Delay Tolerant Network Routing

Sathya Narayanan, Ph.D.

Computer Science and Information Technology Program
California State University, Monterey Bay

This work is supported by the Naval Postgraduate School – Military Wireless Communications Research Group.
Overview of Talk

- Background

- Research Objective
 - Performance analysis
 - Message Prioritization

- Simulation Study
 - Results

- Future Plans
Delay Tolerant Network Routing

- Traditional networks
 - Route from source to destination exists when the message leaves the source

- Delay tolerant networks
 - No pre-existing route
 - Message is forwarded as nodes encounter each other
 - Message traverses the route over time as the nodes move around
Delay Tolerant Network

Node A wants to transmit to Node E
Delay Tolerant Network

Node A will transmit to Node B

Node B will encounter Node C and transmit data

Node C will encounter Node D and transmit data

Data will be successfully delivered
Routing Protocols

- This research focuses on two routing protocols
 - **Epidemic Routing**
 - Forward message to every node encountered
 - Message spreads like that of a disease in a population
 - **ProPHET**
 - Probabilistic Routing Protocol using History of Encounters and Transitivity
 - Use past encounters to predict future best route
 - Provides a framework allowing for different forwarding decision algorithms
Research Objective

- **Message Prioritization**
 - Use the insights gained from analysis to develop message prioritization algorithms for DTN routing

- **Performance analysis**
 - Develop analytical and simulation models to study three related performance parameters
 - Duplicate messages in the network at the time of delivery
 - End to end latency of message delivery
 - Probability of message delivery
Current Status

- Developed four types of ProPHET forwarding decision algorithms
- Developed a simple probabilistic extension to Epidemic ($q – $Epidemic)
- Extensive simulation analysis of Epidemic vs ProPHET routing using ONE (Opportunistic Network Environment Simulation tool)
Results

- A lot of data collected
- Some insights:
 - $q = 0.5$ Epidemic has similar performance as ProPHET without all the complexity when Random Waypoint Mobility is used
 - Aggressive algorithms have low latency at low message generation rates
 - We haven’t seen any consistent performance improvement by ProPHET when there is any randomness in the mobility pattern (More simulations are being run as we speak)
Results

- Insights continued:
 - Variables that impact the latency are:
 - Message generation rate
 - Queue length
 - Number of nodes
 - Aggressive vs non-aggressive algorithms
Sample Results

10 Nodes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1</td>
<td>1</td>
<td>4.6</td>
<td>5854</td>
<td>0.9</td>
<td>8.2</td>
<td>2321</td>
<td>1</td>
<td>1.8</td>
<td>7164</td>
<td>0.4</td>
<td>3.2</td>
<td>8795</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3.7</td>
<td>3601</td>
<td>1</td>
<td>7.6</td>
<td>1546</td>
<td>1</td>
<td>2.5</td>
<td>4283</td>
<td>1</td>
<td>3.4</td>
<td>3535</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1</td>
<td>1</td>
<td>3.4</td>
<td>9043</td>
<td>0.5</td>
<td>4.6</td>
<td>6951</td>
<td>0.9</td>
<td>2.19</td>
<td>8783</td>
<td>0.3</td>
<td>2.6</td>
<td>8837</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2.9</td>
<td>8522</td>
<td>0.7</td>
<td>4.4</td>
<td>6464</td>
<td>0.9</td>
<td>2</td>
<td>8321</td>
<td>0.6</td>
<td>3.5</td>
<td>7441</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2.7</td>
<td>6450</td>
<td>1</td>
<td>3.8</td>
<td>4273</td>
<td>1</td>
<td>2.5</td>
<td>6765</td>
<td>0.8</td>
<td>3.2</td>
<td>4975</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>3.3</td>
<td>8519</td>
<td>0.4</td>
<td>4.5</td>
<td>8721</td>
<td>0.6</td>
<td>2.13</td>
<td>10417</td>
<td>0.2</td>
<td>3.6</td>
<td>10579</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>3.4</td>
<td>9007</td>
<td>0.5</td>
<td>4.3</td>
<td>8805</td>
<td>0.7</td>
<td>1.75</td>
<td>7737</td>
<td>0.4</td>
<td>2.8</td>
<td>8165</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2.7</td>
<td>9112</td>
<td>0.6</td>
<td>3.7</td>
<td>8236</td>
<td>0.8</td>
<td>2</td>
<td>7259</td>
<td>0.8</td>
<td>3</td>
<td>6764</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40 Nodes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1</td>
<td>1</td>
<td>14.5</td>
<td>1389</td>
<td>1</td>
<td>22.5</td>
<td>724</td>
<td>1</td>
<td>3.2</td>
<td>6669</td>
<td>0.6</td>
<td>9.3</td>
<td>3277</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>13.2</td>
<td>1097</td>
<td>1</td>
<td>20.3</td>
<td>663</td>
<td>1</td>
<td>3.4</td>
<td>2633</td>
<td>1</td>
<td>10.7</td>
<td>1258</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Med</td>
<td>1</td>
<td>1</td>
<td>14</td>
<td>2218</td>
<td>1</td>
<td>21.9</td>
<td>793</td>
<td>1</td>
<td>2.7</td>
<td>7585</td>
<td>0.6</td>
<td>8.5</td>
<td>5057</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>12.3</td>
<td>1681</td>
<td>1</td>
<td>21</td>
<td>800</td>
<td>1</td>
<td>2.7</td>
<td>6883</td>
<td>0.8</td>
<td>8.8</td>
<td>3078</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>1550</td>
<td>1</td>
<td>20</td>
<td>714</td>
<td>1</td>
<td>3.1</td>
<td>3599</td>
<td>1</td>
<td>9.8</td>
<td>1572</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>10.3</td>
<td>5689</td>
<td>1</td>
<td>23.1</td>
<td>1759</td>
<td>1</td>
<td>3.2</td>
<td>8447</td>
<td>0.3</td>
<td>10.1</td>
<td>7506</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>1</td>
<td>1</td>
<td>9.7</td>
<td>5862</td>
<td>0.9</td>
<td>19.5</td>
<td>1626</td>
<td>1</td>
<td>2.8</td>
<td>8693</td>
<td>0.6</td>
<td>8.1</td>
<td>5881</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>7.9</td>
<td>3387</td>
<td>1</td>
<td>21.7</td>
<td>1068</td>
<td>1</td>
<td>2.7</td>
<td>6802</td>
<td>0.9</td>
<td>9.1</td>
<td>3982</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Throttling Epidemic behavior using a q value seems to work well
- Mathematical analysis based on the input variables is needed
 - Work in progress
- Few levers available to affect message prioritization at routing
 - q value for Epidemic
 - Limit on the number of hops
 - Prioritization within queues
Two Related Recent Projects

- Experimentation with Simple Message Prioritization Extensions to ProPHET
 - NPS Master Thesis (March 2011, LT Rapin, USN)

- Secure Distributed Storage for Mobile Devices
 - NPS Master thesis (March 2011, LT Huchton, USN)
 - Upcoming MILCOM paper
Experimentation with ProPHET Message Prioritization

- Simple extensions (with two traffic priority classes) can increase the performance of high priority messages significantly
 - Higher message delivery rate
 - Lower message latency
- Urgent need of stable software prototypes to advance DTN research beyond theory and simulations
 - The current IRTF DTN2 reference implementation is of very low quality
A Secure Distributed File System for Mobile Devices

- Resistant to total device compromise
 - Up to a customizable number \((k) \) of device captures
 - No need for specialized tamper-resistant hardware
 - Addressing limitation of “Remote Kill”

- Group secret sharing also supports data resiliency
 - Different collection of \(k \) devices can recover data

- Prototype on Android 2.2 Smart Phones
 - write() and read() throughput performance: up to 15 Mbps
Backup Slides
Fig. 4. Average Executive Times (ms) for 1MB file