Discrete Least-Squares Rational Approximation by Full-Newton Iteration

Carlos F. Borges

A Full Newton non-linear least-squares code for discrete least-squares rational approximation. This code implements the algorithm described in the paper:

All are welcome to use this code as they wish. I only ask that you cite the paper above if you do.

Usage:

\[\text{[alpha]} = \text{dlsqrat}(t,y,p,q,\text{alpha}) \]

Inputs:

- \(t, y \) are the data points.
- \(p, q \) are the degrees of the numerator and denominator.
- \(\text{alpha} \) (optional) is the starting guess

Outputs:

- \(\text{alpha} \) contains the denominator coefficients starting with \(\text{alpha}_1 \)
- \(c \) contains the numerator coefficients starting with \(\text{c}_0 \)

Please note that the polynomial coefficients are generated in ascending order so if you want to use Matlab's polyval routine to evaluate things you need to flip the \(c \) vector, and you need to flip the \(\text{alpha} \) vector and then append a 1. Here is a code fragment you can use to view the results of the fit:

```matlab
cla;
pplot(t,y,'b.'); hold on
    tt = linspace(min(t),max(t),1000)';
    yy = polyval(flipud(c),tt)./polyval([flipud(alpha); 1],tt);
    plot(tt,yy); hold off;
```

Copyright (c) 2008 by Carlos F. Borges. All rights reserved.

Contents
function [alpha, c] = dlsqrat(t,y,p,q,alpha)
% begin dlsqrat

% Set the convergence tolerance.
TOLERANCE = 10^(-12);

% N is the Vandermonde that will be used to evaluate the numerator.
N = zeros(length(t),p+1);
N(:,1) = ones(length(t),1);
for k=2:p+1
 N(:,k) = N(:,k-1).*t;
end

% M is the Vandermonde that will be used to evaluate the denominator.
M = zeros(length(t),q);
M(:,1) = t;
for k=2:q
 M(:,k) = M(:,k-1).*t;
end

% If we are not given an initial guess then generate one.
if nargin < 5
 tmp_pade = [N -diag(y)*M] \ y;
 alpha = tmp_pade(p+2:end);
end

% Construct the model matrix and compute ancillary quantities.
update(alpha);

for iter=1:100

% Update the error.
old_err = err;

% Compute the Jacobian and the Hessian.
Tmp1 = diag(Py.*D)*M;
Tmp2 = Q'*diag((Py-r).*D)*M;
J = Tmp1 - Q'*Tmp2;
H = M'*diag((Py-2*r).*D)*Tmp1 - Tmp2'*Tmp2;

% Compute the gradient.
gradient = J'*r;

% Compute the Cholesky factorization of H.
[R, not_PD] = chol(H);
% If H is not positive definite then regularize and factor
if not_PD
 R = chol(H - 1.2*min(eig(H))*eye(q));
end

% Compute the Newton step.
delta = -R \ (R' \ gradient);
% Use stepsize control to take a step.
step_control;
% Convergence testing
if err > old_err
 disp('Failed to find descending step length.');
 break;
else
 alpha = new_alpha;
 rel_err = abs(old_err - err)/old_err;
 if rel_err <= TOLERANCE
 break;
 end
end
% End convergence testing.
end %End of main loop.

% Compute the coefficients of the numerator.
c = (diag(D)*N)
y;

% Generate an error message if the algorithm failed to converge.
if rel_err > TOLERANCE
 disp('Algorithm did not converge.);
end

%XXXXXXXXXXXXXXXXX Subroutines
XX
function update(alpha)
 % Updates the model matrix and computes ancillary quantities.
 D = 1./(1+M*alpha); % Compute the denominator.
 [Q R] = qr(diag(D)*N,0); % Compute the QR factorization of A =
 D*N
 Py = Q*(Q'*y); % Compute the projection of y onto the
 range of A.
 r = y - Py; % Compute the residual.
 err = r'*r; % Compute the current squared error.
end

function step_control
 % This function implements stepsize control using a simple
 % backtracking scheme from Dennis & Schnabel.

 % Try taking a full step.
 new_alpha = alpha + delta;

 % Update the model.
 update(new_alpha);

 % If a full step does not sufficiently reduce the error then we
 % use a backtracking line-search method for step-size control.
 % This involves minimizing a function f(lambda) that interpolates
 % the
 % computed error (and its derivatives) at different values of
 % lambda.
 f0 = old_err;
 fprime = gradient'*delta;
 steptol = f0 + .0001*fprime;
 if err > steptol
errs(1) = err; lams(1) = 1; % We'll need this if further refinement is necessary.

% We start with a quadratic model at f(0), f'(0), and f(1)
% and will take the larger of the computed step or 1/10.
lambda = max([-fprime/(2*(err - f0 - fprime)) .1]);

new_alpha = alpha + lambda*delta;
% Update the model matrix and compute ancillary quantities.
update(new_alpha);

% If this doesn't work then we loop with a cubic model at
% f(0), f'(0), f(lambda), and f(lam2) where the last two are errors
% at
% the last two lambda that were tried.
steptol = f0 + .0001*fprime*lambda;
while err > steptol

% Push the current lambda and error to the top of the lams
and errs
% stacks.
lams = [lambda; lams(1)]; errs = [err; errs(1)];
rhs = (errs - fprime*lams - [f0 ; f0])./(lams.*lams);
ab = [lams [1 ; 1]]\rhs;
lambda = (-ab(2)+sqrt(ab(2)*ab(2) -
3*ab(1)*fprime))/(3*ab(1));

% It is still important to make certain that the new
% lambda
% progresses quickly but not too quickly. So if lambda is
less
% than lam2/10 we just use lam2/10, and if it is larger
% than lam2/2 then we use lam2/2.
if lambda < lams(1)/10
 lambda = lams(1)/10;
end
if lambda > lams(1)/2
 lambda = lams(1)/2;
end

new_alpha = alpha + lambda*delta;
% Update the model matrix and compute ancillary quantities.
update(new_alpha);
steptol = f0 + .0001*fprime*lambda;
end
end
end
Input argument "t" is undefined.

Error in ==> dlsqrat at 58
N = zeros(length(t),p+1);

% End of function.

References