

Least Privilege Separation Kernel (LPSK)

Click Master subtitle style

Outline

- Why are we talking about this here?
- What is a separation kernel?
- What is the LPSK?
- Progress with the LPSK
- Future work
- Demo

Digression...

- I think PowerPoint (and its ilk) are greatly misused.
- Therefore...

What is the relevance?

What is a Separation Kernel?

Partition Flow

As a VMM

OS #1	OS #2	OS #3	OS #4			
Separation Kernel						
Separation Kerrier						

Separation Kernel Protection Profile (SKPP)

Least Privilege Separation Kernel (LPSK)

Phase 1 LPSK Architecture

Partition 1 Normal Partition [UNCLASS:LOW]	Partition 2 Normal Partition (e.g): [SECRET:LOW]	Partition 3 Normal Partition (Emergency Partition) (EMERGENCY HIGH: LOW)	Partition 4 Trusted Partition (TPA Partition) [UNCLASS:HIGH thru PARTITION HIGH SECRECY: LOW]	
	Application	Application	Арр	PL3
Application	Supervisor	Supervisor	scos	PL2
scss				
LPSK				

LPSK Config (1)

- Audit
 - Enabled?
 - Size of internal audit buffer
 - Action when audit is full
- Run-time LPSK
 - How shall kernel use the screen?
 - Reserved memory locations

LPSK Config (2)

Partitions

- Round robin duration for all partitions
- For each partition
 - Active?
 - Percent of round robin duration
 - Percent of system RAM
- Partition with initial I/O focus
- Partition to handle SAK

LPSK Config (3)

- Partition flow rules
 - Processes in Partition 'x' can access
 Partition 'y' (RO or RW)
 - Acyclic flow rules

LPSK Config (4)

- Imported files from disk
 - Location on disk
 - Home partition
 - Assigned PL
 - Audited events

LPSK Config (5)

- RAM segments
 - Size
 - Home partition
 - Assigned PL
 - Audited events

LPSK Config (6)

Devices

- Data channel or control channel
- Home partition
- Multiplexed or dedicated
- Device specific attributes
 (e.g., keyboard buffer size)
- Audited events

LPSK Config (7)

Processes

- Home partition
- ¬ % of partition time slice
- Subject definitions
 - Code location and PL assignment
 - Kernel APIs allowed to use
 - Subject-to-resource flows allowed
 - (e.g., subject x can access device y)
 - Audited events

Funded Objective

Progress Report

What the Prototype has now

- Kernel config options
- Multitasking processes
- Segmented memory
- Device drivers for:
 - Disk drives(PATA/SATA)

- Inter-process communication using:
 - Eventcounts
 - Sequencers
 - Signals
 - Shared memory
- Kernel event auditing
- I/O focus

Outside the LPSK

Future Work

Demo