince, the research associate for the networks track

within the department. Charles was always able to fix any problems dealing with getting

the equipment set up and running for us, while taking time away from his own work. I

would not have been able to run my experiments and testing without your help.

I also wish to thank my classmates for all of the assistance as we tackled a trying

curriculum. I would especially like to thank Jim McShea for your unselfish commitment

in assisting us in many of the topics we struggled through. I know I am not alone in

thanking you for this.

Finally, I owe my lovely wife Amy, and our three children—Iris, Ava, and Jack—

so many thanks for hanging in there and always having patience with me. I spent a lot of

time away the past few years working hard on this and could not have done it without

each and every one of you. Thank you.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The past decade has brought many natural disasters and times of strife requiring

the quick response of emergency personnel, also known as first responders. The first

responders have been tasked with many different jobs, such as flood evacuations, aiding

tornado victims, and setting up and managing aid stations in earthquake-ravaged

countries, to name just a few examples. These examples are endless when considering

quick response actions required of law enforcement and the military, fire departments and

medical staffs, and many other organizations. The coordination and communication of

these great missions are largely complicated and often difficult to manage, yet extremely

important.

The current generation of wireless networks and services can support the

coordination and communication requirements of such missions. There has been an

explosion in the mobile device technologies recently and an even greater advancement of

the capabilities of these devices. First responders can benefit from these advances by

using them within secure wireless networks to aid in their efforts. Security is a necessity

in these environments and although many mechanisms are currently available for the

networks themselves, they are not sufficient enough to secure an application to the native

device.

A. SECURE ENCLAVES

Valuable services and resources must be available to first responders on-scene.

These are often just applications, and must be secure enough to not only share sensitive

data without compromise but also prevent unauthorized access. Wireless networks

currently do an acceptable job with providing security, but there also needs to be a secure

form of access control between the user’s mobile device and applications or data.

A mobile security enclave is a method of access control between a collection of

valuable assets and the mobile device. The enclave contains these assets and only allows

access to the user when certain conditions exist. The conditions must be specific to the

 2

user and device, such as connection to particular cell tower or present within a

geographical area. These conditions relate directly to users who often operate with

mobile ad-hoc networks. These types of networks should also provide additional security

and present solutions when the permanent infrastructure has been damaged or

inaccessible. There are currently no mobile security enclaves in use.

B. OBJECTIVES

Our goal is to develop an infrastructure for mobile security enclaves. The

infrastructure will consist of an application to test appropriate conditions under which

access should or should not be granted, a method of authentication between the

application and mobile device, and the framework required to allow the access from

device to sensitive assets (the enclave). The following components of the framework will

be presented:

 The testing application is the first instance of allowing secure access to the
enclave. It tests whether or not the mobile device is currently connected to
a specific base station. If the test is positive, then the authentication
between the security enclave and mobile device may begin. Further work
will be conducted with other conditions, such as proper GPS coordinates
of the device.

 A method of authentication between the enclave and mobile device is
proposed. Various schemes are considered, such as a shared key
mechanism, to allow for mutual authentication.

 Once the device and enclave are authenticated, assets within the enclave
are available to the user. A method of building the enclave is also
proposed to include the Android coding required.

C. ORGANIZATION

Chapter I provides a brief introduction to the proposed work surrounding security

enclaves. The introduction includes a short description of what enclaves are and what

they can be used for. The chapter also outlines the objectives that will be achieved.

 3

Chapter II provides the reader a description of technologies and concepts used and

discussed in this work. The topics range from very broad concepts to precise definitions.

This chapter gives the reader a general understanding of the areas of work and focuses on

the relevant aspects.

Chapter III examines the necessary framework required to meet the objectives. It

covers requirements for the application and concepts, and explains what each component

must accomplish. This chapter will also discuss a generalized architecture for providing

location-verification of the device, how to incorporate the authentication, and how to

design the enclave.

Chapter IV explains the architecture from Chapter III in detail as to how it works

and how it is to be implemented. There are three main sections to this chapter, to include

the location-verification application, authentication mechanism, and security enclave.

The location-verification application is implemented and the code is included in the

Appendices. The first section explains the code used and how it relates to the remaining

work. The next two sections provide a detailed description of how the authentication

mechanism and enclave needs to be developed.

Chapter V is the summary of the thesis with conclusions drawn from the testing as

well as proposed frameworks. The chapter also outlines future follow-up work necessary

to put these concepts into a working solution and other components that can be added or

altered to provide further functionality.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

A. INTRODUCTION

This chapter prepares the reader for follow-up discussions presented in

subsequent chapters. It provides a general background and description of cellular

communication networks and an analysis of the existing architectures of the relationships

between applications, mobile devices, and networks. The discussion begins with basic

cellular network operation and components, continues with GSM and related functions,

and concludes with information about the proposed frameworks for mobile security

enclaves defined in Chapters III and IV.

B. CELLULAR NETWORKS AND GSM

The need for a wireless infrastructure to support communications and data

interactions is now more important than ever with the increased use of mobile devices.

Although the massive growth in mobile devices has only occurred recently, the concept

and technology has been around for many decades. There is much history behind the

evolution of the cellular networks including the current 3G networks (quickly upgrading

to 4G); however, this chapter only discusses the emergence of the Global System for

Mobile Communications (GSM), since it is the only network used as a test-bed by this

thesis.

The basic components of a cellular network are similar regardless of which

device, type of network, or service provider is being used. The back-end of any network

is the Public Switched Telephone Network (PSTN), which extends out to the Network

Subsystem (NSS) that contains the Mobile Switching Centers (MSC), among many other

components. MSCs connect to each other and Base Station Subsystems (BSS) that each

contain a Base Station Controller (BSC) attached to at least one Base Transceiver Station

(BTS), or cell tower. The towers are the components that reach out and “talk” to the

mobile devices through the over-the-air interface. These components are discussed more

in depth for GSM networks only (Figure 1), following a brief background of GSM.

 6

Figure 1. GSM network architecture (From [1])

GSM started out as The Groupe Special Mobile in 1982 by the European

Conference of Postal and Telecommunications Administrations (CEPT). The purpose of

this group was to develop a standard for a mobile telephone system that could be used

across Europe. Five years later, 13 other countries in Europe committed to deploying

GSM [2]. The first GSM network infrastructure was implemented in 1991, as well as the

first GSM-based call being made. The number of Global GSM subscribers in 1995

exceeded 10 million, 100 million in 1998 [3] and projected to be more than 4.5 billion in

late 2012 [4]. The global GSM market share as of 2010 is 83.5% [5].

The use of mobile telephony devices in a network such as GSM is made possible

by the PSTN. This is the core infrastructure used worldwide to connect all devices and

networks together. It is a massive interconnection of circuit-switched telephone

networks. The cellular network is one such telephone network. An example of how the

PSTN connects a call from one device to another is listed below.

The GSM Network Subsystem (also known as the Network Switching Subsystem

or NSS, or GSM Core Network) connects the PSTN to the BSS and contains the

following elements: Home Location Register (HLR), Visitor Location Register (VLR),

 7

Authentication Center (AuC), Equipment Identity Register (EIR) and the MSC. The

main roles of the NSS are acting as a switching center and mobility management. The

HLR is a database that contains a subscriber’s basic information, such as identification

and home network. Similar to the HLR is the VLR that contains the current location

information of the user to be used in tracking the device and roaming. The MSC is the

node responsible for end-to-end routing of voice calls, text messages, and other data

services. It is connected directly to the other components, as well as the BSS and PSTN.

The AuC authenticates a subscriber’s Subscriber Identity Module (SIM) when the

subscriber’s handset attempts to connect to the NSS. The SIM is explained in more detail

below. Lastly, the purpose of the EIR is to monitor and track stolen mobile devices by

their International Mobile Equipment Identity (IMEI). An IMEI number is submitted to

the EIR, which maintains a list of stolen mobile device IMEI that are monitored for

presence on GSM networks.

Base Station Subsystems handle traffic between the mobile devices (also referred

to as mobile communication devices, or MCDs) and the NSSs. Each BSS contains a

BSC and one or more BTS’s. In most networks the BSC will be surrounded by multiple

BTS’s creating a pattern of cellular coverage, a “cell.” The BSC extracts signal

measurements used in BTS handoffs and controls radio channels. The BTS simply

contains the equipment used for transmitting and receiving radio signals.

GSM networks contain two separate channels by which mobile device users

connect. These are an administration (control) channel and data transfer channel, which

itself is comprised of various sub-channels. GSM networks are allotted a frequency

range, which is broken down into these channels, eight in all. To avoid frequency

overlap, the BTSs will divide their area of coverage up into sections. This also aids in

mobile device handoff as it moves from cell to cell. BTSs in GSM networks

continuously transmit RF signals on a control frequency for MCDs to detect while mobile

stations are continuously scanning the forward control channel (FCC) for paging signals

from base stations.

The MCD, BSS and MSC are the components that primarily handle phone calls

and text messaging. When a MSC receives a request for a connection to a mobile station

 8

in its area, it sends a broadcast message to all base stations under its control. The

message contains the number of the mobile station that is being called. The base stations

then broadcast the message on all forward control channels. The correct mobile station

acknowledges the page by identifying itself over the reverse control channel (RCC). The

MSC receives the acknowledgement via the base station and instructs the base station and

mobile station to switch to an unused voice channel. A control message is then

transmitted over the forward voice channel, which instructs the mobile phone to ring [6].

The mobile device measures signal strength of all detected signals and relays this

information to the MSC which will calculates whether or not to hand the MCD over to

another BTS or BSC.

The method is very similar when the mobile device initiates the call instead of

from the other side of the MSC. The MCD sends a request to its BTS, which is relayed

through to the BSC. The BSC routes the request to the MSC, which decides on whether

or not it needs to forward the request to a connected BSS, another MSC, or to the PSTN.

The inherent design of cellular networks leads to security problems since tower to

mobile device communications are transmitted in the wireless medium, where

eavesdroppers can intercept the signals. GSM offers security by encrypting this link with

special ciphers. The ciphers used for encryption are integrated into the MCD as a

dedicated piece of silicon. The cipher key is derived by the SIM during the

authentication process. To authenticate a SIM, the network has to know its identity. As

this has to be sent over the air interface, temporary identities are used to counteract the

threat of tracing the user’s whereabouts [7].

It is important to note here the potential weaknesses in the over-the-air interface

of data transfer between the MCD and BTS. This is one valid concern leading to the

development of a mobile security enclave for first responders. This interface provides

some security, but our proposed enclave would provide a more sufficient means of

securing access and data transfer.

 9

1. Core Network Communication

Configuring the core network at the MSC can be a difficult task depending on

what equipment the first responders are using. This cannot be done on a permanent GSM

network without the system’s approval, but other means are available for testing purposes

as well as implementation. There exist mobile base stations that can perform many of the

same functions as the BSC and MSC, and some allow back-end connection to the

permanent infrastructures. First responders can use these mobile base stations to set up

their own networks on the fly, similar to mobile ad-hoc networks (MANETs), but are

different in protocol. This thesis references mobile networks but they are not to be

confused with MANETs. Mobile networks allow users to communicate and transfer data

via GSM devices as though they are present within a permanent network. The benefit to

the mobile BSC/MSC combination is that they can easily be configured and sufficient

security methods can be applied. There also exists open source software that allows for

the configuration of components of a GSM network if the equipment is not capable.

One such example of open source software is OpenBSC. The OpenBSC project is

a software program that benefits researchers in three ways [8]:

 provides for a low-cost test-bed for experimentation and security research
with GSM

 the project documents and publicizes any security related issues that are
found

 researchers learn more about GSM networks on a lower level, particularly
the practical aspects with real-world equipment

The only requirements for OpenBSC are the software program, a GSM BTS and a

Linux kernel with mISDN support. The software program must be written in C99

portable code. C99 is a standardization of the previous revisions and extensions of the C

programming language leading up to 1999 [9].

There are different modes within this program that implement and act as the BSC,

MSC and HLR. With the required equipment, one is able to setup up a configurable

GSM network for testing and researching purposes. The project also provides

functionality for use of AuCs, VLRs and EIRs. The HLR is a simple instance of an

 10

SQLite database that stores entries of the subscribers to the network. OpenBTS is a

similar program to that of OpenBSC, but replaces the NSS from the BTS up. The

purpose is to provide a software based GSM access point for GSM compatible devices.

In addition to software, there are whole components that can be used in manually

configuring GSM network components. These devices are discussed further in Chapter

IV.

Some of the focus in this thesis centers on interaction between the MS and BSS.

There exists a possibility to manage this interaction from the MSC. The MSC’s purpose

is linking groups of BSSs and to control call signaling and processing, among other

things. The important aspect is the data transfer through the BSS, intended for

components such as the HLR, VLR and EIR, which is necessary for location

management.

One such data transfer occurs in mobility management. BTSs are periodically

broadcasting cell identities to their areas of coverage. Any MCDs within that area of

coverage receive that information and relay it to the VLR that is attached to the local

MSC, where it calculates signal strengths for other uses, such as handoff. This new

location data is sent from the VLR to the mobile device’s own HLR via the MSC to

update it. The HLR will then send data to the old VLR instructing it to delete the old

location info (typically a different MSC) as well as sending the user’s service profile to

the new VLR, again through the MSC of focus. The data stored in the VLR consists of

the International Mobile Subscriber’s Identity (IMSI), authentication data, Mobile

Subscriber Integrated Services Digital Network (ISDN/MSIDSN) number, GSM services

that the subscriber is allowed access to and the HLR address of the subscriber.

2. Base Station Subsystem

The BSS’s overall responsibilities include: handling traffic and signaling between

the MCD and MSC, encoding of speech channels, allocation of radio channels to MCDs,

paging, and transmission and reception of signals. These tasks can be handed out,

 11

respectively, to the BSC and BTS combination. As with the MSC, it is important to

focus on the data transfer between the MCD and BSS to determine possible

authentication or access control schemes.

There is a significant amount of data that travels through the BSC to other BTSs

and the MSC. The focus here is how to manipulate that information to develop an

appropriate scheme. Other traffic, such as telephone calls and SMS traffic, is ignored for

this work. Rather, information that is inherent to the BSC or MCD is the focus and is

primarily identification and location related. One important example of this is BSC

identification. This identification, otherwise known as the Cell ID, is continuously being

broadcast on the broadcast control channel (BCCH) of each BTS [10]. The Cell ID,

received by each MCD that is within range, corresponds to that BTS/BSC pair and can be

used for updating location and other functions. There are other types of identification

being broadcast, as well, such as the Location Area Identity (LAI), neighboring cell

information, beacon frequencies, and minimum received signal strengths.

The LAI involves location updating and identification of the MCD. This is a

combination of the Mobile Country Code (MCC), the Mobile Network Code (MNC), and

the Location Area Code (LAC). Each of these numbers represents a specific location in

the network. The first time the MCD is powered up it compares the stored LAI in the

SIM to the LAI being broadcast by the BTS. If they are different, the MCD will update

its location through the BSC to the VLR, and further up the network to the MSC if the

MCD is being served by a different VLR [11]. The LAI is part of the International

Mobile Subscriber Identity (IMSI)/Temporary Mobile Subscriber Identity (TMSI).

Another responsibility of the BSS in GSM networks is that of security. There is

the potential for compromise of data traffic between the MCD and BTS because of the

over-the-air interface. An eavesdropper with the know-how can intercept a call and listen

in on the conversation – among many different types of attacks. There are two

approaches to addressing this problem: 1) authentication between the MCD and MSC and

2) data encryption between the MCD and BSS [12]. Security within GSM is discussed in

the next section, but it is important to know that the BSS does play a minor role in this

area.

 12

3. GSM Security

The weakest link in GSM security is the over-the-air interface between the MCD

and the BTS. The security model for GSM was created to battle this deficiency by

offering a method that grants the network and users the ability to avoid sending sensitive

identification information over this interface, such as the International Mobile Subscriber

Identity, or IMSI [13]. There are two primary methods of securing the air interface –

authentication and traffic encryption.

The first step in the security mechanism is to authenticate the user. The purpose

behind authentication is not only for security reasons, but it also plays a role in

identifying and locating a user in the network. The moment a MCD attempts to connect

to the network, data is being transmitted back and forth in attempts to identify the device,

the user and their network permissions. This relies on proper identification, which is only

possible with proper authentication. Part of the architectural design in this thesis focuses

on the authentication for the purpose of properly identifying a user.

An integral component in GSM for providing authentication is the Subscriber

Identity Module (SIM). The SIM is an integrated circuit chip fixed to a card (standard

terminology, thus—“SIM card”) and contains subscriber information, cipher keys and

algorithms used in encryption and authentication. The information and secret keys are

embedded into the chip during the personalization process with the service provider, and

the same information and keys are distributed to the HLR/AuC. The subscriber

information contained within it is the IMSI, which is rarely used for security reasons; the

TMSI is mostly used in its place. The keys are shared cipher keys between it and the

HLR; they are used for authentication with the MSC. The A3 and A8 algorithm

contained within the SIM are used for authenticating the MCD to the MSC and for

specific sessions, respectively. The A5 algorithm is used for encryption.

Authentication is possible through the use of shared keys between the MCD and

HLR. The shared key, Ki, is a 128-bit key used to generate a 32-bit signed response,

called SRES, to a random challenge, called RAND, and a 64-bit session key, Kc. This is

all done by the MSC using the A3 and A8 algorithm, respectively [14]. The process

 13

starts with the MCD attempting to connect to the network. The associated HLR will

create a set of five triples, each containing a RAND, SRES to that particular RAND

based on the Ki and a Kc based on the same Ki. It will send these triples to the MSC to be

used in authentication with the MCD. The MSC sends the RAND of the first triple to the

MCD. The MCD will calculate the SRES with the RAND it just received from the MSC

and its Ki and send it back to the MSC. The MSC then compares the SRES it just

received from the MCD to the one it received from the HLR. If they are the same, the

MCD is authenticated.

Encryption occurs in a similar fashion. Once the MCD is granted access after

successful authentication with the MSC, it will create a session key, Kc. This key is

created with the A8 algorithm using the same RAND challenge it received from the MSC

and the Ki stored in the SIM [15]. The BTS has the same Kc from the group of triples it

received from the MSC. Encryption over the air between the MCD and BTS occurs on

each frame with a different keystream between the two. This keystream is generated

using the A5 algorithm initialized by the Kc and the number of the frame to be encrypted.

4. MCD Applications

Applications are computer software programs developed for the end-user. These

programs come in a wide variety of functions, such as games, finance assistants, and

word processors. These software programs can be built with as little as a few dozen lines

of code or are as large as millions of lines. There are many different programming

languages with which to write applications, such as Java, C++ and Python; programmers

need have little to no experience in writing code to develop a simple application (“app”

for short).

Applications are not limited to personal computers. They have appeared in

personal data assistants (PDAs), cell phones, portable game consoles, and smartphones.

Essentially anything with the ability to store and execute code can run an application.

Smartphone applications have taken over the digital world with the advent of their

“pocket-sized” computers. As of 2011, application downloads for the more popular

 14

devices (Google & Apple) have exceeded the ten billion mark [16]. Some platforms

classes are even seeing millions of downloads in a single day.

C. ANDROID’S APPLICATION PROGRAMMING INTERFACES (API)

Android is a software stack for mobile devices used to execute applications. It

contains an operating system (OS), middleware and key applications. Furthermore, there

exists a software development kit (SDK) that contains the necessary libraries and

application programming interfaces (APIs) for writing applications for Android devices.

Figure 2 displays the overall Android architecture and the specific components are

described on the Android Developer’s website [17].

Figure 2. Android architecture (From [17])

An Application Programming Interface (API) is a set of programming instructions

that allow software programs to communicate with one another. The API for a system or

program represents a method for others to access the information its system or program

 15

contains. For example, if one was looking to develop a website that pulls information

from other sites such as weather, news and sports updates, to display it on one’s own site,

they would need the APIs for those specific sources. The APIs give the developer the

tools necessary to access the information and use it. An example related to mobile

devices is an application that displays the latitude and longitude of the device’s current

position. The location-based application will use the device’s APIs to retrieve the

coordinates for display.

The Android SDK contains the Android OS APIs. This collection of APIs allows

developers to create applications for Android OS devices. Many of the APIs are open to

the public and give access to services such as basic telephony data, location specific

information (which is used in this thesis), and GSM and CDMA functions. Others are

closed to the public and need special permissions for use, or are strictly controlled by the

original equipment manufacturers (OEMs).

D. LOCATION-BASED APPLICATIONS

The global positioning system (GPS) is being put to use in many different facets

of technology. It is embedded within automobiles and dashboard-mounted navigation

units. GPS receivers have been incorporated in wristwatches for runners and bikers.

GPS also made an appearance in the early years of the cell phones. Currently, many

smartphone applications depend upon pulling a MCD’s GPS coordinates for use in

gaming, shopping, social networking, geo-locating, and so on.

Numerous applications (also known as Location Based Services—LBSs) for

mobile devices rely on or utilize the location of the device, which can be found through a

few different methods. As mentioned above, tracking a MCD is relatively easy to do

from the network by use of the MSC and VLR. Both of these components contain

location information about the device, specifically the BSS that the device is connected

to. Knowing this information, the device can be found by knowing in which cell the

device is located. This narrows down the search and the precision is limited only by the

size of the cell. Other methods include using localization or triangulation of BTSs and

signal strengths. A third method is by using a GPS receiver, which is embedded in the

 16

phone. The LBSs are implemented by applications written for the device. Another

example of an application that queries for location information is one that checks for the

Cell ID. Every BTS has an area of coverage, called a cell, and an identity. The area of

coverage is the extent of the geographic range that a MCD can make a reliable

connection to the BTS within. The Cell ID is a unique number assigned to each BTS or

sector (cell) of that BTS. This data is used when the MCD periodically sends signal

strength and connection quality data to the MSC where it is calculated for handoff

determination [18]. Similar to the location based Java classes mentioned above, there are

classes that allow a developer to utilize the Cell ID of a BTS that the device is connected

too.

E. SUMMARY

This chapter introduces a high-level discussion on many broad topics concerning

mobile devices, the GSM network, and related architectures. The aim is to provide the

reader a basic understanding of components and concepts used in this thesis. The general

focus is on developing a context, or security enclave, that provides a secure method of

connection and contains vital applications within. The following chapters will go further

into detail on how these topics are used.

 17

III. ARCHITECTURE AND DESIGN

A. INTRODUCTION

This chapter presents a high level description of an architecture that incorporates a

location-verification test application, authentication mechanism and the secure enclave.

It also offers other possible combinations of components as well as discusses functions

and interactions between the concepts, such as security and authentication. The goal is to

develop a working solution based off of the infrastructure in this chapter. This

development consists of a test application that allows authentication to occur between the

application and mobile communications devices (MCDs), which further allows the

enclave to be accessed. This architecture is summarized in Figure 3.

Figure 3. Proposed use case

 18

B. LOCATION-VERIFICATION APPLICATION

The purpose of this initial test is to verify the user is in a particular location that is

authorized to have access to an enclave. This test is the first part of the connection

between the user and secure or restricted-access resources. This section discusses two

methods of verifying that the user is at a particular location, which will in-turn authorize

them access. These locations can be geographic or conditional on connections to base

stations since each BTS has a limited range for its transmissions.

The proposed test application is designed for the Android operating system and

GSM network. The Android software development toolkit (SDK) allows for applications

to be built by using its application programming interfaces (APIs) and the Java

programming language [19]. The Java language is object-orientated, making use of

objects and classes, which are used in development of this test application. For an in-

depth explanation of the Java programming language, visit Java’s on-line programming

tutorials (http://download.oracle.com/javase/tutorial/index.html). Additionally, specifics

on the code, phone and base station used in testing is presented in Chapter IV. The

important point here is that the Android OS contains classes within its SDK that allows

for an application to obtain the Cell ID of a base station that the MCD is connected to.

The Android SDK also allows for access to GPS coordinates.

The application’s operation is straightforward for the user. The user opens the

application on the MCD and executes a “Connect” function, which is a simple command

that instructs the application to perform its test. The application pulls the necessary

information from either the base station or the GPS receiver in the MCD to determine

authorization. This authorization is initially written into the application during the

programming phase, and can be only changed statically. If the test passes, then the

application will advance to the next portion in the architecture – authentication of the

application to the MCD in order to connect to the enclave in a secure session. Otherwise,

if the test fails, then the application will just notify the user that the conditions have not

been met.

 19

The following discusses the two methods of testing in the application:

1. Cell ID

In this test, the application is checking to see if the MCD is connected to the

appropriate base station. As explained in Chapter II, each base station is assigned a

unique identification number by the telecommunication services provider, which

distinguishes it from others. The identification is broadcast on the broadcast control

channel (BCCH) of each BTS, and the MCD receives this data from the BSC to which it

is connected, so the application simply reads that ID from the MCD. The application

contains a function that directs further action if the Cell ID read is one of the “authorized

IDs”. These authorized IDs will be coded into a list within the application for cross-

referencing. An example of the pseudocode for this test reads:

!"#$%&''()*$
+,$%&''()$--$./012$$
3$

45$6789&:8(%68(;:*$
<$$ $
"=>"$
3$

"?+#*$
<$$$$
$

It is also possible to change the configurations of some mobile base stations from

the network management level, including the Cell IDs. Thus, this Cell ID check is not

limited to just permanent GSM infrastructures.$

2. GPS Coordinates

This test application obtains the GPS coordinates from the receiver in the device.

A similar method is written to get the coordinates but instead of cross-referencing an

authorization list, the application will perform a calculation. An example of this would

entail limiting access to a few city blocks. The coordinates that outline the collection of

authorized city blocks are written into the application. When called upon to test a

location, the application performs a simple calculation to determine from the users

 20

current GPS coordinates, if they are within the authorized blocks. The following

pseudocode gives a simple example of what the calculation would be:

!"#$'68(87)&@$';:A(87)&*$
+,$'68(87)&$B$02CDEE$6:)F02CGEE$
3$
$ +,$';:A(87)&$B$./.CDEE$6:)F./.CGEE$
$ 3$
$ $ 45$6789&:8(%68(;:*$
$ <$
<$$
"=>"$
3$

"?+#*$
<$$$$

This method has the advantage in that GPS coordinates cannot be spoofed, unlike

Cell IDs, but has a drawback of potentially being in a location that does not receive GPS

signals. This method is implemented statically and would be useful in situations where

the authorized locations are known in advance and do not change.

C. AUTHENTICATION OF APPLICATION TO MCD

The purpose of the overall framework is to provide a secure method of granting

access of vital resources and applications, contained within an enclave, to first responders

and emergency personnel. The section above discusses an architecture needed to provide

the first form of security by checking location of the device. This section discusses the

second form of security – authentication of an application and the MCD.

Both methods of location verification and authentication occur in the same

application. Once the application verifies that the MCD is in the proper location, either

by GPS coordinates or connection to a specific BSS, then it must authenticate with the

MCD. This authentication provides another layer of security for access to the enclave,

ensuring that the individual and device attempting to access the enclave is authorized.

The authorized individuals and devices are pre-programmed into the application, can be

pre-loaded onto a removal storage device or via another means such as accessing the

network. This architecture only focuses on the application containing the authorizations.

 21

The primary authentication mechanism is challenge-and-response. The

application must challenge the user and dependent on the user response, grants access to

the enclave. The first component in this process must be a valid piece of identification.

There are a few different forms of identification available to test against on a GSM-

connected MCD, to include the IMEI, ICCID, IMSI, and shared keys on the SIM cards,

to name a few. Each of these IDs can be retrieved with the proper coding in Android, but

the most secure is to use the shared keys contained within the SIM card.

In order to use this method of authentication, the application authenticates the

user by sending a challenge to the SIM invoking a response. The challenge is a 128-bit

random number (RAND) and is generated by the application. The SIM contains

algorithms that combine a shared key, Ki, and the RAND to form a response and session

key, Kc. The application contains similar algorithms and with a copy of the same shared

key, generates its own response and Kc. Additionally, shared key and IMSI (or some

other form of identification) matched pairings need to be stored within the device so that

the application will know which shared key to use for the present SIM. Authentication is

successful when both responses match. Once authenticated, the application will send a

request to open the security enclave. This request contains the challenge, the IMSI and

the generated Kc. This is the only way to open up the enclave.

D. ENCLAVE STRUCTURING

The third component to the architecture is the security enclave. The important

aspects of this element are strict security features that must be in place for it to be

accessed and the fact that it contains vital resources for the users, such as applications or

data. The enclave is application-based as well, which offers a few different security

methods that prevent unauthorized access. Another benefit of being application-based is

that updates can be sent to the devices that contain the enclave similar to that of other

applications on the network.

The primary aspect of the enclave is the means of opening it. There are alternate

means of structuring the enclave such as building it into a separate partition of the hard

drive, developing a separation kernel for it or embedding it within an application. This

 22

work focuses on the application method. The application will be written such that the

only way it can be started is by a request from the authentication application above.

Sending an intent, or coded message, from the authentication application to the enclave to

open it, does this. The intent contains user information, a session key and a specific

request to start the enclave application. The enclave will first run the A3/A8 algorithm to

produce the Kc, similar to that generated during authentication, as described above. It

will compare both session keys, and if they are equivalent, will grant the enclave access

for the user.

Another form of security for this method that is included in the application is the

use of developer certificates. Restrictions can be applied within the code that forces the

application to verify both applications (location-verification/authentication & enclave)

contain the same developer certificate before allowing access. This method prevents

other applications from being granted access by sending their own requests for access to

the enclave.

Once the enclave is successfully opened, the user will gain access to the contents

contained inside. The application is written such that the user will be presented with a

list or separate desktop on the device that contains the resources. The coding for this will

be similar to that of the intent transfer between the authentication and enclave

applications.

E. SUMMARY

This section presented a high-level aspect of an architecture that allows access to

a secure enclave. The three main components of the design were outlined to include the

location verification, authentication and the enclave. All three components are application

based and provide a high level of security. The next section will go further into details on

how the design will be implemented. Figure 4 represents a generalized flow chart of this

architecture.

 23

Figure 4. Architectural flow chart

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

IV. IMPLEMENTATION

A. INTRODUCTION

This chapter describes, in detail, the three main elements of the security enclave

architecture. The first section presents relevant code examples with descriptions

regarding the written and tested location-verification application. That section explains

how the application works and how it performs the verification. The next two sections

lay out the required architecture for developing the remaining two aspects of the overall

design – authentication to the MCD and the security enclave. Both sections contain the

necessary building blocks for implementing the design.

B. LOCATION-VERIFICATION APPLICATION

The application for verifying location was written for Android devices, firmware

version 1.6 and up. The application was installed and tested on an Android Developer

Phone (ADP) 2, Google’s Ion (HTC Magic). The code was written using Eclipse, which

is a Java Integrated Developer Environment (IDE), and it has the Android SDK starter

packages and Android Development Tool (ADT) Plugin installed.

LGS’s Tactical Base Station Router (TacBSR) Pico was used to represent the

GSM network aspect. This architecture is designed to work with any GSM configuration

that contains GSM specific elements such as a BTS Cell ID. The TacBSR that is used

was designed for Emergency Communications Systems (ECS) applications by providing

an alternate GSM network for a pre-provisioned list of subscribers. It was also designed

for Search and Rescue (SAR) operations, allowing personnel to communicate to GSM

users [20]. It is capable of operating as a BSS, MSC, VLR and HLR, that allows for

manual configuration. Its graphic user interface (GUI) allows for administrative

functions that would be available in the network as well. Functions specific to this thesis

include assigning the Cell ID and verifying IMEI and IMSIs.

 26

This location-verification application contains three main activities (screens):

“Main” activity, “GPSActivity” and “CIDActivity.” The fourth activity, “AuthActivity,”

is just a placeholder at this point for future progress and contains minimal functionality.

The application is accessed by selecting an icon from the list of applications on the

device. The application opens to the first screen (Figure 5). This screen has two options

for the user to select: “Get coords” and “Get CellID”. Both options represent a means of

verifying their present location and will take the user to the respective GPS-coordinates

verification or Cell ID verification screen (Figure 6). For testing purposes, these two

activities give the option to see what the device’s current coordinates and Cell ID are.

There is an “Authenticate” button on both of these verification activities that will take the

user to the authentication activity. This advance can only occur if the user is within a

specific geographic region or connected to a specific BTS. If neither condition is

satisfied, the user will be unable to advance to the authentication activity. This is the

main function of the location-verification application; without authorized coordinates or

Cell ID, the user is unable to authenticate, which is required to open the enclave.

Figure 5. Location-verification application home activity

 27

Figure 6. Location-verification application GPS and Cell ID check

The user will advance to the authentication activity (Figure 7) when either

condition is met. This activity simply contains an “Authenticate” button. This is

required to open the enclave; the authentication mechanism will commence once the user

depresses the button. A message will be displayed to the user with authentication results.

If authentication was a success, this application will send a request to open the security

enclave. If it was unsuccessful, a message is displayed to the user saying so. Both the

authentication mechanism and enclave are discussed in further sections.

 28

Figure 7. Location-verification application authentication activity

1. Main Activity

The Main activity (Appendix A) is the home screen for this application. It

contains code to provide functionality to both buttons. The code simply consists of

setting an OnClickListener to both buttons, which direct the application to the respective

activity. For example, the following code outlines the requirements for putting

functionality to a button:

This instantiates the buttons:

Button gpsButton, cidButton;

This sets a listener to the button, which ties the touch-screen actions to the code:

gpsButton = (Button) this.findViewById(R.id.gpsBtn);

gpsButton.setOnClickListener(this);

And finally, this conditional sets action to the depressed button:
Button clickedBtn = (Button) v;
 if (clickedBtn == gpsButton)
 {
 Main.this.startActivity(newIntent(Main.this,GPSActivity.class));
 }

 29

The “GPSActivity.class” in the previous code represents another activity to

open. All buttons in the application are coded in similar fashion. In the example code set

above, the two buttons were built into the application such that, when depressed on the

screen by the user, the application would advance to that specific activity.

2. GPSActivity

The first option from the Main activity is to verify the user’s GPS coordinates are

authorized. The GPSActivity (Appendix B) will open when the Get coords button is

depressed on the Main activity. The GPSActivity is responsible for obtaining the

MCD’s most recent GPS coordinates and performing a calculation to verify authorized

location. This activity is divided into two separate actions: obtaining coordinates and

verifying.

Android contains a package android.location that has three classes used for

obtaining GPS coordinates: android.location.Location,

android.location.LocationManager and android.location.LocationProvider

[21]. This activity creates an instance of the class LocationManager, which provides

access to the MCD’s location services. Once the activity has access to the location

services, it is then able to register for requesting location updates for use in the

application. This allows the device to start obtaining position fixes. Once the device has

a fix, the activity can request the respective latitude and longitude. This application takes

both of these integers and displays them in a TextView, as well as using them to perform

the calculation used in verifying location authorization. A TextView is simply a

placeholder for text to be displayed on the screen. The following code outlines the major

components for obtaining GPS fixes:

The first step is instantiating the class for requesting device services:

LocationManager locMgr;

Next will be registering for and requesting location updates. The two values listed

in the request for location update determine the minimum time (in milliseconds) and

distance (in meters) that the application delays before obtaining a new fix:

 30

locMgr = (LocationManager)getSystemService(LOCATION_SERVICE);

locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,10000,5.0f,

onLocationChange);

At this point, the activity can request the last known location,

Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);

and break it up into separate latitude and longitude integers:

lat = loc.getLatitude();

lon = loc.getLongitude();

Displaying these onto the screen requires outputting them to a TextView:
TextView myView1 = (TextView) findViewById(R.id.Latitude);

myView1.setText("" + lat);

The second part of this activity is verifying the user’s location. This requires a set

of GPS coordinates as boundaries of an authorized area. These boundaries are written

into the code by the developer. The activity performs the calculation when the user clicks

the “Authenticate” button on the screen. The activity will obtain the last known latitude

and longitude values and compare them against the input boundaries. If the user is within

the boundaries, then the application will allow the user to access the authentication

activity. If the user is not within the boundaries, the activity will display an error

message to the user stating that condition. An example of the calculations is as follows

(“lat” and “lon” are the current latitude and longitude coordinates, the others, such as

“NWlat,” are manually input authorized coordinates by the developer or organization):
if ((lat < NWlat) && (lat < NElat) && (lat > SWlat) && (lat > SElat) &&
 (lon > NWlon) && (lon > SWlon) && (lon < SElon) && (lon < NElon))
{

GPSActivity.this.startActivity(new Intent(GPSActivity.this,
AuthActivity.class));
}
else
{
 GPSActivity.this.finish();

}

If the user is not within the authorized boundaries, the activity will shut down and send

the user back to the Main activity, otherwise they will be advanced to the GPSActivity.

In addition to the few examples of code above and Appendix A, there are a few

other components that are needed for this activity to work – entries in the “manifest” file

 31

and the xml code. The xml for this activity is straightforward and can be referenced in

Appendix C. Both permissions are needed within the manifest file to allow the

application to obtain network and location information [22]. The following is an example

of this portion of the manifest file:
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission android:name="android.permission.ACCESS_COURSE_LOCATION" />

The manifest file can be referenced in Appendix D.

3. CIDActivity

The second option of the Main activity will take the user to the CIDActivity

(Appendix E). Like the GPSActivity, the first option is to present the user with the

current network information, such as the Cell ID and Location Area Code (LAC). The

LAC in this case is for testing purposes only. The Cell ID, if one is available, will be

displayed in the proper format; otherwise the application will notify the user there is no

connection. Also similar to the GPSActivity, there is an “Authenticate” button, which

directs the user to the authentication mechanism as long as the MCD is connected to an

authorized Cell ID.

Android contains two packages containing classes that allow the programmer to

obtain network information, such as the Cell ID. These packages are

android.telephony and android.telephony.gsm. Each contains the required classes

of android.telephony.TelephonyManager and

android.telephony.gsm.GsmCellLocation, classes respectively. Similar to the GPS

location request in the GPSActivity, the activity must request services of the phone to

access this network data. This is done so by:

TelephonyManager tm = (TelephonyManager) getSystemService(TELEPHONY_SERVICE);

This allows access to the following class and an instantiation of it to be used for

data retrieval:

GsmCellLocation loc = (GsmCellLocation) tm.getCellLocation();

Within this class is the method that retrieves the Cell ID from the MCD:

 32

cellID = loc.getCid();

The remaining portions of this first function in the activity consist of displaying

this data to a TextView for the user.

The second portion of the activity is whether or not to allow the user to advance to

the authentication mechanism. The application should only allow this to occur if the user

is connected to an authorized Cell ID. The list of authorized Cell IDs is written into the

code or can be stored elsewhere such as the back-end network. These IDs will be cross-

referenced when the user depresses the “Authenticate” button to compare the current Cell

ID to the list. If there is a match, then the user will be directed to the AuthActivity,

otherwise the activity will terminate. The following is the conditional loop verifying

authorized Cell ID, where in this example the “ID” is a constant representing where the

true value would be checked:
if (clickedBtn == authBtn)
{

if (cellID == ID)
{

 CIDActivity.this.startActivity(new Intent(CIDActivity.this,
AuthActivity.class));

}
else
{

 CIDActivity.this.finish();
 }
}

The only requirement in the manifest file is the same course location access

permission that was required by the GPSActivity as well. The xml file can be

referenced in Appendix F.

4. AuthActivity

This activity only contains a button with a notification tied to it. The architecture

ties this to the authentication mechanism that is discussed below. The activity and xml

for this can be referenced in Appendices G and H, respectively.

 33

C. AUTHENTICATION OF APPLICATION TO MCD

This section outlines the framework that is needed for the authentication

mechanism within the application. It must not be accessible until the above conditions

are met, and must allow only those users that contain the authorized identifications.

These identifications will come from the SIM and the MCD. This application will

authenticate the user by these identifications and establish a session key that will provide

another layer of security when attempting to access the security enclave.

This section is comprised of three main parts. The first covers concepts used in

the authentication mechanism. The second explains the authentication algorithm used in

the application. The third section explains how communication to and from the SIM is

possible. The last section will also explain the transition from the authentication portion

of this application to the enclave.

1. Required Elements And Concepts

The first concept to understand for this mechanism is the process by which

authentication occurs between the MCD and HLR/AuC. The general mechanism for this

is “challenge and response.” In review, the GSM network uses this scheme where the

HLR/AuC is creating the challenge and the MCD (SIM, specifically) is providing the

response. The authentication mechanism outlined in this proposed architecture closely

resembles that of the GSM process, but contains a few different elements.

The components that make up the GSM authentication process are the SIM,

MCD, BTS, BSC, VLR, MSC, HLR and AuC. The process starts at subscription

between a user and the service provider, when the individual user is associated to a

Subscriber Authentication Key, Ki, along with an International Mobile Subscriber

Identity (IMSI) [23]. This Ki is stored in the SIM and on the network side in the

Authentication Center (AuC). In some cases, this AuC is integrated with an HLR. The

identity of the user or MCD must be established each time it attempts to connect to the

network [24]. The MCD sends its Temporary Mobile Subscriber Identity (TMSI) to the

VLR, and possibly further to the HLR, to properly identify itself to the network. Recall

 34

that the TMSI is used instead of the IMSI in most cases as an attempt to protect the user’s

identity when transmitting over the unsecure air-interface. The VLR will then send an

authentication request to the HLR/AuC to initiate the authentication process.

This process of authenticating is based on the A3 algorithm, which occurs in the

SIM and at the HLR/AuC. The HLR/AuC will generate a random, non-predictable

number, called the RAND, to be used as a challenge. It will combine the RAND and the

user’s Ki in the A3 algorithm to generate a Signed Response, or SRES. The SRES and

RAND are sent back through the network, the RAND to the SIM and SRES to the VLR.

The SIM uses the same embedded A3 algorithm to combine the RAND that it received

from the HLR/AuC and its Ki to generate its own SRES and a session key, Kc, used by

the MCD for encryption. The SIM will respond to the challenge with this SRES, and the

two SRESs (from the SIM and HLR/AuC) are compared at the VLR. The MCD is only

allowed access to the network if they match. Since only the SIM and HLR/AuC contain

the user-specific Ki, this provides the means of authenticating the user to the network.

2. Application-embedded Authentication Algorithm

This mechanism closely follows that used in the GSM network. The process

centers on the SIM algorithms; and SRES generation is the same. The difference is in the

way the RAND is delivered to the SIM and the fact that the application itself is playing

the role of the HLR/AuC. The application will also conduct the SRES comparison

between its own generation of the response and the SIM’s response, as was done by the

VLR originally. The same shared key, Ki, is being used. The RAND and SRES are of

the same format. From the aspect of the SIM, everything remains the same as in a typical

GSM network.

The first step in this authentication scheme is the algorithm within the application.

Both the A3 and A8 algorithms, which are used in SIM cards for authentication, are not

publicly available, but are still in use [25]. Additionally, GSM Public Land Mobile

Network (PLMN) managers have direct access to these algorithms because they are

required to operate the myriad of devices on their networks [26]. This means that the

 35

algorithms are still being deployed in SIMs and that there is availability for certain

organizations to use or implement versions of A3/A8 algorithms, or other compatible

means. These other compatible algorithms are available to provide further security and

exist through leaked documents, reverse engineering, and extensive cryptoanalysis on

these secret algorithms. One such example is shown in Appendix J. Furthermore, the 3rd

Generation Partnership Project (3GPP – www.3GPP.org), a consortium of partners who

develop technical specifications and reports, as well as maintenance and development for

GSM, have publications specifying the minute details of such compatible algorithms for

A3/A8. One of the more frequently used algorithms is the COMP128.

COMP128 is a derived algorithm that is compatible to the A3/A8 algorithms in

use in the GSM network [27]. Many versions of this algorithm are available for

download across the Internet for implementation. An example of this algorithm,

developed by the persons who are responsible for the reverse engineering of it, is posted

in Appendix H, coded in C. The functionality of this algorithm requires the same SRES

and Kc produced by its algorithm and that of the SIM. Both will produce the same 32-bit

SRES and 64-bit Kc.

This process starts with the Cell ID or GPS-coordinates successfully completing

verification and the user now having access to the “Authenticate” button. Depressing this

button triggers the mechanism to start. The authentication activity will query the SIM’s

IMSI (or MCD’s IMEI, or any other form of user identification) to cross-reference a table

within the application to find the appropriate Ki. This table will be programmed into the

application, but may be accessed via other means. Upon a successful query and table

match-up, the activity will produce a RAND and start the authentication algorithm

(COMP128 or other variant) with it and the Ki to output an SRES. The activity is ready

for the next step – polling the SIM for authentication.

3. Communication With the SIM

Receiving the RAND and generating the SRES, from the aspect of the SIM,

should not change in this application scheme. The SIM receives the command to run the

 36

algorithm, uses its Ki and RAND as input, and returns the SRES. Instead of talking to the

network, however, the SIM is communicating indirectly with the application’s

authentication algorithm within the associated activity. For a clearer understanding of

how this works, the discussion will start at the SIM and progress to the application.

The SIM is the component in the GSM network that contains specific user

identity and the algorithms required for authenticating them. It contains a microcomputer

that consists of a CPU and three types of memory [28]. The masked programmed read

only memory (ROM) usually contains the operating system of the card, the code for the

GSM application and the security algorithms A3 and A8. The other types of memory,

random access memory (RAM) and the electronically erasable programmable ROM

(EEPROM), also take part in the authentication process by buffering data for transfer and

storing the data, respectively. The OS of the card controls access between the SIM and

MCD and network. This access is typically reading or updating the data on the card;

reading is the access required for authentication [29].

Special commands are sent from the MCD to the SIM to interact for various

functions, such as instructing it to run the authentication algorithm. The commands are

contained within Application Protocol Data Units (APDU). APDUs are of two types:

command APDUs or response APDUs [30]. The specific format is outlined by the

International Organization for Standardization (IOS) and the International

Electrotechnical Commission (IEC) Standard IOS/IEC 7688. In general, each APDU

contains specific instructions and data for both the SIM and MCD. In the case of

authentication, the MCD will transmit a command APDU containing instructions to run

the authentication algorithm and the RAND will be contained within the data portion of

the unit. The SIM will execute the appropriate algorithm and transmit a response APDU

containing the SRES as part of its data unit.

The authentication portion of the application not only creates the RAND and

generates the SRES, it also builds the associated APDU to send to the SIM. Proper

constructing of the data unit is specifically outlined in the IOS/IEC 7688, in terms of

which commands to use to invoke the SIM’s algorithm. Sending the APDU to the SIM

 37

requires APIs that are not native to Android. These open-source APIs, specifically the

“SmartCard API,” are available from the Secure Element Evaluation Kit for the Android

platform (seek-for-android) [31].

These APIs are necessary because of the location of the SIM within the

architecture of the Android system (Figure 8). It is connected to the baseband processor

and the Android system runs on the application processor. In order to communicate with

the SIM, the baseband processor must issue AT (attention) commands. These commands

are defined by the 3GPP 27.007 specifications. The AT commands, in turn, will transmit

the necessary APDUs to the SIM (such as the command APDU and response APDU)

[32].

Figure 8. Android system architecture (From [30])

The remaining procedure for authenticating lies in the authentication activity of

the application. Upon receiving the response APDU, the activity will use the received

data element, which consists of the concatenation of the SRES and Kc. Simple parsing

can be coded to split these two elements for SRES comparison. With successful

authentication, the activity reports authentication and approves access to the enclave.

 38

4. Transition To Enclave

This application, which contains both the location-verification and authentication

functionalities, will send a request to open the enclave once authentication is successful.

The request will contain the enclave’s specific identification, and the Kc and RAND used

in the algorithm above.

D. ENCLAVE STRUCTURING

The enclave contains all the necessary resources and applications that are needed

by first responders and other personnel for a given response situation. Secure access to

these elements is granted by a few different layers, some mentioned above and a few

more yet to be discussed. The user that wishes to access these important resources must

first be in the authorized location, then authenticated, and a further means of

authentication will occur for the enclave to open, but is not the only access control

method remaining. There are permissions built into the code that restrict the enclave

application from even starting if an unauthorized user is attempting access.

This section will explain the required application framework that makes up the

enclave. The first part discusses the communication links between the previous

application and this one. The second part goes into detail about the additional securities

built within the enclave, followed by the framework that contains the other resources and

applications.

1. Transition From Authentication To Enclave

Android applications contain four core components that are essential building

blocks: activities, services, content providers, and broadcast receivers [33]. All four

components offer the system and user (in some cases) an entry into an application. The

only component that is of concern for this discussion is the activity.

 39

Activities are simply the individual screens that the user can interact with in the

application. They are independent of each other and can be accessed by other

applications or activities. This is how the enclave is opened from the location-

verification and authentication application. The enclave consists of a main activity and

its sole function is to start the enclave application, perform further authentication and

verify permissions are appropriate. Activities are started by using the

startActivity(Intent) function, where the “Intent” is a way to describe which specific

activity to start.

The system must read the application’s manifest file before the application starts.

This file contains all the components within the application, such as individual activities.

Here the developer must declare the entry point into the application and specify that

particular activity be listed in the system’s application launcher. This is done by using

intent filters; below is an example of how that section of the manifest file will read:
<activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

If these declarations are not in the manifest file, the application will not start when

called explicitly by the intent [34].

Intents are messages used to activate the core Android components. They are

passive data structures that hold an abstract description of the action to be performed

[35]. They also have the ability to carry small amounts of data. The authentication

portion of the previously described application utilizes an intent to start the enclave’s

Main activity. This intent takes the form:
Intent intent = new Intent(Intent.ACTION_MAIN);
intent.setComponent(new

ComponentName("com.example.enclave","com.example.enclave.Main"));

startActivity(intent);

The first line initializes the intent and declares the action to take, as starting up an

initial activity. The second line sets a component name to the intent so the activity to be

performed knows where to find it. The component name has two elements – the Android

 40

package name (the application name in this case) and the name of the class, or activity.

The last line details which action needs to take place—start the activity “Main” that

resides in the “enclave” application.

2. Enclave Securities

At this point, the Main activity of the enclave has opened for the user after

successful authentication. The enclave contains two further security functions to ensure

that the application was not opened errantly or by unauthorized means. The first method

is verifying certain permissions within the manifest file. The second method is executing

another authentication algorithm.

The manifest file provides another function for the enclave besides declaring its

components to the system upon startup. All Android applications must be signed with a

certificate whose private key is held by the developer [36]. The purpose of this is

distinguishing application authors. It also provides a level of security by setting

permissions within the application to only grant access based on this developer

identification.

There are four protection levels in Android: normal, dangerous, signature, and

signature or system. All four levels have varying degrees of security and function. By

setting the application to a “signature” level, the application will only open if the

requesting application contains the same developer certificate. Setting this level requires

a manifest entry:
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.enclave" >
 <permission android:name="com.example.enclave.Main"

 android:protectionLevel="signature" />

</manifest>

The other form of security is authentication, using the authentication portion of

the previous application. The intent that is starting the enclave activity will contain the

RAND that was previously generated in the SIM authentication and the resulting Kc. The

same algorithm used in the authentication will be used here. The enclave needs to obtain

the SIM identification first to determine which Ki to use, which can be queried in the

 41

same fashion as before. The difference between this instance of authentication and the

authentication of the SIM is comparison between the session key that was generated

instead of the SRES. Only the application that provided the RAND along with the intent

to start the enclave will produce a matching Kc. Once both of these conditions are met,

the enclave will open full access to the user.

3. Enclave Framework

The framework of the enclave can take the form of a list or appear as a separate

desktop that contains the resources and applications. The methods of accessing the

resources and applications are similar to that of opening the enclave by selecting the

associated titles or icons on the screen.

It has already been shown how to code functionality into buttons that appear on

the MCD’s screen. Android allows this same coding to occur on any image displayed on

the screen. This includes icons and list elements. Similarly, the coding has been

discussed regarding using intents to open other activities or applications. This is exactly

how the enclave functions. The user will be presented a Home activity that represents the

enclave starting point after the two security methods have been performed.

The Home activity can take many different forms and will contain visual

representations of the restricted applications. When the user selects one on the screen,

the intent will execute per the code of the associated icon and the new application will

open from inside the enclave application. These applications will contain the same

signature permission as the enclave. There is no additional coding that is required

beyond that which the application requires.

The user will be directed back to the enclave application every time the current

restricted application is closed. Android uses the “last in, first out” stack routine to

manage activities [37]. Current activities are paused when the user opens a new one.

The new activity will shut down when the back button is depressed and the previous

activity starts back up. This stack mechanism is also called the “back stack”. The

 42

enclave application will always be in the background, paused, when new applications are

opened.

E. SUMMARY

This section presented an architecture design for implementing a mobile security

enclave. The design emphasizes solutions for providing security and access control to the

enclave. There are many layers of security and control throughout this framework to

include location verification, user authentication and secure application-to-application

transfer. These layers prevent unauthorized access to the enclave as a whole. The next

chapter concludes this work as well as provides recommendations for future efforts on

mobile security enclaves.

 43

V. CONCLUSION AND FUTURE WORK

A. CONCLUSIONS

This thesis proposes an architecture to allow personnel, such as first responders

and military members, to securely access and manage valuable resources and applications

under certain conditions. At the same time it prevents others, who are unauthorized,

access to the same resources and applications. The proposed architecture lays out the

blueprints for three major components of a security enclave: the location-verification

application, user authentication mechanism and the security enclave construct that

contains the valuable resources and applications.

The first component is the location-verification application. This is an Android

application that can either check GPS coordinates or the Cell ID of the BTS to which the

MCD is connected, or both. The application crosschecks this with a list containing

authorized coordinates or Cell IDs before allowing the user to attempt the second form of

authentication. The code for this application is explained in detail and included in this

thesis.

The second component is the authentication mechanism. This component can

only be accessed after being properly validated by the location verification application.

This mechanism uses a challenge and response method similar to that of the GSM

authentication process. The challenge is created using an algorithm (COMP128) that is

compatible to the A3 algorithm used in the GSM network. This challenge is sent to the

SIM card of the device where a response will be generated in similar fashion. Only

authorized SIM cards will generate an appropriate response that confirms authentication.

Upon location verification and user authentication, the mobile security enclave is

accessible to the user. The enclave can take many forms, but this thesis describes the

framework necessary to make it application based. The enclave securely contains any

 44

resources or applications to which the user is allowed access. The protected assets are

readily accessible and transitioning from one to another is similar to that of changing

activities in an Android application.

B. FUTURE WORK

Besides the architecture described in this thesis, there are a few general areas that

require further study. The first area focuses on back-end network integration, specifically

pursuing other services or databases that aren’t local to the device, encryption, and

establishment of an update mechanism. Another area of interest is component integration

to include use of removable storage devices. Finally, there are a few recommended

software areas to research such as continued location verification and a method to avoid

hard coding the application with authorizations. Each of these areas is described in

greater detail in the following sub-sections. Addressing these concerns will ensure a

product that is more robust, more flexible, and more appropriate for deployment.

1. Network Integration

The entire architecture is designed to operate independently of a back-end

network. This is possible by installing all required resources and applications on the

device. This is useful considering many occasions that require first responder support

occur in environments where back-end networks are non-existent. This concept also aids

in coordination amongst mobile ad-hoc networks that are not tied to dedicated

infrastructures.

This does not mean that mobile secure enclaves can only exist in these types of

networks. Further network integration research and programming can significantly

broaden enclave use and capabilities. One such capability is to automatically push

updates to all, or specific, MCDs connected to a network. Currently, the architecture

requires any changes to be done manually in the application, which are then distributed

manually to each device. With an automatic update method, changes to devices can

occur in real-time, without user intervention, and with minimal delay in service.

 45

Accessing databases and other services that cannot be installed on individual

devices is another example of proposed network integration. Although operating

autonomously has many advantages, the devices have a finite amount of processing

power and memory. The ability to access resources other than what’s on the device has

merit but requires additional study to ensure proper access controls are in place.

Encryption of data is required when transmitting traffic between MCDs and the

BTS since it is being sent through the air, susceptible to eavesdroppers. GSM currently

uses the A5 algorithm for its encryption of individual packets. Further study will require

incorporating the same method or one that is sufficient for the architecture, as well as the

sensitivity of the information being transmitted. Commercial products are available to

provide other encryption mechanisms; these may provide further confidentiality support.

2. Component Integration

The most important aspect of component integration is that of removable storage.

It is logically possible to utilize devices such as microSD cards to store data such as

authorization lists or resources for the enclave. Further research and programming is

required to ensure the security is strong enough for the use of such devices. In particular,

unauthorized personnel should not be able to access data on these removable storage

devices.

As the proof-of-concept implementation accesses local information regarding

authorized geo-locations or Cell IDs, care must be taken to ensure any production system

does not allow the user to access such information directly and thereby bypass the intent

of the access controls.

3. Software Integration

There are two functions in this architecture that need further implementation. The

first is implementing continuous verification of the device location. The moment the

location is verified, whether by Cell ID or GPS coordinates, the application must

continuously run verification in the background to ensure the device doesn’t leave the

 46

authorized area. If it does, there should also be an, automatic, non-circumventable

method, to exit the enclave.

The second function requires determining alternate means of hard coding the

components of the authentication mechanisms and enclave. Currently the Cell ID list and

authorized GPS coordinates are written directly into the application, as indicated above.

This should be avoided, not just for security concerns, but also to make updating the

enclaves a much simpler process. This alternate method should work in both cases in

which there is and is not connection to a back-end network.

 47

APPENDIX A. MAIN ACTIVITY

/**
 * Main.java
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Entry point for application.
 * Calls CIDActivity & GPSActivity
 *

***/

package com.nps.lafrenier.thesis;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

public class Main extends Activity implements OnClickListener {
 /** Called when the activity is first created. */

 Button gpsButton, cidButton, userButton;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setConnections();
 }

 private void setConnections() {

 gpsButton = (Button) this.findViewById(R.id.gpsBtn);
 cidButton = (Button) this.findViewById(R.id.cidBtn);
 userButton = (Button) this.findViewById(R.id.userBtn);

 gpsButton.setOnClickListener(this);
 cidButton.setOnClickListener(this);
 userButton.setOnClickListener(this);

 }

 public void onClick(View v) {

 Button clickedBtn = (Button) v;
 if (clickedBtn == gpsButton) {
 // calls GPSActivity
 Main.this.startActivity(new Intent(Main.this,
 GPSActivity.class));
 }
 else if (clickedBtn == cidButton) {

 // calls CIDActivity
 Main.this.startActivity(new Intent(Main.this,

 48

 CIDActivity.class));

 } else if (clickedBtn == userButton) {

 Main.this.startActivity(new Intent(Main.this,
 UserIDActivity.class));
 }
 }

}

 49

APPENDIX B. MAIN XML

<!--**
 * main.xml
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Provide xml format for
 * Main activity. Contains three buttons
 * and two text views.
 **-->

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center">

 <TextView
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:text="Location-verification"/>

 <Button
 android:id="@+id/gpsBtn"
 android:text="Get coords"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

 <Button
 android:id="@+id/cidBtn"
 android:text="Get CellID"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

 <TextView
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:text="User/device Identification"/>

 <Button
 android:id="@+id/userBtn"
 android:text="Get ID"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

</LinearLayout>

 50

THIS PAGE INTENTIONALLY LEFT BLANK

 51

APPENDIX C. GPS ACTIVITY

/**
 * GPSActivity.java
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: GPS coordinates activity.
 * Obtains last known GPS coordinates
 * of device. Displays the coords to
 * user. Calculates whether coords
 * are in or out of defined location.
 * Will call AuthActivity if they are,
 * will close activity if they are not.
 *

***/
package com.nps.lafrenier.thesis;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;

public class GPSActivity extends Activity implements OnClickListener {

 static final String BLANK = "";

 LocationManager locMgr;
 Button getLoc, authBtn, authBtn2;
 TextView LatView, LonView;
 double lat, lon, NWlat, NWlon, NElat, NElon, SElat, SElon, SWlat, SWlon;

 int precision; //Used to truncate double

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.gps);

 setConnections();

 locMgr = (LocationManager)getSystemService(LOCATION_SERVICE);

 // Registering for location updates
 locMgr.requestLocationUpdates(LocationManager.GPS_PROVIDER, 10000,
 10000.0f, onLocationChange);
 }

 @Override
 public void onClick(View view) {

 Button clickedBtn = (Button) view;

 52

 if (clickedBtn == getLoc) {

 // Calls the following function to output gps coords as
 // Java double into the text view "Coords"
 insertLocation();

 } else if (clickedBtn == authBtn) {

 authenticate();
 }

 }

 private void setConnections() {

 getLoc = (Button) this.findViewById(R.id.getLoc);
 authBtn = (Button) this.findViewById(R.id.authBtn);

 getLoc.setOnClickListener(this);
 authBtn.setOnClickListener(this);

 // text view in gps.xml, coords will be printed here
 LatView = (TextView) this.findViewById(R.id.Latitude);
 LonView = (TextView) this.findViewById(R.id.Longitude);

 }

 // Retrieves, formats & prints location
 private void insertLocation() {
 Location loc = locMgr.getLastKnownLocation
 (LocationManager.GPS_PROVIDER);

 if (loc == null) {
 Toast.makeText(this, "No location available",
 Toast.LENGTH_SHORT).show();
 } else {
 lat = loc.getLatitude();
 lon = loc.getLongitude();

 // following two lines being used to truncate double
 precision = 1000000;
 lat = Math.floor(lat * precision +.5)/precision;
 lon = Math.floor(lon * precision +.5)/precision;

 TextView myView1 = (TextView) findViewById(R.id.Latitude);
 myView1.setText("" + lat);

 TextView myView2 = (TextView) findViewById(R.id.Longitude);
 myView2.setText("" + lon);
 }

 }

private void authenticate() {

 Location loc = locMgr.getLastKnownLocation
 (LocationManager.GPS_PROVIDER);

 if (loc == null) {
 Toast.makeText(this, "No location available",
 Toast.LENGTH_SHORT).show();
 } else {

 53

 lat = loc.getLatitude();
 lon = loc.getLongitude();

 // following two lines being used to truncate double
 precision = 1000000;
 lat = Math.floor(lat * precision +.5)/precision;
 lon = Math.floor(lon * precision +.5)/precision;

 // Authorized GPS location by four corners
 NWlat = 36.621111;
 NWlon = -121.904167;
 NElat = 36.621389;
 NElon = -121.818056;
 SElat = 36.567222;
 SElon = -121.817500;
 SWlat = 36.570833;
 SWlon = -121.903056;

 // calculation to determine location authorization
 if ((lat < NWlat) && (lat < NElat) &&
 (lat > SWlat) && (lat > SElat) &&
 (lon > NWlon) && (lon > SWlon) &&
 (lon < SElon) && (lon < NElon)) {

 Toast.makeText(this, "Authorized",
 Toast.LENGTH_SHORT).show();
 GPSActivity.this.startActivity(new
 Intent(GPSActivity.this,
 AuthActivity.class));

 } else {

 Toast.makeText(this, "Unauthorized",
 Toast.LENGTH_SHORT).show();
 GPSActivity.this.finish();

 }

 }

 }
 // Required code for registering for GPS location retrieval
 private LocationListener onLocationChange = new LocationListener() {
 public void onLocationChanged(Location location) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }
 @Override
 public void onProviderDisabled(String arg0) {
 // TODO Auto-generated method stub

 }
 @Override
 public void onStatusChanged(String provider, int status, Bundle
 extras) {
 // TODO Auto-generated method stub
 }
 };

}

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

APPENDIX D. GPS XML

<!--**
 * gps.xml
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Provide xml format for
 * GPSActivity. Contains two buttons
 * and four text views.
 *
***-->

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
 android:gravity="center"
 android:orientation="vertical"
 android:layout_height="fill_parent"
 android:layout_width="fill_parent">

 <Button
 android:id="@+id/getLoc
 android:text="Get coords"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content”
 android:layout_margin="20dp"/>

 <LinearLayout
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:layout_marginBottom="10dp">

 <TextView
 android:text="Latitude: "
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <TextView
 android:id="@+id/Latitude"
 android:text=""
 android:textSize="8pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FFFFFF"/>
 </LinearLayout>

 <LinearLayout
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:layout_marginBottom="10dp">

 <TextView
 android:text="Longitude: "

 56

 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 <TextView
 android:id="@+id/Longitude"
 android:text=""
 android:textSize="8pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FFFFFF"/>
 </LinearLayout>

 <Button
 android:id="@+id/authBtn"
 android:text="Authenticate"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

</LinearLayout>

 57

APPENDIX E. MANIFEST

<!-- **
 * Thesis Manifest.xml
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Provides manifest for location-
 * verification application.
 *
 * Permissions:
 * ACCESS_FINE_LOCATION
 * ACCESS_COURSE_LOCATION
 * READ_PHONE_STATE
 *
 * Activities:
 * GPSActivity
 * CIDActivity
 * AuthActivity
 *
*** -->

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=http://schemas.android.com/apk/res/android
 package="com.nps.lafrenier.thesis"
 android:versionCode="1"
 android:versionName="1.0">

 <uses-sdk android:minSdkVersion="4" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_COURSE_LOCATION"
 />
 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".Main"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.
 category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name="GPSActivity"/>
 <activity android:name="CIDActivity"/>
 <activity android:name="UserIDActivity"/>
 <activity android:name="AuthActivity"/>
 </application>
<manifest>

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

APPENDIX F. CID ACTIVITY

/**
 * CIDActivity.java
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Cell ID activity. Obtains
 * Cell ID of the device, displays
 * the ID to the user and verifies it.
 * If ID is authorized, will call
 * AuthActivity, quits activity
 * otherwise. Also notifies user if
 * no Cell ID is available.
 * ***/

package com.nps.lafrenier.thesis;

import android.app.Activity;
import android.content.Intent;
import android.os.Bundle;
import android.telephony.TelephonyManager;
import android.telephony.gsm.GsmCellLocation;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import android.widget.Toast;

public class CIDActivity extends Activity implements OnClickListener {

 GsmCellLocation location;
 int cellID, lac;
 Button getID, authBtn, authBtn2;

 @Override
 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.cid);

 setConnections();
 }

 private void setConnections() {

 getID = (Button) this.findViewById(R.id.getID);
 authBtn = (Button) this.findViewById(R.id.authBtn);

 getID.setOnClickListener(this);
 authBtn.setOnClickListener(this);

}

 public void onClick(View v) {

 Button clickedBtn = (Button) v;
 TelephonyManager tm = (TelephonyManager)
 getSystemService(TELEPHONY_SERVICE);

 60

 GsmCellLocation loc = (GsmCellLocation) tm.getCellLocation();
 cellID = loc.getCid();
 lac = loc.getLac();

 if (clickedBtn == getID) {

 // cellID of a "-1" in Android means there is no CellID
 available
 if (cellID == -1) {
 TextView myView1 = (TextView) findViewById(R.id.CID);
 myView1.setText("No CellID available");
 } else {
 TextView myView1 = (TextView) findViewById(R.id.CID);
 myView1.setText("" + cellID);
 }

 // lac of a "-1" in Android means there is no lac
 available
 if (lac == -1) {
 TextView myView1 = (TextView) findViewById(R.id.LAC);
 myView1.setText("No LAC available");
 } else {
 TextView myView1 = (TextView) findViewById(R.id.LAC);
 myView1.setText("" + lac);

 }

 } else if (clickedBtn == authBtn) {

 // cellID of "2" is authorized, will allow user to
 authenticate
 if (cellID == 2) {
 CIDActivity.this.startActivity(new
 Intent(CIDActivity.this, AuthActivity.class));
 // closes activity if cellID not authorized
 } else {
 Toast.makeText(this, "Unauthorized CellID",
 Toast.LENGTH_SHORT).show();
 CIDActivity.this.finish();
 }
 }
 }

}

 61

APPENDIX G. CID XML

<!-- **
 * cid.xml
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Provide xml format for
 * CIDActivity. Contains two buttons
 * and four text views.
 * *** -->

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:gravity="center"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Button
 android:id="@+id/getID"
 android:text="Get Cell ID/LAC"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

 <LinearLayout
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:layout_marginBottom="10dp">
 <TextView
 android:text="Cell ID: "
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>
 <TextView
 android:id="@+id/CID"
 android:text=""
 android:textSize="8pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FFFFFF"/>
 </LinearLayout>

 <LinearLayout
 android:layout_height="wrap_content"
 android:layout_width="fill_parent"
 android:layout_marginLeft="20dp"
 android:layout_marginRight="20dp"
 android:layout_marginBottom="10dp">
 <TextView
 android:text="LAC: "
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"/>

 62

 <TextView
 android:id="@+id/LAC"
 android:text=""
 android:textSize="8pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#FFFFFF"/>
 </LinearLayout>

 <Button
 android:id="@+id/authBtn"
 android:text="Authenticate"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>
</LinearLayout>

 63

APPENDIX H. AUTH ACTIVITY

/**
 * AuthActivity.java
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Authentication activity.
 * Step-off activity for future
 * authentication mechanism. Contains
 * single button with associated toast.
 **/
package com.nps.lafrenier.thesis;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.Toast;

public class AuthActivity extends Activity implements OnClickListener {

 Button authBtn;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.auth);

 setConnections();
 }

 private void setConnections() {

 authBtn = (Button) this.findViewById(R.id.authBtn);
 authBtn.setOnClickListener(this);

 }

 public void onClick(View v) {

 Toast.makeText(this, "Success, opening enclave",
 Toast.LENGTH_SHORT).show();

 }
}

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX I. AUTH XML

<!--**
 * auth.xml
 *
 * Author: Kevin LaFrenier
 * Date: June 2011
 * Purpose: Provide xml format for
 * AuthActivity. Contains one button
 * and one text view.
 **-->

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:gravity="center">

 <TextView
 android:layout_height="wrap_content"
 android:textAppearance="?android:attr/textAppearanceLarge"
 android:id="@+id/textView1"
 android:layout_width="wrap_content"
 android:text="Authentication"/>

 <Button
 android:id="@+id/authBtn"
 android:text="Authenticate"
 android:textSize="10pt"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_margin="20dp"/>

</LinearLayout>

 66

THIS PAGE INTENTIONALLY LEFT BLANK

 67

APPENDIX J. A3/A8 ALGORITHM

/* An implementation of the GSM A3A8 algorithm. (Specifically, COMP128.)
 *
 * Copyright 1998, Marc Briceno, Ian Goldberg, and David Wagner.
 * All rights reserved.
 *
 * For expository purposes only. Coded in C merely because C is a much
 * more precise, concise form of expression for these purposes. See Judge
 * Patel if you have any problems with this...
 * Of course, it’s only authentication, so it should be exportable for the
 * usual boring reasons.
 *
 *
 * This software is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.
 * Copyright remains the authors' and as such any Copyright notices in
 * the code are not to be removed.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The license and distribution terms for any publicly available version or
 * derivative of this code cannot be changed. i.e. this code cannot simply be
 * copied and put under another distribution license
 * [including the GNU Public License.]
 */

typedef unsigned char Byte;

#include <stdio.h>

/* #define TEST */

/*

 * rand[0..15]: the challenge from the base station

 * key[0..15]: the SIM's A3/A8 long-term key Ki

 68

 * simoutput[0..11]: what you would get back if you fed rand and key to a
 * real

 * SIM.

 *

 * The GSM spec states that simoutput[0..3] is SRES,

 * and simoutput[4..11] is Kc (the A5 session key).

 * (See GSM 11.11, Section 8.16. See also the leaked document

 * referenced below.)

 * Note that Kc is bits 74..127 of the COMP128 output, followed by 10

 * zeros.

 * In other words, A5 is keyed with only 54 bits of entropy. This

 * represents a deliberate weakening of the key used for voice privacy

 * by a factor of over 1000.

 *

 * Verified with a Pacific Bell Schlumberger SIM. Your mileage may vary.

 *

 * Marc Briceno <marc@scard.org>, Ian Goldberg <iang@cs.berkeley.edu>,

 * and David Wagner <daw@cs.berkeley.edu>

 */

void A3A8(/* in */ Byte rand[16], /* in */ Byte key[16],

 /* out */ Byte simoutput[12]);

/* The compression tables. */

static const Byte table_0[512] = {

 102,177,186,162, 2,156,112, 75, 55, 25, 8, 12,251,193,246,188,

 109,213,151, 53, 42, 79,191,115,233,242,164,223,209,148,108,161,

 252, 37,244, 47, 64,211, 6,237,185,160,139,113, 76,138, 59, 70,

 67, 26, 13,157, 63,179,221, 30,214, 36,166, 69,152,124,207,116,

 247,194, 41, 84, 71, 1, 49, 14, 95, 35,169, 21, 96, 78,215,225,

 182,243, 28, 92,201,118, 4, 74,248,128, 17, 11,146,132,245, 48,

 149, 90,120, 39, 87,230,106,232,175, 19,126,190,202,141,137,176,

 250, 27,101, 40,219,227, 58, 20, 51,178, 98,216,140, 22, 32,121,

 61,103,203, 72, 29,110, 85,212,180,204,150,183, 15, 66,172,196,

 56,197,158, 0,100, 45,153, 7,144,222,163,167, 60,135,210,231,

 174,165, 38,249,224, 34,220,229,217,208,241, 68,206,189,125,255,

 239, 54,168, 89,123,122, 73,145,117,234,143, 99,129,200,192, 82,

 104,170,136,235, 93, 81,205,173,236, 94,105, 52, 46,228,198, 5,

 57,254, 97,155,142,133,199,171,187, 50, 65,181,127,107,147,226,

 69

 184,218,131, 33, 77, 86, 31, 44, 88, 62,238, 18, 24, 43,154, 23,

 80,159,134,111, 9,114, 3, 91, 16,130, 83, 10,195,240,253,119,

 177,102,162,186,156, 2, 75,112, 25, 55, 12, 8,193,251,188,246,

 213,109, 53,151, 79, 42,115,191,242,233,223,164,148,209,161,108,

 37,252, 47,244,211, 64,237, 6,160,185,113,139,138, 76, 70, 59,

 26, 67,157, 13,179, 63, 30,221, 36,214, 69,166,124,152,116,207,

 194,247, 84, 41, 1, 71, 14, 49, 35, 95, 21,169, 78, 96,225,215,

 243,182, 92, 28,118,201, 74, 4,128,248, 11, 17,132,146, 48,245,

 90,149, 39,120,230, 87,232,106, 19,175,190,126,141,202,176,137,

 27,250, 40,101,227,219, 20, 58,178, 51,216, 98, 22,140,121, 32,

 103, 61, 72,203,110, 29,212, 85,204,180,183,150, 66, 15,196,172,

 197, 56, 0,158, 45,100, 7,153,222,144,167,163,135, 60,231,210,

 165,174,249, 38, 34,224,229,220,208,217, 68,241,189,206,255,125,

 54,239, 89,168,122,123,145, 73,234,117, 99,143,200,129, 82,192,

 170,104,235,136, 81, 93,173,205, 94,236, 52,105,228, 46, 5,198,

 254, 57,155, 97,133,142,171,199, 50,187,181, 65,107,127,226,147,

 218,184, 33,131, 86, 77, 44, 31, 62, 88, 18,238, 43, 24, 23,154,

 159, 80,111,134,114, 9, 91, 3,130, 16, 10, 83,240,195,119,253

 }, table_1[256] = {

 19, 11, 80,114, 43, 1, 69, 94, 39, 18,127,117, 97, 3, 85, 43,

 27,124, 70, 83, 47, 71, 63, 10, 47, 89, 79, 4, 14, 59, 11, 5,

 35,107,103, 68, 21, 86, 36, 91, 85,126, 32, 50,109, 94,120, 6,

 53, 79, 28, 45, 99, 95, 41, 34, 88, 68, 93, 55,110,125,105, 20,

 90, 80, 76, 96, 23, 60, 89, 64,121, 56, 14, 74,101, 8, 19, 78,

 76, 66,104, 46,111, 50, 32, 3, 39, 0, 58, 25, 92, 22, 18, 51,

 57, 65,119,116, 22,109, 7, 86, 59, 93, 62,110, 78, 99, 77, 67,

 12,113, 87, 98,102, 5, 88, 33, 38, 56, 23, 8, 75, 45, 13, 75,

 95, 63, 28, 49,123,120, 20,112, 44, 30, 15, 98,106, 2,103, 29,

 82,107, 42,124, 24, 30, 41, 16,108,100,117, 40, 73, 40, 7,114,

 82,115, 36,112, 12,102,100, 84, 92, 48, 72, 97, 9, 54, 55, 74,

 113,123, 17, 26, 53, 58, 4, 9, 69,122, 21,118, 42, 60, 27, 73,

 118,125, 34, 15, 65,115, 84, 64, 62, 81, 70, 1, 24,111,121, 83,

 104, 81, 49,127, 48,105, 31, 10, 6, 91, 87, 37, 16, 54,116,126,

 31, 38, 13, 0, 72,106, 77, 61, 26, 67, 46, 29, 96, 37, 61, 52,

 101, 17, 44,108, 71, 52, 66, 57, 33, 51, 25, 90, 2,119,122, 35

 }, table_2[128] = {

 52, 50, 44, 6, 21, 49, 41, 59, 39, 51, 25, 32, 51, 47, 52, 43,

 37, 4, 40, 34, 61, 12, 28, 4, 58, 23, 8, 15, 12, 22, 9, 18,

 55, 10, 33, 35, 50, 1, 43, 3, 57, 13, 62, 14, 7, 42, 44, 59,

 70

 62, 57, 27, 6, 8, 31, 26, 54, 41, 22, 45, 20, 39, 3, 16, 56,

 48, 2, 21, 28, 36, 42, 60, 33, 34, 18, 0, 11, 24, 10, 17, 61,

 29, 14, 45, 26, 55, 46, 11, 17, 54, 46, 9, 24, 30, 60, 32, 0,

 20, 38, 2, 30, 58, 35, 1, 16, 56, 40, 23, 48, 13, 19, 19, 27,

 31, 53, 47, 38, 63, 15, 49, 5, 37, 53, 25, 36, 63, 29, 5, 7

 }, table_3[64] = {

 1, 5, 29, 6, 25, 1, 18, 23, 17, 19, 0, 9, 24, 25, 6, 31,

 28, 20, 24, 30, 4, 27, 3, 13, 15, 16, 14, 18, 4, 3, 8, 9,

 20, 0, 12, 26, 21, 8, 28, 2, 29, 2, 15, 7, 11, 22, 14, 10,

 17, 21, 12, 30, 26, 27, 16, 31, 11, 7, 13, 23, 10, 5, 22, 19

 }, table_4[32] = {

 15, 12, 10, 4, 1, 14, 11, 7, 5, 0, 14, 7, 1, 2, 13, 8,

 10, 3, 4, 9, 6, 0, 3, 2, 5, 6, 8, 9, 11, 13, 15, 12

 }, *table[5] = { table_0, table_1, table_2, table_3, table_4 };

/*

 * This code derived from a leaked document from the GSM standards.

 * Some missing pieces were filled in by reverse-engineering a working
SIM.

 * We have verified that this is the correct COMP128 algorithm.

 *

 * The first page of the document identifies it as

 * _Technical Information: GSM System Security Study_.

 * 10-1617-01, 10th June 1988.

 * The bottom of the title page is marked

 * Racal Research Ltd.

 * Worton Drive, Worton Grange Industrial Estate,

 * Reading, Berks. RG2 0SB, England.

 * Telephone: Reading (0734) 868601 Telex: 847152

 * The relevant bits are in Part I, Section 20 (pages 66--67). Enjoy!

 *

 * Note: There are three typos in the spec (discovered by

 * reverse-engineering).

 * First, "z = (2 * x[n] + x[n]) mod 2^(9-j)" should clearly read

 * "z = (2 * x[m] + x[n]) mod 2^(9-j)".

 * Second, the "k" loop in the "Form bits from bytes" section is severely

 * botched: the k index should run only from 0 to 3, and clearly the
range

 * on "the (8-k)th bit of byte j" is also off (should be 0..7, not 1..8,

 * to be consistent with the subsequent section).

 71

 * Third, SRES is taken from the first 8 nibbles of x[], not the last 8
as

 * claimed in the document. (And the document does not specify how Kc is

 * derived, but that was also easily discovered with reverse
engineering.)

 * All of these typos have been corrected in the following code.

 */

void A3A8(/* in */ Byte rand[16], /* in */ Byte key[16],

 /* out */ Byte simoutput[12])

{

 Byte x[32], bit[128];

 int i, j, k, l, m, n, y, z, next_bit;

 /* (Load RAND into last 16 bytes of input) */

 for (i=16; i<32; i++)

 x[i] = rand[i-16];

 /* (Loop eight times) */

 for (i=1; i<9; i++) {

 /* (Load key into first 16 bytes of input) */

 for (j=0; j<16; j++)

 x[j] = key[j];

 /* (Perform substitutions) */

 for (j=0; j<5; j++)

 for (k=0; k<(1<<j); k++)

 for (l=0; l<(1<<(4-j)); l++) {

 m = l + k*(1<<(5-j));

 n = m + (1<<(4-j));

 y = (x[m]+2*x[n]) % (1<<(9-j));

 z = (2*x[m]+x[n]) % (1<<(9-j));

 x[m] = table[j][y];

 x[n] = table[j][z];

 }

 /* (Form bits from bytes) */

 for (j=0; j<32; j++)

 for (k=0; k<4; k++)

 bit[4*j+k] = (x[j]>>(3-k)) & 1;

 /* (Permutation but not on the last loop) */

 if (i < 8)

 72

 for (j=0; j<16; j++) {

 x[j+16] = 0;

 for (k=0; k<8; k++) {

 next_bit = ((8*j + k)*17) % 128;

 x[j+16] |= bit[next_bit] << (7-k);

 }

 }

 }

 /*

 * (At this stage the vector x[] consists of 32 nibbles.

 * The first 8 of these are taken as the output SRES.)

 */

 /* The remainder of the code is not given explicitly in the

 * standard, but was derived by reverse-engineering.

 */

 for (i=0; i<4; i++)

 simoutput[i] = (x[2*i]<<4) | x[2*i+1];

 for (i=0; i<6; i++)

 simoutput[4+i] = (x[2*i+18]<<6) | (x[2*i+18+1]<<2)

 | (x[2*i+18+2]>>2);

 simoutput[4+6] = (x[2*6+18]<<6) | (x[2*6+18+1]<<2);

 simoutput[4+7] = 0;

}

#ifdef TEST

int hextoint(char x)

{

 x = toupper(x);

 if (x >= 'A' && x <= 'F')

 return x-'A'+10;

 else if (x >= '0' && x <= '9')

 return x-'0';

 fprintf(stderr, "bad input.\n");

 exit(1);

}

 73

int main(int argc, char **argv)

{

 Byte rand[16], key [16], simoutput[12];

 int i;

 if (argc != 3 || strlen(argv[1]) != 34 || strlen(argv[2]) != 34

 || strncmp(argv[1], "0x", 2) != 0

 || strncmp(argv[2], "0x", 2) != 0) {

 fprintf(stderr, "Usage: %s 0x<key> 0x<rand>\n", argv[0]);

 exit(1);

 }

 for (i=0; i<16; i++)

 key[i] = (hextoint(argv[1][2*i+2])<<4)

 | hextoint(argv[1][2*i+3]);

 for (i=0; i<16; i++)

 rand[i] = (hextoint(argv[2][2*i+2])<<4)

 | hextoint(argv[2][2*i+3]);

 A3A8(key, rand, simoutput);

 printf("simoutput: ");

 for (i=0; i<12; i++)

 printf("%02X", simoutput[i]);

 printf("\n");

 return 0;

}

#endif

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

LIST OF REFERENCES

[1] Wikipedia, “GSM,” August 18, 2011. http://en.wikipedia.org/wiki/GSM

[2] GSM World, “History,” April 9, 2011. http://www.gsmworld.com/about-
 us/history.htm

[3] GSM World, “History,” April 9, 2011. http://www.gsmworld.com/about-
 us/history.htm

[4] ICT Statistics Newslog, “Global Mobile Phone Subscribers To Reach 4.5 Billion
 by 2012,” March 11, 2008. http://www.itu.int/ITU-
 D/ict/newslog/Global+Mobile+Phone+Subscribers+To+Reach+45+Billion+By+2
 012.aspx

[5] ZTE, “Global GSM Incremental Market Analysis,” April 19, 2010.
 http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2010/no4/articles/201
 004/t20100419_182951.html

[6] L. O. Walters and P. S. Kritzinger, “Cellular Networks: Past, Present, and
 Future,” Crossroads, Vol. 7, Issue 2, pp. 5, 2000.

[7] K. Vedder, “GSM: Security, Services, and the SIM,” Computer Science, 1528, pp.
 227, 1998.

[8] Osmocom, “OpenBSC,” April 12, 2011.
 http://openbsc.osmocom.org/trac/wiki/OpenBSC

[9] Osmocom. “osmo-nitb,” April 12, 2011.
 http://openbsc.osmocom.org/trac/wiki/osmo-nitb/

[10] A. Mehrotra and L. S. Golding, “Mobility and Security Management in the
 GSM System and Some Proposed Future Improvements,” Proceedings of the
 IEEE, Vol. 86, Issue 7, pp. 1483, 1998.

[11] Y. J. Choi and S. J. Kim, “An Improvement on Privacy and Authentication
 in GSM,” Computer Science, 3325, pp. 17, 2005.

[12] Y. J. Choi and S. J. Kim, “An Improvement on Privacy and Authentication
 in GSM,” Computer Science, 3325, pp. 15, 2005.

[13] L. Pesonen, “GSM Interception,” White Paper, University of Technology,
 Helsinki, pp. 2, 1999.

 76

[14] A. Schoffl and M. Irger, “Communication Infrastructure: GSM
 Communication,” Johannes Kepler Universitat Linz, 2001.

[15] A. Mehrotra and L. S. Golding, “Mobility and Security Management in the
 GSM System and Some Proposed Future Improvements,” Proceedings of the
 IEEE, Vol. 86, Issue 7, pp. 1489–1491, 1998.

[16] Wikipedia. “List of Digital Distribution Platforms for Mobile Devices,” August
 18, 2011. http://en.wikipedia.org/wiki/List_of_digital_distribution_
 platforms_for_mobile_devices

[17] Android. “What is Android?” August 5, 2011.
 http://developer.android.com/guide/basics/what-is-android.html

[18] Android. “What is Android?” August 5, 2011.
 http://developer.android.com/guide/basics/what-is-android.html

[19] Android. “What is Android?” August 5, 2011.
 http://developer.android.com/guide/basics/what-is-android.html

[20] LGS. Hardware Manual for Release 3.5 Tactical Base Station Router, Issue
 4.2. January 2009.

[21] Android, “Package android.Location,” August 5, 2011.
 http://developer.android.com/reference/android/location/package-summary.html

[22] Android, “Public static final class Manifest.permission,” August 5, 2011.
 http://developer.android.com/reference/android/Manifest.permission.html

[23] 3rd Generation Partnership Project (3GPP). Technical Specification Group System
 and Service Aspects; Security Related Network Functions, TS 43.020,
 V10.0.0, pp. 20, 2011-03.

[24] K. Vedder, “GSM: Security, Services, and the SIM,” Computer Science, 1528, pp.
 226, 1998.

[25] GSM World, “GSM Security Algorithms,” June 30, 2011.
 http://www.gsmworld.com/our-work/programmes-and-initiatives/fraud-and-
 security/gsm_security_algorithms.htm

[26] 3rd Generation Partnership Project (3GPP). Technical Specification Group System
 and Service Aspects; Security Related Network Functions, TS 43.020,
 V10.0.0, pp. 50–51, 2011-03.

 77

[27] Philipp Sudmeyer, “A Performance Oriented Implementation of COMP128,”
 Ruhr-University Bochum, pp. 8, 2006.

[28] K. Vedder, “GSM: Security, Services, and the SIM,” Computer Science, 1528, pp.
 232–233, 1998.

[29] K. Vedder, “GSM: Security, Services, and the SIM,” Computer Science, 1528, pp.
 233, 1998.

[30] ETSI, “Digital Cellular Telecommunications System (Phase 2+); Specification of
 the Subscriber Identity Module – Mobile Equipment (SIM-ME) Interface,” GSM
 11.11, pp. 33, 1995.

[31] Secure Element Evaluation Kit (SEEK) for the Android Platform, “The
 SmartCard API,” July 1, 2011. http://code.google.com/p/seek-for-android/

[32] Secure Element Evaluation Kit (SEEK) for the Android Platform, “UICC
 Support,” July 2, 2011. http://code.google.com/p/seek-for-
 android/wiki/UICCSupport

[33] Android, “Application Fundamentals,” August 5, 2011.
 http://developer.android.com/guide/topics/fundamentals.html

[34] Android, “Activities,” August 5, 2011.
 http://developer.android.com/guide/topics/fundamentals/activities.html

[35] Android, “Intents and Intent Filters,” August 5, 2011.
 http://developer.android.com/guide/topics/intents/intents-filters.html

[36] Android, “Security and Permissions,” August 5, 2011.
 http://developer.android.com/guide/topics/security/security.html

[37] Android, “Activities,” August 5, 2011.
 http://developer.android.com/guide/topics/fundamentals/activities.html

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Lieutenant Colonel Vaughn Pangelinan, USMC
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

7. Marine Corps Systems Command (MARFORSYSCOM)
 Program Group 11 MAGTF C2 Systems

Quantico, Virginia

8. Dr. Gurminder Singh
Naval Postgraduate School
Monterey, California

9. Mr. John H. Gibson
Naval Postgraduate School
Monterey, California

