
Adversarial TCP: An Offensive

TCP Stack to Penalize

Abusive Connections

Supported by: Cisco Systems and NSF (OCI-1127506)

Ryan Craven, Kristina Foster, Robert Beverly {rcraven,kmfoster,rbeverly}@nps.edu

Motivation
Penalize abusive hosts, spam bots,

DoS attacks, scam infrastructure,

etc. Cause suspected abusive

connections to:

Approach 1: TCP MSS
• Idea: reduce advertised maximum segment size (MSS)

• Abusive host sends more packets with less data per

packet = higher header overhead

• Higher header overhead = more work

• Hook TCP via iptables NFQUEUE bindings

• Scapy script overwrites MSS in SYN-ACK

Prior Work
• TCP “tarpits” to artificially

slow abusive connections (we

aim to do the opposite)

• Exploiting traffic congestion

characteristics of abusive

hosts (often bots with

asymmetric bandwidth)

Hypothesis
An “adversarial” TCP stack (A-

TCP) can cause a remote TCP to

perform more work.

• Send more traffic

• Consume more

bandwidth / time

• Induce more congestion

• Be more visible

(bandwidth, congestion,

$$, etc.)

• How to induce extra work?

• Metric of work: packets,

bytes, time, etc.?

• Ratio of extra work performed

by A-TCP versus induced

remote work?

• Differences in A-TCP’s

effects against various

operating systems?

• Can abusive hosts distinguish

between normal and A-TCP?

Questions
Initial research highlights interesting

questions:

Approach 2: RFC2581
• Idea: fake loss and induce remote side fast-retransmit /

fast-recovery

• Abusive host must retransmit lost data or entire

outstanding window = work

• Challenge is to prevent remote TCP from collapsing

congestion window

• Remote TCP cannot differentiate real packet loss from

A-TCP’s artificial loss

Experiment
• Isolated test-bed with real

hardware, different OS,

dummynet, etc.

• 60 runs of 8MB transfer at

different A-TCP MSS

• Different A-TCP loss rates

to trigger fast-retransmit

• Define “Asynchronous

Payoff Ratio” (APR):

STCP(N) = TCP bytes xmit’d

to send N byte data

RTCP(N) = TCP bytes xmit’d

to receive N byte data

Attacker

extra bytes

A-TCP extra

bytes

SATCP(N) –

STCP(N)

RATCP(N) –

RTCP(N)

=

Early Results
• Significant OS differences (e.g. Win7 MSS)

• Large feasible MSS range with APR > 2

• MSS < 400 requires extra ACKs leading to APR < 1

• A-TCP artificial loss + fast retransmit can produce large APR –

challenge is congestion window

• We believe order of magnitude higher APRs possible – subject of

our current research

Naval Postgraduate School

www.cmand.org

APR =

