Adversarial TCP: An Offensive TCP Stack to Penalize Abusive Connections

Ryan Craven, Kristina Foster, Robert Beverly {rcraven,kmfoster,rbeverly}@nps.edu

Motivation
Penalize abusive hosts, spam bots, DoS attacks, scam infrastructure, etc. Cause suspected abusive connections to:
- Send more traffic
- Consume more bandwidth / time
- Induce more congestion
- Be more visible (bandwidth, congestion, $$, etc.)

Prior Work
- TCP “tarpits” to artificially slow abusive connections (we aim to do the opposite)
- Exploiting traffic congestion characteristics of abusive hosts (often bots with asymmetric bandwidth)

Hypothesis
An “adversarial” TCP stack (A-TCP) can cause a remote TCP to perform more work.

Questions
Initial research highlights interesting questions:
- How to induce extra work?
- Metric of work: packets, bytes, time, etc.? Ratios of extra work performed by A-TCP versus induced remote work?
- Differences in A-TCP’s effects against various operating systems?
- Can abusive hosts distinguish between normal and A-TCP?

Approach 1: TCP MSS
- Idea: reduce advertised maximum segment size (MSS)
- Abusive host sends more packets with less data per packet = higher header overhead
- Higher header overhead = more work
- Hook TCP via iptables NFQUEUE bindings
- Scapy script overwrites MSS in SYN-ACK

Experiment
- Isolated test-bed with real hardware, different OS, dummynet, etc.
- 60 runs of 8MB transfer at different A-TCP MSS
- Different A-TCP loss rates to trigger fast-retransmit
- Define “Asynchronous Payoff Ratio” (APR):
 \[
 S_{TCP}(N) = TCP \text{ bytes xmit’d to send } N \text{ byte data} \\
 R_{TCP}(N) = TCP \text{ bytes xmit’d to receive } N \text{ byte data}
 \]
 \[
 APR = \frac{S_{ATCP}(N) - S_{TCP}(N)}{R_{ATCP}(N) - R_{TCP}(N)}
 \]

Early Results
- Significant OS differences (e.g. Win7 MSS)
- Large feasible MSS range with APR > 2
- MSS < 400 requires extra ACKs leading to APR < 1
- A-TCP artificial loss + fast retransmit can produce large APR – challenge is congestion window
- We believe order of magnitude higher APRs possible – subject of our current research

Approach 2: RFC2581
- Idea: fake loss and induce remote side fast-retransmit / fast-recovery
- Abusive host must retransmit lost data or entire outstanding window = work
- Challenge is to prevent remote TCP from collapsing congestion window
- Remote TCP cannot differentiate real packet loss from A-TCP’s artificial loss

Early Results

Supported by: Cisco Systems and NSF (OCI-1127506)