

Delay Tolerant Network Routing

Sathya Narayanan, Ph.D.

Computer Science and Information Technology Program

California State University, Monterey Bay

This work is supported by the Naval Postgraduate School – Military Wireless Communications Research Group

Overview of Talk

Background

Research Objective

- Performance analysis
- Message Prioritization

Simulation Study

Results

Future Plans

Delay Tolerant Network Routing

Traditional networks

Route from source to destination exists when the message leaves the source

Delay tolerant networks

- No pre-existing route
- Message is forwarded as nodes encounter each other
 - Message traverses the route over time as the nodes move around

Delay Tolerant Network

С

Node A wants to transmit to Node E

Delay Tolerant Network

Node A will transmit to Node B

> Node B will encounter Node C and transmit data

Node C will encounter Node D and transmit data

Data will be successfully be delivered

Routing Protocols

This research focuses on two routing protocols

Epidemic Routing

- Forward message to every node encountered
- Message spreads like that of a disease in a population

ProPHET

- Probabilistic Routing Protocol using History of Encounters and Transitivity
- Use past encounters to predict future best route
- Provides a framework allowing for different forwarding decision algorithms

Research Objective

Message Prioritization

 Use the insights gained from analysis to develop message prioritization algorithms for DTN routing

Performance analysis

- Develop analytical and simulation models to study three related performance parameters
 - Duplicate messages in the network at the time of delivery
 - End to end latency of message delivery
 - Probability of message delivery

Current Status

- Developed four types of ProPHET forwarding decision algorithms
- Developed a simple probabilistic extension to Epidemic (q – Epidemic)
- Extensive simulation analysis of Epidemic vs ProPHET routing using ONE (Opportunistic Network Environment Simulation to al)

Simulation tool)

Results

- A lot of data collected
- Some insights:
 - q = 0.5 Epidemic has similar performance as ProPHET without all the complexity when Random Waypoint Mobility is used
 - Aggressive algorithms have low latency at low message generation rates
 - We haven't seen any consistent performance improvement by ProPHET when there is any randomness in the mobility pattern (More simulations are being run as we speak)

Results

Insights continued:

- Variables that impact the latency are:
 - Message generation rate
 - Queue length
 - Number of nodes
 - Aggressive vs non aggressive algorithms

Sample Results

10 Nodes														
			Epidemic			Epidemic			Prophet			Prophet		
	Cre	Det	qu.s	latanar	Drobobility	Q1.U Dunlicator	Latanav	Drobobility	Typez	latanar	Drobobility	Type4	Latana	Drobobility
Low	5rC 1	1 1	Dupricates					Probability			Probability			
LUW	1 1	1 2	4.0	5/171	0.9	0.2 2 2	1010	1	1.0 2 1	7104	0.4	+ 3.2 7 / 7	. 6733 6733	0.0
	1 2	2	4	3601	0.5	7.6	1546	1	2.1	4783		4.2 I 3.2	. 0232 I 3535	. 0.5
Med	-	1	3.7	9043	£ 05	4.6	6951	1 0 0	2.9	8783	0:	2. 2.	5 8837	/ 14 / 04
THE G	-	2	2.9	8522	0.7	4.4	6464	0.9	2.13	8321	0.6	5 <u>3</u> .5	, <u> </u>	0.8
	2	2	2.7	6450	1	3.8	4273	1	2.5	6765	0.8	3 3.2	4975	0.9
High	1	1	3.3	8519	0.4	4.5	8721	0.6	2.13	10417	0.2	2 3.6	5 10579	0.2
Ū	1	2	3	9007	0.5	4.3	8805	0.7	1.75	7737	0.4	1 2.8	8 8165	0.4
	2	2	2.7	9112	0.6	3.7	8236	0.8	2	7259	0.8	3 3	6764	0.8
40 Nodos											-	-		
40 Nodes	-													
			Enidemic			Enidomic			Prophet			Prophet		
									Type?			Type4		
	Src	Dst	Duplicates	Latency	Probability	Duplicates	Latency	Probability	Duplicates	Latency F	Probability	Duplicates	atency F	Probability
Low	1	1	14.5	1389	1	22.5	724	1	3.2	6669	0.6	9.3	3277	1
	1	2	13.6	1368	1	22.7	744	1	3	5537	0.9	10.3	1665	1
	2	2	13.2	1097	1	20.3	663	1	3.4	2633	1	10.7	1258	1
Med	1	1	14	2218	1	21.9	793	1	2.7	7585	0.6	8.5	5057	0.8
	1	2	12.3	1681	1	21	800	1	2.7	6883	0.8	8.8	3078	1
	2	2	11	1550	1	20	714	1	3.1	3599	1	9.8	1572	1
High	1	1	10.3	5689	1	23.1	1759	1	3.2	8447	0.3	10.1	7506	0.5
	1	2	9.7	5862	0.9	19.5	1626	1	2.8	8693	0.6	8.1	5881	0.9
	2	2	7.9	3387	1	21.7	1068	1	2.7	6802	0.9	9.1	3982	1

Conclusion

- Throttling Epidemic behavior using a q value seems to work well
- Mathematical analysis based on the input variables is needed
 - Work in progress
- Few levers available to affect message prioritization at routing
 - q value for Epidemic
 - Limit on the number of hops
 - Prioritization within queues

Two Related Recent Projects

- Experimentation with Simple Message Prioritization Extensions to ProPHET
 - NPS Master Thesis (March 2011, LT Rapin, USN)
- Secure Distributed Storage for Mobile Devices
 - NPS Master thesis (March 2011, LT Huchton, USN)
 - Upcoming MILCOM paper

Experimentation with ProPHET Message Prioritization

- Simple extensions (with two traffic priority classes) can increase the performance of high priority messages significantly
 - Higher message delivery rate
 - Lower message latency

Urgent need of stable software prototypes to advance DTN research beyond theory and simulations

 The current IRTF DTN2 reference implementation is of very low quality

A Secure Distributed File System for Mobile Devices

Resistant to total device compromise

- Up to a customizable number (k) of device captures
- No need for specialized tamper-resistant hardware
- Addressing limitation of "Remote Kill"
- Group secret sharing also supports data resiliency
 - Different collection of k devices can recover data
- Prototype on Android 2.2 Smart Phones
 - write() and read() throughput performance: up to 15 Mbps

Backup Slides

Fig. 4. Average Executive Times (ms) for 1MB file

