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CHAPTER 1

1 Introduction and Applications

1.1 Basic Concepts and Definitions

Problems

1. Give the order of each of the following PDEs

a.  Ugy + Uyy = 0
b, Uygy + Uyy + a(x)uy, +logu = f(x, y)
C. Upgy T+ Ugyyy + a(x)ua:xy + U2 = f(l‘7 y)
d. vy +ul, +e* =0
e Uy +cu,=d

2. Show that

u(zx, t) = cos(x — ct)

is a solution of
us +cu, =0

3. Which of the following PDEs is linear? quasilinear? nonlinear? If it is linear, state
whether it is homogeneous or not.

& Ugy + Uy — 2u = 22

b. Uy =u

C. UUy+TUy; =0

d. w?+logu = 2zy

€. Upy — 2Upy + Uyy = COST
fooug(1+uy) = ugy

g (sinug)u, +u, =€*

h.  2ug, — 4ty + 2uyy + 3u =0
L Uy + Uplly — Ugy = 0

4. Find the general solution of
Ugy + Uy =0
(Hint: Let v = u,)

5. Show that y
u= F(zy)+ JJG(;)

is the general solution of
Uy — y2uyy =0



. Second order

a
b. Third order
. Fourth order

o

o,

. Second order

. First order

@D

2. u = cos(x — ct)

ug = —c- (—sin(z — ct)) = esin(x — ct)
Uy, = 1-(—sin(x — ct)) = —sin(z — ct)

= u; + cu, = csin(z —ct) — csin(x — ct) = 0.

3. a. Linear, inhomogeneous
b. Linear, homogeneous
c. Quasilinear, homogeneous
d. Nonlinear, inhomogeneous
e. Linear, inhomogeneous
f. Quasilinear, homogeneous
g. Nonlinear, inhomogeneous
h. Linear, homogeneous

i. Quasilinear, homogeneous



Ugy + Uy = 0
Let v = wu, then the equation becomes

v, + v =20
For fixed y, this is a separable ODE

dv

— = —dz
v

Inv =—x + C(y)

v=K(ye”
In terms of the original variable u we have

u, = K(y)e™ *

u=e"qy) + plz)
You can check your answer by substituting this solution back in the PDE



u

Flay) +26 (4)
w-or 6 (2) +<(5)o ()
e (2)e(2) -2 () ) (2)e ()
U = y° F(2y) + i—G” (Q)

Uyy

9
1
x x

Expanding one finds that the first and third terms cancel out and the second and last terms
cancel out and thus we get zero.



1.2 Applications
1.3 Conduction of Heat in a Rod

1.4 Boundary Conditions

Problems

1. Suppose the initial temperature of the rod was

| 22 0<z<1/2
“(‘”’O)_{ 201—z) 1/2<z<1

and the boundary conditions were
u(0,t) =u(l,t) =0,
what would be the behavior of the rod’s temperature for later time?

2. Suppose the rod has a constant internal heat source, so that the equation describing the
heat conduction is

up = kg, + Q, 0<z<l.

Suppose we fix the temperature at the boundaries
u(0,t) = 0
u(l, t) =
What is the steady state temperature of the rod? (Hint: set u; =0 .)

3. Derive the heat equation for a rod with thermal conductivity K(x).

4. Transform the equation

U = k(Ugy + Uyy)
to polar coordinates and specialize the resulting equation to the case where the function u
does NOT depend on 6. (Hint: r = /22 + 4?2, tan = y/x)

5. Determine the steady state temperature for a one-dimensional rod with constant thermal
properties and

a. =0, u(0) =1, u(L) =0

b. Q=0, u.(0) = 0, u(L) =1

c. Q=0 u(0) =1,  w(L)=¢

d. 2=2% u(0) = 1, u(L) =0

e. Q=0, u(0) =1, uy (L) +u(L) =0



1. Since the temperature at both ends is zero (boundary conditions), the temperature of
the rod will drop until it is zero everywhere.

2.
kug, +Q =0
u(0.t) =0
u(l,t) =1
= Uy = — 2
Integrate with respect to x
Q
x — T 5 A
U 3 T +
Integrate again
Q 2?
=—-—=—+4+ A B
U =2 + Ax +

Using the first boundary condition u(0) = 0 we get B = 0. The other boundary condition
will yield

Q1 B
k2+A_1
_Q
= A_2k+1
Q) _Q
= u(z) = <1+2k x Qkx

3. Follow class notes.



Uy

Uyy =

r= (:1:2+y2)%

6 = arctan (Q)
T

Ty =

DN —

X
Uyp = UpTy + U@Qw W u
Uy = UpTy + Ugby 2y+ 7 U

x
r u
T2 + y2 \/1'2 + y2 [\/ZEQ + yQ
—2zy x Y
Uy
(22 + y2)? 22+ y? | VaE T o2 O g2
2 2 2
x 2y Y Y
rr U Ugy + Uy +
22 + y2 (22 + y2)? (22 + y2)? (22 +12)2
Uyy = i U, + i (u,) *
vy /7x2+y2yr Vit Y 22 + 12 L
_1
VAT Y s (P )R 2y y y
2 2 Ur =+ 2 Urr
2ty vty [Vt +y?
—2xy n x Y n T
U Uy —u
@4y g Vg
y? + 2xy n x? n x?
7”7‘7‘ 72’07’0 7“69 7”7‘ -
PR @) T @) T @)

ro



1 1
= Ugy T Uy = Upp + 72 Ugo + 7 Ur

1 1
Uy = ]{?(U,«,« + ;U,« + T—gu%)

In the case u is independent of 0:

Uy = k(urr + %ur)




5. kug, + Q =0

a. ktug, =0
Integrate twice with respect to x

u(r) = Az + B
Use the boundary conditions

u(0) =1 implies B = 1

1
u(L) = 0 implies AL + B =0 thatis A = ——
Therefore

u(x):—%+1

b. kg, =0

Integrate twice with respect to x as in the previous case

u(r) = Az + B
Use the boundary conditions
u:(0) =0 implies A = 0

u(L) =1 implies AL + B =1 that is B = 1

Therefore
u(z) =1
C. kug, =0

Integrate twice with respect to x as in the previous case
u(zr) = Az + B
Use the boundary conditions
u(0) =1 implies B = 1

u(L) = ¢ implies A = ¢

Therefore

u(z) = pz + 1




d. kug, + Q =0

_ Q _ 2
Upy = —F = — T

Integrate with respect to x we get

1
ug(x) = —§x3 + A

Use the boundary condition
o J— . I s
uz(L) =0 implies — §L +A=0 that is A = gL

Integrating again with respect to x

.]74

1
= - 4+ -} B
U 12—|—3 T +

Use the second boundary condition

u(0) =1 implies B = 1

Therefore
xt L3
= -+ T+ 1
u(z) 19 + 3 T +
e. kg, = 0

Integrate twice with respect to x as in the previous case
u(r) = Az + B
Use the boundary conditions

u(0) =1 implies B = 1

1
uz (L) + u(L) =0 implies A + (AL + 1) = 0 that is A = I
Therefore
1
= - 1
u(z) I+1 T +

10



1.5 A Vibrating String

Problems
1. Derive the telegraph equation
Uy + auy + bu = g,

by considering the vibration of a string under a damping force proportional to the velocity
and a restoring force proportional to the displacement.

2. Use Kirchoff’s law to show that the current and potential in a wire satisfy

ix+CUt+GU =0
v+ Lig+Rt = 0

where ¢ = current, v = L = inductance potential, C' = capacitance, G = leakage conduc-

tance, R = resistance,
b. Show how to get the one dimensional wave equations for ¢ and v from the above.

11



1. Follow class notes.

a, b are the proportionality constants for the forces mentioned in the problem.

2. a. Check any physics book on Kirchoft’s law.

b. Differentiate the first equation with respect to t and the second with respect to x

Z.:vt + Cvtt + GUt =0
VUgg + Lityy + Rz = 0

Solve the first for i, and substitute in the second
igt = —Cuoy — Gy

= Ugpy — CL/Utt — GL’Ut + RZI =0

i can be solved for from the original first equation
i, = —Cuv — Gu

= Vpy — CLvy — GLvy — RCvy — RGv = 0

v+(g+§>v+R—Gv—iv
" c L)t oL oL

Or

which is the telegraph equation.

In a similar fashion, one can get the equation for i.

12



2 Separation of Variables-Homogeneous Equations

2.1 Parabolic equation in one dimension

2.2 Other Homogeneous Boundary Conditions

Problems

1. Consider the differential equation
X"(x)+ XX (z) =0

Determine the eigenvalues A (assumed real) subject to
a. X(0)=X(m)=0
b. X'(0)=X'(L)=0
c. X(0)=X'(L)=0
d. X'(0)=X(L)=0
e. X(0)=0and X'(L)+ X(L)=0
Analyze the cases A > 0, A =0 and A < 0.

13



X"+ AX =0
X(0) = 0
X(m) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0

Or
r=+v-\

We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = AV 4 BV

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinh v —A\x
The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))
X = A3 cosh (\/ —A\r + Bg)
Or
X = A4 sinh (\/ —Ar + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the last form
of the general solution then we immediately find that B, = 0 is a result of the first boundary
condition and clearly to satisfy the second boundary condition we must have Ay = 0 (recall
sinhz = 0 only for z = 0 and the second boundary condition reads A,sinhv/—A7 = 0,
thus the coefficient A4 must vanish).

Any other form will yields the same trivial solution, may be with more work!!!

Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X(0) =B =0

14



and the second condition
X(m) =Anr =0

This implies that A = 0 and therefore we again have a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = +iv\
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz
Substitute the boundary condition at zero
X(0) = A
Thus A; = 0 and the solution is
X = Bjsin Vz

Now use the condition at 7
X(m) = BysinVAr = 0

If we take B; = 0, we get a trivial solution, but we have another choice, namely
sin V1 = 0

This implies that the argument of the sine function is a multiple of 7

\/)\7”7?:717? n=12...

Notice that since A > 0 we must have n > 0. Thus

\/)\7”:71 n=12...

A, = n? n=12...

Or

The solution is then depending on n, and obtained by substituting for A,
X, (x) = sinnx

Note that we ignored the constant B; since the eigenfunctions are determined up to a mul-
tiplicative constant. (We will see later that the constant will be incorporated with that of
the linear combination used to get the solution for the PDE)

15



1.b.

X"+ AX =0
X'(0) = 0
X'(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)
Or

X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Ajcosh (\/—)\x + Bg)
then the derivative X’ wil be
X' = V/—=M\Assinh (\/ -\ + B3)

The first boundary condition X'(0) = yields B3 = 0 and clearly to satisfy the second

boundary condition we must have A3 = 0 (recall sinhz = 0 only for z = 0 and the second

boundary condition reads v/—AAssinh /=ML = 0, thus the coefficient A5 must vanish).
Any other form will yields the same trivial solution, may be with more work!!!

16



Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X'(0)=A=0
and the second condition

X (L)y=A=0

This implies that A = 0 and therefore we have no restriction on B. Thus in this case the
solution is a constant and we take
X(z) =1

Case 3: A > 0
In this case the two roots are imaginary

r = 4iv
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin VAz + VAB; cos Vz

Substitute the boundary condition at zero

X'(0) = VAB,
Thus B; = 0 and the solution is

X = A, cos Vo
Now use the condition at L

X'(L) = —VAA;sin VAL = 0
If we take A; = 0, we get a trivial solution, but we have another choice, namely
sin VAL = 0

This implies that the argument of the sine function is a multiple of 7

\/)TLL:mr n=12...

Notice that since A > 0 we must have n > 0. Thus

VA = ”% n=1,2,...

2
An:(%) n=1,2,...

The solution is then depending on n, and obtained by substituting A\,

Xn(x) = cos n%x

Or

17



X"+ AX =0
X(0) =0
X'(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)

Or
X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = A,sinh (\/—)\x + 34)
then the derivative X’ wil be

X' = vV/—=\A, cosh (\/—_/\x + B4)

The first boundary condition X (0) = yields By = 0 and clearly to satisfy the second
boundary condition we must have Ay = 0 (recall cosh z is never zero thus the coefficient A,
must vanish).

Any other form will yields the same trivial solution, may be with more work!!!
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Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Axr + B
The boundary condition at zero yields
X(0)=B=0

and the second condition

X'(L)=A=0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = ii\/X
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin VAz + VAB; cos Vz

Substitute the boundary condition at zero

Thus A; = 0 and the solution is
X = Bj;sin Vz
Now use the condition at L
X'(L) = VABycos VAL = 0
If we take B; = 0, we get a trivial solution, but we have another choice, namely
cos VAL = 0

This implies that the argument of the cosine function is a multiple of 7 plus 7/2

1
\/)\nL:<n+§>7r n=0,1,2,...

Notice that since A > 0 we must have n > 0. Thus

VA = (n+3)w n=01,2...

L
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2

)\n:(m) n=0,1,2,...

L

The solution is then depending on n, and obtained by substituting A,

Xp(x) = sin Mz

L
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1.d.

X"+ AX =0
X'(0) = 0
X(L) =0

Try €. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0
Or
r = +v-X\
We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = Ale‘/__)‘x + Ble_‘/j‘“”

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinhv—A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ajcosh (\/——)\x + Bg)

Or
X = A4 sinh (\/——)\ZE + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Ajcosh (\/—)\x + Bg)
then the derivative X’ wil be
X' = V/—=M\Assinh (\/ -\ + B3)

The first boundary condition X'(0) = yields B3 = 0 and clearly to satisfy the second
boundary condition we must have A3 = 0 (recall cosh z is never zero thus the coefficient A3
must vanish).

Any other form will yields the same trivial solution, may be with more work!!!
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Case 2: A =0
In this case we have a double root » = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields

X'0)=A=0
and the second condition

X(L)=B =0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r o= ii\/X
Thus the solution is a combination of sine and cosine
X = A;cosVAr + Bysin vz

Differentiate

X' = =V A sinVaz + VAB; cos Vax

Substitute the boundary condition at zero

X'(0) = VAB,
Thus B; = 0 and the solution is

X = A, cos vV

Now use the condition at L
X(L) = Ajcos VAL = 0

If we take A; = 0, we get a trivial solution, but we have another choice, namely
cos VAL = 0

This implies that the argument of the cosine function is a multiple of 7 plus 7/2

1
\/)\nL:(n—i—i)ﬂ n=0,1,2,...

Notice that since A > 0 we must have n > 0. Thus

VA = (nt3) n=01,2,...

L
Or )
A 7(71 - %) i 0,1,2
n — I n=~u,1,4,...
The solution is then depending on n, and obtained by substituting A,
n+ )T
Xn(x) = cos %x
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X"+ AX =0
X(0) =0
X'(L) + X(L) = 0

Try e™. As we know from ODEs, this leads to the characteristic equation for r

4+ A=0

Or
r=+v-X\

We now consider three cases depending on the sign of A
Case 1: A < 0

In this case 7 is the square root of a positive number and thus we have two real roots. In
this case the solution is a linear combination of two real exponentials

X = AreV™ + BV

It is well known that the solution can also be written as a combination of hyperbolic sine
and cosine, i.e.

X = Ascoshv—A\x + Bysinh v —A\x

The other two forms are may be less known, but easily proven. The solution can be written
as a shifted hyperbolic cosine (sine). The proof is straight forward by using the formula for
cosh(a + b) (sinh(a + b))

X = Ascosh (\/—_/\x + Bg)

Or
X = Aysinh (\/—_)\x + B4)

Which form to use, depends on the boundary conditions. Recall that the hypebolic sine
vanishes ONLY at x = 0 and the hyperbolic cosine is always positive. If we use the following
form of the general solution

X = Asinh (\/——)\x + B4)
then the derivative X’ wil be
X' = v/=\A, cosh (\/—_/\x + B4)
The first boundary condition X (0) = 0 yields By = 0 and clearly to satisfy the second

boundary condition
V—=AAscoshv—AL = 0

we must have Ay = 0 (recall cosh z is never zero thus the coefficient A, must vanish).
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Any other form will yields the same trivial solution, may be with more work!!!

Case 2: A =0
In this case we have a double root r = 0 and as we know from ODEs the solution is

X =Ax + B
The boundary condition at zero yields
X(0)=B=0
and the second condition
X' (L) + X(L) = A+ AL =0

Or
A1+L) =0

This implies that B = A = 0 and therefore we have again a trivial solution.

Case 3: A > 0
In this case the two roots are imaginary

r = 4iv\
Thus the solution is a combination of sine and cosine
X = A, cosVAz + BysinVz

Differentiate

X' = —VAA;sin Vaz + VAB; cos Vz

Substitute the boundary condition at zero

Thus A; = 0 and the solution is
X = Bjsin Vz
Now use the condition at L
X'(L) + X(L) = VAB;cos VAL + Bysin VAL = 0
If we take B; = 0, we get a trivial solution, but we have another choice, namely
VAcos VAL + sin VAL = 0

If cos VAL = 0 then we are left with sin\/AL = 0 which is not possible (the cosine and
sine functions do not vanish at the same points).
Thus cos VAL # 0 and upon dividing by it we get

—\/X = tan \/XL

This can be solved graphically or numerically (see figure). The points of intersection are
values of v/\,. The solution is then depending on n, and obtained by substituting A,

X,(x) = sin \/)\7713:
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Figure 1: Graphical solution of the eigenvalue problem
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3 Fourier Series

3.1 Introduction
3.2 Orthogonality
3.3 Computation of Coefficients

Problems

1. For the following functions, sketch the Fourier series of f(x) on the interval [—L, L].
Compare f(z) to its Fourier series

a. f(r)=1
b. f(z) = z*
c. flx)=¢€"
d. ) 0
f(x):{gi v >0
e.
0 x<§
fz) =
2 o> L

2. Sketch the Fourier series of f(x) on the interval [—L, L] and evaluate the Fourier coeffi-
cients for each

a. f(z)==x
b. f(z) =sinfx
“ 1 Jz| < £
fx) =
0 |z|>£%

3. Show that the Fourier series operation is linear, i.e. the Fourier series of af(x) + (g(x)
is the sum of the Fourier series of f(x) and g(x) multiplied by the corresponding constant.

26



Figure 3: Graph of its periodic extension

La f(x) =1
Since the periodic extension of f(x) is continuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere.
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Figure 4: Graph of f(z) = 2?

Figure 5: Graph of its periodic extension

L.b. f(z) = 2?
Since the periodic extension of f(x) is continuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere.
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Figure 7: Graph of its periodic extension

Le. f(x) =¢€"

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to (the
periodic extension of) f(z) everywhere except for the points of discontinuities. At z = +L
(and similar points in each period), we have the average value, i.e.

el + e L
2

= cosh L
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Figure 8: Graph of f(x)

Figure 9: Graph of its periodic extension

1.d.

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those
points x = +L (and similar points in each period), we have

3L + (—3L) 5

=°r
2 4
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Figure 10: Graph of f(x)

Al

Figure 11: Graph of its periodic extension

l.e.
Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those

points x = +L (and similar points in each period), we have
L+0 1

212
2 2

At the point L/2 and similar ones in each period we have

0+ 3% _ Lo
2 8
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Figure 13: Graph of its periodic extension

2.a. f(x) ==

Since the periodic extension of f(z) is discontinuous, the Fourier series is identical to
(the periodic extension of) f(z) everywhere except at the points of discontinuities. At those
point = 4L (and similar points in each period), we have

L+ (-L)
2

=0

Now we evaluate the coefficients.

1 L d 1 L d
a=73 [ J@yde =7 [ wde=0

Since we have integrated an odd function on a symmetric interval. Similarly for all a,.

1 /L 1 (- nm L nm
bn = T /_L f(x) sin%xdm = E{%‘LL + /_L COSmLxdx}

L L
This was a result of integration by parts.

M nm
B l —Lcosnm — L cos(—n) sin “Fx |L
- nmw nmw 2 |I-L
EL7 £ (%)
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The last term vanishes at both end points +L

1 —2L cosnm 2L "
=7 = (=1
7 T
Thus o
by = —(—1)"*
m( )
and the Fourier series is or 1) "
< (=1)™ .onm
T~ — T; - sin 7 x

33



2.b. This function is already in a Fourier sine series form and thus we can read the
coefficients
a, =0 n=0,1,2,...

b, = 0 n#1
by =1

Lo w2 L

b

-4
-6 -4 -2 0 2 4 6

Figure 14: graph of f(x) for problem 2c

Since the function is even, all the coefficients b,, will vanish.

L/2 L2 1, L L
pu— —_ _— —_—— p— 1
o= 1 [ de = el = G- (=3)
/L/2 1 L . nrm ’L/Q 1 ( nm ) —mr)
G cos—x dr = — — sin—u = — (sin — — sin ——
T I L/2 L nm L L2 nmw 2 2

Since the sine function is odd the last two terms add up and we have

2 . onm
a, = — sin —
nm 2
The Fourier series is . 5
nmw nmw
~ = 4+ — sin — cos —
/() 2 nz:l nmw n 9 LT
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1 x
f(z) ~ 5(10 + 712::1 (an cos %:1: + b, sin %x)

g(x )N—AO + Z (A cos g+ B, smmaa)
=1 L L

where L
nm
a, = Z/—L f(zx) cosfxdx
1 L
b, = Z/—L f(z) sinn%xdx

1 L
A, = z/_L g(x) cos n%xdx

nm

1 /L ) d
Bn:z/_Lg( )smfx x
For af(z) + Bg(x) we have

1 o
270 + 2::1 <% cos n%x + 9, sin n%x)

and the coefficients are

1 /L
0= Z/ (af(x) + Bg(x))dx
~L
which by linearity of the integral is

’}/OZOzL/ dx—i—ﬁL/ x)dxr = aag + BAp

Similarly for v,, and 9,,.

Yo = %/_LL (af(x) + Bg(x)) cos %xdw

which by linearity of the integral is

nmw
Vi aL/ cos—xd:l:+ﬁL/ Cosfxdx—a&n—i-ﬁAn

1 /L
o = 7 [ (af(@) + Byla))sin "o da
LJ-L L
which by linearity of the integral is

n—&L/ 51n—xd:l:+ﬁL/ sm%xdx:abn—i—ﬂBn
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3.4 Relationship to Least Squares
3.5 Convergence

3.6 Fourier Cosine and Sine Series

Problems

1. For each of the following functions
i. Sketch f(x)
ii. Sketch the Fourier series of f(z)
iii. Sketch the Fourier sine series of f(x)
iv. Sketch the Fourier cosine series of f(x)

T z <0
& f(x)—{ 1+2 >0

b. f(x):e
le
fz) = x+1 —2<x<0
N 0<z<?2

2. Sketch the Fourier sine series of

™

f(z) = cos 7%

Roughly sketch the sum of the first three terms of the Fourier sine series.

3. Sketch the Fourier cosine series and evaluate its coeflicients for

1 x<%
L L
flx)=19 3 §<v<3
L
0 §<33'

4. Fourier series can be defined on other intervals besides [—L, L]. Suppose g(y) is defined
on [a, b] and periodic with period b — a. Evaluate the coefficients of the Fourier series.

5. Expand
1 O<z<?
o=y 9557

5} <xr<T
in a series of sin nz.
a. Evaluate the coefficients explicitly.

b. Graph the function to which the series converges to over —27 < x < 27.
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Figure 16: Sketch of the odd extension and its periodic extension for la

1. a.
The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.

Now the same discontinuities are there but the value of the Fourier series at those points
is

1+ (-1)
2

For the Fourier cosine series we need an even extension

Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0
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-8 -6 -4 -2 0 2 4 6 8

-8 -6 -4 -2 0 2 4 6 8

Figure 18: Sketch of f(z) and its periodic extension for 1b

1.b.
The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

L L
i = cosh L

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.
Now the same discontinuities are there but the value of the Fourier series at those points

Lo
dAdbons o

aaia

2 4 6 8

-8

Figure 19: Sketch of the odd extension and its periodic extension for 1b
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-8 -6 -4 -2 0 2 4 6 8

Figure 20: Sketch of the even extension and its periodic extension for 1b

is
1+ (-1)
2
For the Fourier cosine series we need an even extension
Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0
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NN,

-8 -6 -4 -2 0 2 4 6 8

Lo
L oAb on s o
A
-

Lo
& LA bons o

anave

-8 2 4 6 8

Figure 22: Sketch of the odd extension and its periodic extension for 1c

1.c.
The Fourier series is the same as the periodic extension. In fact the Fourier cosine series
is the same!!!

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.
Now the same discontinuities are there but the value of the Fourier series at those points
is
1+ (-1)

=0
2
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Figure 24: Sketch of the odd extension and its periodic extension for 1d
1.d.

The Fourier series is the same as the periodic extension except for the points of discon-
tinuities where the Fourier series yields

1 0 1

-+0 = = for x = 0 + multiples of 4
2 2

1 2 3

% =5 for x = 2 + multiples of 4

For the Fourier sine series we take ONLY the right branch on the interval [0, L] and
extend it as an odd function.

Now some of the same discontinuities are there but the value of the Fourier series at
those points is

2+ (-2)
2

At the other previous discontinuities we now have continuity.

For the Fourier cosine series we need an even extension

Note that the periodic extension IS continuous and the Fourier series gives the exact
same sketch.

=0 for x = 2 + multiples of 4
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-8 -6 -4 -2 0 2 4 6 8

8 -6 -4 -2 0 2 4 6 8

Figure 26: Sketch of the odd extension for 2
cos W—Lm = nz::lbn sin n%x

0 n odd
bn = 4dn

m n even

Since we have a Fourier sine series, we need the odd extension of f(x)

Now extend by periodicity
At points of discontinuity the Fourier series give zero.
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Figure 27: Sketch of the periodic extension of the odd extension for 2

_ab

8 -6 -4 -2 0 2 4 6 8

Figure 28: Sketch of the Fourier sine series for 2

. : } : T
First two terms of the Fourier sine series of cos T are

b si 2 + by si 4z
= 09 S1N I 4 SIN I
8 2T n 16 4
= — sin — —— sin —
7TS L v 157TS L .
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Figure 29: Sketch of f(x) and its periodic extension for problem 3

1 =< L/6
flz) =<3 L/6 <x < L/2

0 x> 1LJ2

Fourier cosine series coefficients:

2 [ (M0 L M 2 (L (L L
“O_L/o T e 0 _L{6 <2 6)}

{ OL/6 cos " x dv + BILL//g cos ”—L”xdx}

L

2 sin 2L x | L/6 sin 2L x| L/2
= f{ = o'+ 3—=F I
L L
2 | sin 2T sin &T —sin &1
e Z{ MG +3 2M 6
L 6
.on7 . ) .
= %% 3 smT —QSIH% :n—i{?)sm%—Qsm%}
————

o for n even

+1 for n odd
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-10 -5 0 5 10

Figure 30: Sketch of the even extension of f(z) and its periodic extension for problem 3

4.
re[—L, L]
yela, b]
then y = %It 4 2224 (x) is the transformation required (Note that if # = —L then

y = aand if x = L then y = b)
g(y) is periodic of period b — a

Qo o

00) = G0) = %+ 3 (o co B 4 1y sin B

n

1 (L
an = 7 /_L G(z) cos n—;xdx

Therefore

Similarly for b,




Figure 31: Sketch of the periodic extension of the odd extension of f(x) (problem 5)

1 0<z<m/2
flx) =

0 7w/2<z<m

Expand in series of sin nx
™
f(z) ~ Z b, sin nx
n=1

2 T ) 2 w/2 )
b, = — / f(z) sin nxdr = — / 1 - sin nx dx
7 Jo 0

7

T

f(z) =zero on the rest

this takes the values 0, + 1 depending on n!!!
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3.7 Full solution of Several Problems

Problems
1. Solve the heat equation
Uy = kg, O<z<L, t>0,
subject to the boundary conditions
u(0,t) = u(L,t) = 0.
Solve the problem subject to the initial value:

u(x,0) = 6sin .

b. u(x,0) =2cos 3w

2. Solve the heat equation

Uy = kg, 0<z<L, t>0,
subject to
uz(0,t) =0, t>0
uz(L,t) =0, t>0
0 z< é
a. u(z,0)=
1 z> %

b. wu(z,0) =6+ 4cos 3.

3. Solve the eigenvalue problem

¢ ==X
subject to
¢(0) = ¢(2m)
¢'(0) = ¢'(2m)

4. Solve Laplace’s equation inside a wedge of radius a and angle «,

13<8u> 1 0%u

"or) o =0

subject to



o

Solve Laplace’s equation inside a rectangle 0 < x < L, 0 <y < H subject to

a. uz(0,y) =u.(L,y) =u(z,0) =0, wu(z,H)= f(x).
b w(0,y) =g(y), w(L,y)=uy(z,0)=u(z, H)=0.
c. u(0,y)=u(L,y)=0, wu(z,0)—uy(z,0)=0, u(z,H)= f(x).

6. Solve Laplace’s equation outside a circular disk of radius a, subject to

a. u(a,0) =1In2+ 4cos36.
b. wu(a,d) = f(0).
7. Solve Laplace’s equation inside the quarter circle of radius 1, subject to
a. ug(r,0) =u(r,m/2) =0, u(1,0) = f(0).
b. UG(T7 O) = UG(T7 7T/2) - 07 UT(L 0) - g(e)
c. u(r,0)=u(r,m7/2)=0, ur(1,0) = 1.

@

Solve Laplace’s equation inside a circular annulus (a < r < b), subject to
a0 =f0),  u(b0)=g(0).
b. u.(a,0)=f(0),  u.(b,0)=g(0)

9. Solve Laplace’s equation inside a semi-infinite strip (0 < z < oo, 0 < y < H) subject
to

uy(z,0) =0, uy(z, H) =0, u(0,y) = f(y).
10. Consider the heat equation
Up = Ugy + q(, 1), 0<x<L,
subject to the boundary conditions
u(0,t) = u(L,t) = 0.

Assume that ¢(x,t) is a piecewise smooth function of = for each positive t. Also assume that
u and u, are continuous functions of x and u,, and u; are piecewise smooth. Thus

nm

u(z,t) = by(t)sin -
n=1

Write the ordinary differential equation satisfied by b, (t).

11. Solve the following inhomogeneous problem

0 0? 3
8_1; = kﬁ—xz +e '+ e cos %x,
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subject to
ou ou
u(z,0) = f(x).

. . . . . 2
Hint : Look for a solution as a Fourier cosine series. Assume k # %.

12. Solve the wave equation by the method of separation of variables

Ugt — CPUgy = 0, O<z<L,
u(0,t) =0,
u(L,t) =0,
U(ZL‘,O) = f(l‘),
w(x,0) = g(x)
13. Solve the heat equation
Up = 2Ugy, O0<x<L,

subject to the boundary conditions
u(0,t) = u,(L,t) =0,

and the initial condition
(x,0) = sin §zx
u(x,0) = 57

14. Solve the heat equation

Ou (10 ( 0u) 10
o "\ror\"ar ) T 2002

inside a disk of radius a subject to the boundary condition

ou
E(a,@,t) = O,

and the initial condition

u(r,0,0) = f(r,0)

where f(r,0) is a given function.

15. Determine which of the following equations are separable:
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() Upy + Uy =1 (b)  Upy + Uy = u

(¢)  2’yuse + yluy, = du (d)  w + uu, = 0
(e) U + f(t)ut = Ugg (f) ?uacacac = Uy

16. (a) Solve the one dimensional heat equation in a bar

U = Ky, O0<zxz< L

which is insulated at either end, given the initial temperature distribution

u(z,0) = f(z)
(b) What is the equilibrium temperature of the bar? and explain physically why your
answer makes sense.

17. Solve the 1-D heat equation
U = kgy O0<ax< L
subject to the nonhomogeneous boundary conditions

w0) =1 (L) =1

with an initial temperature distribution u(x,0) = 0. (Hint: First solve for the equilibrium
temperature distribution v(x) which satisfies the steady state heat equation with the pre-
scribed boundary conditions. Once v is found, write u(z,t) = v(z) + w(x,t) where w(z, 1)
is the transient response. Substitue this u back into the PDE to produce a new PDE for w
which now has homogeneous boundary conditions.

18. Solve Laplace’s equation,
Viu =0 0<z<m 0<y<m
subject to the boundary conditions

u(z,0) = sinz + 2sin 2z

u(m,y) =0
u(z,m) = 0
u(0,y) = 0
19. Repeat the above problem with
u(z,0) = —m0? + 272 — 2*
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la. u; = kug,
u(0,t) =0

u(L,t) =0

9
u(z, 0) = 6 sin e

L
u(z, t) = Y B, sin DTT ekt
n=1
u(z, 0) = i B, sin 270 = singﬂ—x
g L L

= the only term from the sum that can survive is for n =9 with By =6
forn # 9

9
= u(x, t) = 6 sin e

e kCE)t

3
b. wu(x, 0) = 2 cos G

ulr, 1) = 3 By sin I kO
n=1

s nmTT 3T
B,, si =2
nz::l sin 7 cos 7

2 (L 3
= B”:E/o 2 cos szinnzxdx

compute the integral for n = 1,2,... to get B,,.

o1

B,=0



To compute the coefficients, we need the integral

/L 3T nm p
cos —x sin —x dx
0 L L

Using the trigonometric identity
: L. :
sina cosb = 5 (sin(a + b) + sin(a — b))

we have

2/ ( n+3 x—l—sinwx)dx

Now for n # 3 the integral is

1cos 8T, 1 cos @x I
B R el el ey e
L L
or when recalling that cosmm = (—1)™
L L
e -1 n+3 1 = —— -1 n—3 1
27(n + 3) [( ) } 2m(n — 3) [( ) }’

Note that for n odd, the coefficient is zero.

For n = 3 the integral is

L 3
/ CoS —Wx sin —xdx = / sin —xdx
0 L 2
which is | I "
T
gl =0

02
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2 . Uy = kumx

uz(0,t) =0
ug(L, t) =0
u(z, 0) = f(z)

u(z, t) = X(z) T(t)

Tr = kX"T

T X
= = )
kT T

T+ kT =0

nmxr
X"+ AX =0 X, = Ay cos Z ., n=12,
2
X0 =0 = A <n—;> . on=1,2,
X'(L) =0

Tn = Bn 6_(%)2 kt

u(z, t) = AgBy + > A, cos ﬂLx B, ¢~ ()2 Kt
=ag n=1

u(z, t) = ag + Y ay cos nre

o (BE) kt
n=1 L

23



0 x < LJ2

flx) =
1 = > L)2

u(z, 0) = f(z) = ag + i Ay COS — X

n=1

nm

L

2 /L nT 4 2 L . nm |
a, = — cos —xdr = —— sin —ux =
L Jry L Lnm L Ly
1 > 2 nx
u(z, t) = 5t nz::l (_ﬂ sin %) cosn—[jrxe”“(T)Qt

3
flz) =6 +4cos%x

o
nmw
:ao—i-Zancosfx
n=1

(l0:6

az = 4 a, =0 n # 3

u(z, t) = 6 + 4 cos 3T e FE)

o4

2



&+ 26 =0
?(0) = o (2)
¥ (0) = ¢ (2m)

A >0 ¢ = Acos Viz + Bsin VAz

¢ = —AV)\sin Viz + BV cosVAz

$(0) = ¢(27) = A = A cos 2r VA + B sin 20V A

¢ (0) = ¢ (21) = BVA = —AVXsin 2 VA + BV cos 2r VA

A1 — cos 2 VA) — B sin 2 VA = 0

AV sin 20 VA + BVA(1 — cos 2r V) = 0

A system of 2 homogeneous equations. To get a nontrivial solution one must have the
determinant = 0.

1 — cos 2T VA —sin 27 VA

VA sin 27 VA \/X(l — COS 27T\/X)

Il
o

VA (1 = cos 2 VA)? + VA sin? 21 VA = 0

VA {1 = 2cos 20 VA + cos® 2 VA + sin® 20V} = 0
1
WALl —cos2rVA} =0 = VA =0 or cos2rVA =1

2V =2rn n=1,2, ...

25



»(0)=0¢(2r) = B=2rA+B = A=0

$0)=¢(2r) = A=A

= A=0 ¢=38B

A< 0 ¢ = AV 4 Be Ve

$(0) = 6(21r) = A+ B = AeV " 4 Be VA

¢ 0) = ¢ (21) = VA — VoAB = VoAV — /X Be 7V

All — @™V + B[l — eV =0

VXA L = e = BYER[L - eV =0

1 — 22 1 — e—2mV—A

Il
o

V=A(1 — 2™V VTR (1 — eV

—/ =\ (1 . 627r\/—_)\) (1 . 6—27r\/—_>\) . /_/\(1 o 627r\/—_)\) (1 . 6_27“/__)\) — 0
_2\/_—)\(1 _ 627r\/j)\) (1 . ewi\/j)\) S
1—e2™V=2 —

eQﬂ\/j =1 6727r\/7_)\ -1

26



4.

Take In of both sides

2tV =N =0 =2tV =\ =0
vV—=A =0 vV=A=0
not possible not possible

Thus trivial solution if A < 0

ror T@r r2 902

u(a, 0) = f(0)
u(r,0) = up(r,a) =0

u(r,0) = R(r)©(0)

li T@_R _}_iRa2_@_O
ror or r2 002
ltiply by
t1 —

multiply by -~

r /N\/ @// _

27



O 4+ 0 =0

©, = sin(n — 1/2)29

o = [0 —1/2) 7]

«

n=12 ...

r(rR) —uR =10
|R(0)| < oo
R, = ro-bE
only positive exponent

because of boundedness

> —1/2
u(r, ) = > a,r™ 7/ gin n-1/ v,
n=1 o
> —1/2
f(e) _ Z ana(n—1/2)7r/a sin (n / )7]-0
a

n=1

Tl:

Jo f(0) sin(n —1/2)260d6

alr=1/2m/e (% sin® (n — 1/2) Z0d 0

o8




5. Uy + Uy = 0
uz (0,y) =0
uy (L, y) =0
w(z, 0) = 0
u(z, H) = f(x)

X//
u(z,y) = X@)Yly) = v =
u (0,y) =0 = X' (0)=0
uz (L,y) =0 = X'(L)=0

u(z,0) =0 = Y(0) =0

S X'+AX =0 Y'-AY =0
X'(0) = 0 Y (0) =

X'(L) = 0

|} Table at the end of Chapter 4

2
An:(%) n=012 ...

2
xn:cosn%x N YA’—(”%) Y, =0 n=012..

Ifn:O:>Y0":O:Y0:A0y—|—BO
Yo(0) = 0 = By = 0
= Yo(y) = Aoy

\2

nm 2 n
Ifn#0=Y, = Ane(T) v + Bnef(T) Y
or
Y, = C,, sinh (Ey + Dn>
L
Y,(0) =0= D, =0

=Y, = C, sinh n%y

29



Kad n n
u(z,y) = Aoy -1+ Y a,C, cos Tﬂx sinh Tﬂy
ag n=1 an

2

u(z, H) = % + > a, sinh %H cos %x = f(x)

n=1

This is the Fourier cosine series of f(z)

CL()H:

L .onT
a, sinh — H =

2 L d
= ao_ﬁ/o f(z)dx
2 L nm
S T d
fin Lsinh%H/o Jlw) cos Frud

and:
nT

u(z, y) = %y + 221&” sinh n%y cos -
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5 b Uy + uy =0

u(0,y) = 9(y)
u(L,y) =0
Uy (x,0) =0
u(z, H) =0
X"—AX =0 Y'"+ AY =0
X(L) =0 Y'(0) =0
Y(H) =0
Using the summary of Chapter 4 we have
1
Y, (y) = cos Wy, n=0,1,
2
n+3i)mw
Ap = %] n=20,1,...
(n+iHm 2
Now use these eigenvalues in the x equation: X, — { 7 ] X, =0 n =
Solve:
X, = ¢, sinh((n+ %) %x + D )
Use the boundary condition: L) =
X,(L) = ¢, smh(( ) D ) $ + D, =0

+
= X, = ¢, sinh <% (x — L))

7

= U(.CE, y) = nio% a,, sinh [w (.CE _ L)] oS (TL i %) Ey

To find the coefficients a,,, we use the inhomogeneous boundary condition:
(n + $)m 1\ =
, - D) (ns D) T
u(0, y) Za sin < 7 (—L) | cos n+2 7Y
This is a Fourier cosine series expansion of g(y), thus the coefficients are:

. (n+ 3 1\ =
— sinh T n H/ ) cos [(n + 5) Ey] dy

Ay = 1 gly) cos n 5] FY|ay
—H sinh LJFE,)WL 0 2/ H
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5.c u0,y9) =0 = X(0)=0
uw(L,y) =0 = X(L)=0
(z, 0) (,0) =0 = Y(0)—Y'(0) =0
X" 4 AX =0 vy - (%) v, =
X(0) =0 Y,(0) — Y'(0) =0
X(L) =0
[k Y, = A, cosh =*y + B, sinh ="y
Ap = (%)2 n=1,2, Y, =% {An sinh 2%y + B, cosh %y}
X, = sin “Fx Substitute in the boundary condition.
(b~ 2 B o0+ (B~ Agnho = o
£0 =0
= A, = "B,
Y, = B, [% cosh %y + sinh %y
u(z, y) = nz:lb sm%x[% coshfy—i-smhf ]

Use the boundary condition u(z, H) = f(z)

[e) n
= Z b,, sin
n=1

Tﬂx {n—ﬂ cosh—H + sinh TH}

This is a Fourier sine series of f(x)

by, {E cosh —H + sinh —H] =

L L

Solve for b,

L L

, thus the coefficients b,, are given by

il

sin — xdm

2

nim

by
=% cosh "= H + sinh %2 H

sin I x dx

]L/OLf(:r)
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6a. U + %ur + T%UQQ =0 outside circle
u(a, ) = In2 + 4 cos 30
u(r, 0) = R(r)© ()

”R'+rR — AR =0 0"+ X0 =0
0(0) = 0(27)
A = ORO = g + Bo Inr @,(0) = @,(271')

)\:7712Rn = &nrn + ﬂnr_n ‘U’

Since we are solving A < 0 trivial solution
outside the circle A=0 6y) =1
Inr - 00 asr— oo A>0 N\, =n?
r" — o0 asr — oo 0, = A, cosnf + B, sin nf
thus Ry = «

R, = g,r "

u(r, 0) = agag - 1 + Z a, (A, cos n® + B, sin nf) G, r "
——

=ap/2 n=1

u(r, 0) = ao/2 + Y _ (a, cos nf + b, sin nf) r"
n=1
Use the boundary condition:

u(a, 0) = % + > (apa™™ cos nb + b,a™" sinnfd) = In2 + 4 cos 360
n=1

anba =4 n=3 = a3=4d’

ar,a” =0 n#3 = a,=0 n#3

=lu(r, §) = In 2 + 4a®>r=> cos 36
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6 b. The only difference between this problem and the previous one is the boundary
condition

u(a, 0) = f(0) = % + > (apa™ cos nf + b,a" sin nb)
n=1

= ag, a,a” ", b,a™" are coefficients of Fourier series of f

w= L[ swan

T J—7

1 T
a,a "= —/ f(0) cosnbdé

™ J—m

1 ™
bpa" = —/ £(6) sin n0do
T J—7

Divide the last two equations by a™" to get the coefficients a,, and b,,.
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1 1
Ta. Uy + —Uu, + — Uy = 0
r r

ug (r, 0) = 0
u(r,m/2) =0
u(l, 0) = f(0)
PR'+rR — AR =0 ©” + X0 = 0 no periodicity !!
o' (0) = 0
R, = ¢, ™t + D, r*1 ' (r/2) =0
n—1 If A < 0 trivial

boundedness implies R,, = ¢,

)\ZOG)OZA()Q—FBO

@0(77'/2):0 = By=0

trivial
A > 00 = Acos VA0 + Bsin V)0
O = —vVAAsin VA0 + BV cos VO
©0)=0= B=0
O(r/2) = 0 = Acos VAr/2 =0

\/XW/QZ(H—%)W n:1’2’...
\/XZQ(TL—%):Qn—l

Ao = (2n — 1)

O, =cos(2n—-1)0 , n=12---

Therefore the solution is

u=>Y a, ™ 'cos(2n — 1)0
n=1
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Use the boundary condition

u(l, 0) = i a, cos(2n — 1)6 = f(6)

n=1

This is a Fourier cosine series of f(6), thus the coefficients are given by

2 w/2
a, = 7—/2/0 f(0) cos(2n — 1)0d6

Remark: Since there is no constant term in this Fourier cosine series, we should have

/Oﬂ/2 £(6)d0 = 0

ag =

NEIRN

That means that the boundary condition on the curved part of the domain is not arbitrary
but must satisfy

/Oﬂ/2 £(6)d0 = 0
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7b. ug(r,0) =
ug (r, m/2) =0

ur(1, 0) = g(0)

Use 7a to get the 2 ODEs
0" + X0 =0 PR ' +rR — AR =0
©'0) =0 (n/2) =0
4
2
A = <”_—7f) = 2n)? n=012...
O, = cos 2n 4, n=20,12...
Now substitute the eigenvalues in the R equation
”R'+rR — (2n)?R =0

The solution is
ROZCOIHT+D0, n =20
n

R, = C,r™ + D, r*, =12,...

Since Inr and 72" blow up as r — 0 we have Cy = C,, = 0. Thus

u(r,0) = ag + Y a,r*" cos 2nf

n=1

Apply the inhomogeneous boundary condition
ur(r,0) = > 2na, ™" cos 2nf
n=1

Andatr =1 -
u(1,0) = > 2na, cos 2nf = g(0)

n=1

This is a Fourier cosine series for g(6) and thus

72 4(6) cos 2n6 db
fgr/Q cos? 2n6 db

2na, =

/2 9(0) cos 2n0 df
an = 0 252)COS r n:1,2,...
2n [y'° cos? 2n6 do

Note: aq is still arbitrary. Thus the solution is not unique.

w/2
/ g(0) dfd = 0 which is to say that ag = 0.
0
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7c u(r,0)=0
u(r,7/2) =0

ur(1,0) =1

Use 7a to get the 2 ODEs
0"+ X0 =0 PR ' +rR — AR =0
©0) =6 (r/2) =0
\
2
&1:(%ﬁ — ) n=12...
O, = sin 2n6, n=12...
Now substitute the eigenvalues in the R equation
PR+ rR — (2n)*?’R =0

The solution is
R, = C,r 2" + D, r*", n=12...

Since 72" blow up as r — 0 we have C,, = 0. Thus

u(r,0) = > a,r*™ sin 2nf
n=1

Apply the inhomogeneous boundary condition
ur(r,0) = Y 2na,r* " sin 2nf
n=1

Andatr =1 -
u,(1,0) = > 2na, sin 2nf = 1

n=1
This is a Fourier sine series for the constant function 1 and thus
/21 . sin 2n6 do
fgr/Q sin? 2n6 d

2na, =

721 sin2ngdg  ECNS 1 (<)

— — 2n _
2n fJ” sin? 2n6 df 2n3 n*m

n

1-(=D")

a, =
n2mw
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1 1
8a. urr+—ur+—2ue9:0
r r

u(a, 8) = f(0)
u(b, 0) = g(0)

PR +rR — AR =0 0"+ X0 =0
0(0) = ©(27)
e'(0) = ©'(27)
The eigenvalues and eigenfunctions can be found in the summary of chapter 4
M =0 Oy =1 formn =0
A = n? O, = cosn# and sinnf forn =1,2,...
Use these eigenvalues in the R equation and we get the following solutions:
Ry = Ay + By Inr n=2>0
R, =A,m" + B,r " n=12...

Since r = 0 is outside the domain and r is finite, we have no reason to throw away any of
the 4 parameters Ag, A,,, By, B,,.

Thus the solution

u(r, 0) = (Ap + By In 1) L ao + > (A" + B,r") (an cos nf + b, sin nb)

=1
Ro ©o " Ry, O

Use the 2 inhomogeneous boundary conditions

f(0) = u(a, ) = Agap + Boag In a + Z (A,a" + B,a™")a, cos no

n=1
[e74] Qn

+ Z (A, a"™ + B,a™")b, sin nf
n=1
Bn

g(0) = u(b, 0) = Agag + Boap In b + Z (A, 0" + B,b™")a, cos no

Y0 n=1 Yn
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+ Y (A, 0" + B,b") by, sin nf

n=1

on

These are Fourier series of f(6) and ¢(6) thus the coefficients ag, a,, 3, for f and the
coefficients 7o, ¥, 0, for g can be written as follows

2

Qo = ! /027T f(9>d9

1 27

ap = = / £(6) cosnb do
™ Jo
1 21

B, = - / £(6) sinnf do
™ Jo

1 21
Yo = %/o g(0)do

2m
/ g(0) cosné db
0

Op =

S

2
/ g(0) sinnd do
0

On the other hand these coefficients are related to the unknowns Ay, ag, By, by, An, apn, By

and b,, via the three systems of 2 equations each

ag = Agag + Bpag In a
solve for Agag, By ag
Yo = A()CLO + Bo(lo Inb

a, = (A,a" + Bya ") ay,
solve for A, a,, B, a,,

Bn = (A,a" + B,a ™) b,
solve for A, b,, B, b,
op = (A 0" + B, b™") by,

Notice that we only need the products Agag, Boby,Anay,, Bnan,, Ab,, and B,b,.

Yo — Qg

Byag = 0 — @0
09 = 10~ Ina
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ag Inb — 79 Ina

A =
0o b — Ina
a,b" — ypa”
Bn n —
a bnafn _ &nbfn
Y b — ana”
Anan = h2n — g2n
In a similar fashion B.b 5
n - nan
Bnbn =
bnafn _ anbfn
0,0" — B,a"
Anbn = h2n _ g2n
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8. b  Similar to 8.a

u(r, 0) = (Ag + BoInr)ag + > (A,r™ 4+ Byr™") (a, cos nf + b, sin nb)

n=1
To use the boundary conditions:

ur(a, 0) = f(0)

ur(b, 0) = g(0)

We need to differentiate v with respect to r

B [e.e]
ur(r, 0) = —2ag + > (nA, "' = nB,r " ") (a, cos nf + b, sin no)
r n=1
Substitute r = a
BO - n—1 —n—1 :
ur(a, 0) = —ag + Y (nA,a"" —nB,a " ") (a, cos nd + b, sin no)
a n=1

This is a Fourier series expansion of f(6) thus the coefficients are

By 1
a&O_QW

/02” £(6)d0 = ag

(nA,a™' — nB,a~ " Ya, =

27
/ £(6) cos nfdf = a,
0

A= A=

27
(nA,a" ' — nB,a " b, = / f(0) sin nfdf = 3,
0

Now substitute r = b

B o0
ur(b, 0) = 70610 + > (A — nB, b7 ") (a, cos nf + b, sin nb)

n=1

This is a Fourier series expansion of g(6) thus the coefficients are

BO 1 27
—ay = — 0)do =
b Qo o /0 g( ) Yo
n—1 —n—1 ]' m —
(nAyb — nB,b Ya, = — / g(0) cos nfdo = ~,
7 Jo
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27
(nAD"™r — nB,b" b, = / g(0) sin nfdo = 6,
0

3 |-

Solve for A,a,,, Bpa,:
(nA,a™' — nBy,a " Ha, = oy,

(nAnb”_1 — anb_”_l)an = Y
We have

ay, bfnfl — Y afnfl

n(an—l b—n—l _ bn—l a—n—l)

Anan =
a,, bnfl - Y anfl

Bn n —
a n(an—l b—n—l _ bn—l a—n—l)

Solve for A,b,, B,b,:
(nAwa"™™" — 0By~ b, = 6,

(nAL" Y — nB,b" Hb, = 6,

We have ponol 5 gened
Anbn _ ﬁn — 0nQ
n(an—l b—n—l _ bn—l a—n—l)
n—1 _ n—1
B.b — Bnb Op @

n(an—l b—n—l _ bn—l a—n—l)

There are two equations for Byag:
Boag = by

B()CL() = aQy

This means that f and g are not independent, but
acg = by

which means that o o
o [T @ =0 [ g0)a8
0 0

Note also that there is no condition on Agay.
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U+ Uy =

Figure 32: Sketch of domain

9.
Uy (,0) =0
uy (z, H) = 0
u(0,y) = f(y)
X'"—AX =0 Y"+AY =0
solution should Y'(0) =0
be bounded Y'(H) =0
when z — o0 copy from table in Chapter 4 summary
2
A= (57)
n=201,2---
Y, = cos 5F

X - () Xo=0 n=12
X, = A, eF* 4+ B,e" HB®

to get bounded solution A, =0

Forn =0

X =0

XO = Aol' + BO
for boundedness Ag =0

s nw n
w= By -1+ Z B, e” B " cos fﬂy
n=1

> nTm
u(0,y) = f(y) = Bo + Y By cos 7Y
n=1

Fourier cosine series of f(y).
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10. U = Uge + q(z, t) 0<z< L

subject to BC (0, t) = u(L,t) =0

Assume: ¢(z, t) piecewise smooth for each positive t.
u and u, continuous
Uz, and u; piecewise smooth.

Thus,

u(z, t) = Y by(t) sin n%x
n=1

(a). Write the ODE satisfied by b,(t), and
(b). Solve this heat equation.

STEPS:

1. Compute g, (t), the known heat source coefficient

2. Plug v and q series expansions into PDE.

3. Solve for b,(t) - the homogeneous and particular solutions, b2 (¢) and b’ (t)

4. Apply initial condition, b,(0), to find coefficient A,, in the b,(t) solution.

u(z, 0) = f(x)
1.
q(z, t) = i gn(t) sin BT
n=1 L
Qn(t) = % /OL q(x, t) sin n%xdx
2.

s nTm

uy = Y b (t) sin 77

n=1

Uy = i b (t) [— <%ﬂ sin 1"

n=1
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00 00 2 00
> b, (t) sin Ty = > b (t) [— (n_w) ] sin -z + > qu(t) sin
n=1 L n=1 L L

n=1

We have a Fourier Sine series on left and Fourier Sine series on right, so the coefficients
must be the same; i.e.,

(a) b, (t) = — (M)Q bu(t) + qu(t)| = A first order ODE for b, ().

L Solve B, (t) = — (%) bu(t) + qu(t)
Solution Form: b, (t) = A, bH(t) + bl (t)
Homogeneous Solution: b (t) = e ()t

Particular Solution: b (t) = (") t/ e (') T qn(T)dr
0

(Step IV is an extra step, not required in homework problem.)

IV. Find A, from initial condition. u(z, 0) Z sin n% x
9 (L

b,(0) = — f(z) sin BT o ds
L Jo

bn( L/ ( sin —xdx) (e(%)2t> + e(%)% /t e*("—J)Qan(T) dr

Plug this into  u(z, t) = Y02, by(t) sin “F x




11. u = kug, + e 2 cos ST x

L
—_———
q(z,t)
ug (0,¢) =0
uz (L, t) =0
u(z, 0) = f(z)
The boundary conditions imply
> nm

u(z, t) = z_:o b, (t) cos Sk

Let q(x, t) = Y gu(t) cos %x = qt) = e
n=0
q3(t) = e™*  the rest are zero !
Thus
7\ 2
bn:—k(L>bn+qn n =01,
n=20 bo=q =¢€¢' = b= —et

homogeneous
/ 2n 2
. 3nm? _
k(B
rest are homogeneous.
One can solve each equation to obtain all b,.
. nim 2 7/€(M 2t
bn+k(7> b, =0 = b, = Ce"("T)t 5 = 1,245, ...
note: n # 3
. 3m\? _ot : .
bs + k (T) by = e Solution of homogeneous is

3

x\2
by = Cye k()
For particular solution try by = C'e™

7



[—2+k (3%)2] C=1
- k(%ﬂ} —9

denominator is not zero as assumed in the problem.

k(37)%¢ —
= bSZCSE(L) +k:(3T”71)2—262t
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12 uyp — Cuge =0 0<x <L
w(0,8) = u(L, t) = 0
u(z, 0) = f(z)
w(z, 0) = g(x)

XT" - X"T =0

Tl/ X/l
or - x - )
X"+ 2X =0 T + AT =0

X(0) = X(L) = 0

2
Xn:sm”%x T,’;+(”T7T) AT, =0
n=12:-
2
Ay, = <n%) T, = a, cos nzc

n=1

= n nmce nm
u(z, t) =Y {ozn Cos t + [, sin Tt} sin — x

u(z, 0) = f(z) = i a;, sin %x
n=1

o0

nmc nm
O — — — On, 1 JRE——
o, 0) = g(a) = 3 200, sin
9 L
=7 | f(x) sin n—ljrxdx
9 L
nzcﬁn =7/, g(z) sin n—;xdx
2 L nm
— in 2T d
B nwc/o g(x) sin 7 rde
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13. up = 2uyy,

u(0,t) =0
ug (L, t) =0
u(z, 0) = sin 2Tz
u = XT
XT = 2X"T
T X .
5T % + 0 + 0
X(0) =0
X’(L) =0
1
Xn:sin<n+§>%x n =
1\ 712
Ap = — ) =
(n+3) 7]
(o0} " 1
U(ZE,t) = Z an672[((n+2)f] tSiH (n + —) zl‘
n=1 2 L
At t =

But also
u(x, 0) = sin 2

Therefore
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14. w = k E (ru,), + %Uee}

u, (a, 0,t) =0 inside a disk
u(r, 0,0) = f(r, 0)

OT'R = kT [0L(rR) + % RO"|

T/ B %(T’R/)/ 1 @// B

- R Tme
1 R 1 "
T + AkT =0 () + — 9 = — )\ multiply through by r*
R r? ©
r(rR’) 9 e"
)\ = - =
R + Ar 5 7
0" + uO = 0; r(rR) + Ar*R — pR = 0
©0) =62 | R(0)]| < oo
0'(0) = ©'(27) R'(a) =0
\ !
fn = 1 R = J,(V\r)
n=12 .-
sin n 6 )
0, = { J'(VXa) =0 gives A\pm,
cos n6

po = 0 O =1

T;Lm + A kL, = 0 — T = €_>\nm kt

u(r, 0,t) = Z l% + Z (a, cos n@ + b, sin nQ)] . (\/)\nmr) ek Anmt
n=1 ——

m=1 Tnm

@n Rn m

f,0) = >

m=1

l% + nz::l(@n cos nf + b, sin n@)} I (\/)\nmr)

Fourier-Bessel expansion of f.

See (4.5 later)
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15. a.

Uy + Uyy = 1

Try u(z,y) = X(2)Y (y)

XY +XY"=1
This is NOT separable. But the homogeneous equation is.

b.

Ugz + Uyy = U

Try u(z,y) = X(2)Y (y)

XY + XY" = XY
Divide by XY

The equation is separable.

C.

x2yum + y4uyy =4u

Try u(z,y) = X(2)Y (y)

2y X"Y + ' XY =4XY
Divide by y XY
XA Y

X Ty Yy

The equation is separable.

d.

uy +uu, =0

Try u(z,t) = X(x)T(t)
TX +XX'T?=0

Divide by XT?

The equation is separable.
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U + f(E)ur = Uy
Try u(z,t) = X(x)T(t)
TX + f)XT = X"T
Divide by XT

T T X"
- H— =
7t 7=~
The equation is separable.
f.
22
_Q/U/I:E:E uy

Try u(z,y) = X(2)Y(y)

Divide by XY

The equation is separable.
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16. uy = kug,

uz(0,t) = 0
ug (L, t) =0
u(z, 0) = f(x)
u(z, t) = Y u, cos DT k(o)
n=0 L
u(z, 0) = > u, cos nzx = f(x)
n=0

u,, are the coefficients of expanding f(z) in terms of Fourier cosine series.
1 (L d
=), S
2 L nm
n — T _— d
u 7 /0 f(z) cos 7 de

b. The equilibrium is when u,, = 0 subject to the same boundary conditions. The solution
is then obtained by integration with respect to z

u, = K and K = 0 because of the boundary conditions. Now integrate again to get
u = C'. This means that the temperature is constant. There is no other condition to fix this
constant. The problem doen’t have a unique solution.

Note that if we let ¢ to go to oo, part a tells us that u — wug (since all other terms
contain a decaying exponential in time). The value of uy found there to be the average of
the function f(z). Thus we should take the constant C' to be the average initial temperature

C’:%/OL f(x)dx
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17.
U = Klyy O<zxz< L

Boundary conditions (inhomogeneous)

u(0,t) =1

u(L,t) =1
Initial condition

u(z,0) =0

Let w(z, t) satisfies the inhomogeneous boundary conditions
w(0,t) =1
wy(L,t) =1
For example, we can take a linear function in x
w(z,t) =ar+f
Using the boundary conditions we get
a=p0=1

and so
w(z,t)=z+1

Now let v(z,t) = u(x,t) — w(x,t), then clearly v will satisfy homogeneous boundary condi-

tions, and the PDE becomes:
Uy + Wy = k(vx:t + wxm)

Since w; = w,, = 0, we can write the PDE
U = kUgy
The initial condition is v(z,0) + w(z,0) = 0 or
v(z,0) = —x —1

So the problem is now:

U = kv:v:v
v(0,t) =0
ve(L,t) =0

v(z,0) = —x —1
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The eigenfunctions and eigenvalues are

n+1/2
L

2
1/2
<n+ /w> . on=1,2,...

sin T

L

Thus, we can expand

> 1/2
v(z,t) =) v,(t) sin r +L / T
n=1

At t = 0 we have

> 1/2
—z—1=v(z,0) =) v,(0)sin n +L / e
n=1
% 2 L 1/2
v (0) = —— (x+1)sinn+ / nxd
L Jo
Substitute the expansion is the PDE and equate coefficients
2
1/2
(D) + k <”+ / w> on(t) = 0
2 L 1/2
v, (0) = —— (x+1)sinn+ / rxd
L Jo
The solution is then )
nt1/2 _\2
v (t) = Un(O)efk( T
and - 112
v(z,t) =) Un(o)efk(nll/%) ! sin - +L / T
n=1
and

i nt1/2 \2 1/2
u(z,t) =z +1+> 'Un(o)e_k( 227) tgin & +L /

n=1

T™r

where v,,(0) are given above.
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18.
Viu =0, 0<zx<m0<y<nm

u(z,0) = sinz + 2sin 2x
u(z,m) =0
u(0,y) = u(m,y) =0

Separation of variables leads to
X"+ XX =0

and
Y'"—AY =0

The last boundary condition dictates

and we can solve the ODE for X
Ap=n%n=12 ..

X, =sinnr,n=12 ...

Thus the ODE for Y becomes
V) —n?Y, =0

with a bounday condition coming from next to last condition
Yo(m) =0
Ths solution is
Y, (y) = sinhn(y — )
Thus we have

u(z,y) =Y a,sinhn(y — ) sinnz

n=1

Now use the only inhomogeneous boundary condition
sinz + 2sin 2z = u(x,0) = > a,sinhn(—m)sinnz
n=1

since the hyperbolic sine is an odd function

o0
sinz + 2sin2x = — Z a,, sinh n7 sin nx

n=1

Comparing coefficients we see that sin x has a coefficient of 1 and therefore

—a;sinhm =1
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—a9 sinh 27 = 2

The rest of the coefficients are zero
ap=0,n2>2
Therefore the solution is

sin 2x

- sin x -
sinh 7 sinh 27
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19.

V2u:0, 0<zx<m0<y<nm
u(z,0) = —m?2? + 27ma® — 2t
u(z,m) =0

u(0,y) = u(m,y) =0

The only difference is in the inhomogeneous condition, thus the general solution is the same

u(z,y) =Y a,sinhn(y — ) sinnz

n=1

Now use the only inhomogeneous boundary condition

o0
—m?e? + 212’ — 2 = u(2,0) = =) a,sinhnrsinna
n=1

The coefficients —a,, sinh nm are those of the Fourier sine expansion of —n2z? + 272 — 2?,
ie.

. 2 [T .
—ay, sinhnr = — / (—71'2:[‘2 + 212 — x4) sin nxdz
7w Jo

Now we integrate (using integration by parts to reduce the powers of x)

e x? 4 3
z¥sinnxdr = ——cosnx+ — | z°cosnxdx
n n
1'4 4 l‘3 . 3 2 .
= ——cosnr+ — |—sinnr — — | x°sinnxdx
n ni|n n
.CIZ'4 41’3 . 12 92 .
= ——cosnr+ —sinnr —— [ sin nzdz
n n n
5 . x3 31 5
z’sinnxdr = ——-cosnx+ — | z°cosnxdx
n n
T

3 3 [x? . 2 )
= —"—cosnz+ — |—sinnr — = [ zsinnzdx
n nln n

x3 32

6 .
= ——COSTLJZ'+—281H7”L.I'——2/$Slnnl’dl’
n n n
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Now to our integral

T ™
/ (—7?2x2+27rx3—x4) sinnxdxr = —7r2/ 2% sin nzdx
0 0
x3 T 32 &
+ 27 |——cosnx +—251nnx
n 0 n 0
6 T
- = xsmnwdw}
n? Jo
x4 T A3 ™
— |—— cosnx +—251nnx
n 0o n 0
12 =

— 2% sin nxdx]
n2 Jo

The sine function vanishes at the end points and cos0 = 1 and cosnm = (—1)" so

" 12\ /=
/ (—W2332 + 27 — :1:4) sinnzdr = (—7?2 + —2> / 2% sin nxdx
0 n 0
1270 7 2 4
- —;T x sin nxdx — —7T7r3(_1)" + W_(_l)n
n 0 n n

- () ()

2 5 12 ™
+ —<—7r +—2>/ T cos nxdx
n n 0

127 7

—  sin nxdx
n? Jo

After evaluating the integrals, we get

n2 —2  for n odd

) 2 <24 27T2> { 0 for n even
—a,sinhnrt = — | — —
m \nd n

Thus for n odd, we have

8 (12 2)
a, = —————|(— —m
n?m sinhnm \n3

The solution is then

8 12
u(z,y) = Y, 55— (— - 7r2> sinhn(y — ) sinnx

2. o 3
net3, Nomsinhnr \n
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4 PDEs in Higher Dimensions

4.1 Introduction

4.2 Heat Flow in a Rectangular Domain

Problems
1. Solve the heat equation
ue(2, Y, t) = K (Uaw (2,4, 1) + tyy (7, 9, 1)),
on the rectangle 0 < x < L,0 < y < H subject to the initial condition
u(z,y,0) = flz,y),

and the boundary conditions

a.
U(O, Y, t) = ux(La Y, t) = 07
u(z,0,t) = u(z, H,t) = 0.
b.
uac(oa Y, t) = U(La Y, t) = 07
uy(z,0,t) = u,(z, H,t) = 0.
C.

u(0,y,t) =u(L,y,t) =0,
u(x,0,t) = uy(x, H,t) = 0.
2. Solve the heat equation on a rectangular box
O<z<LO0<y<HO<z<W,

w(x,y, 2,t) = k(Ugy + Uyy + usz),

subject to the boundary conditions
’U/(O’ y? Z? t) = u(L7 y’ Z? t) = 07

u(z,0,2,t) =u(x, H,z,t) =0,
u(x7 y’ 07 t) - u(x7 y7V[/)t) 07

and the initial condition
U(.T, Y, %, 0) = f(xa Y, Z)'
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YT = kYX"T + kXTY"

T X// y"
Iy
kT X + Y
. X Y
T AT =0 R W —
* X Y H
X"+ pX = Y'"+ (A= pY =

n— i n— 4
= X,, = sin ( LQ) x W = ( LQ) n
~Y, mr A (mwf 1,2
nm — sin —— nm — HMn = I n =1,z
I Y 2 H
2
1
)\ _ (n — 5) s
Tnm _ Anmkt
> = 1\ 7 mm
“Anmkt I WL L)
u(z,y,t g;anme sin (n 2) Lxsm 7 Y

o0 o0 1
fla,y) = u(z,y,0 g z: 4y Sin (n _ 5) %mn%y

mTm

B Iy f@ gy sin (n = ) Fasin 22y dady
N fOH fOL sin? (n — %) T sin? LEydrdy
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X, = cos (n _L%) s [y = (n _L%) ™
2
Yo = cos %x Aum = (n _L%) oo (%)2 n =
0,1, 2,

oo

—1 0o oo
u(z,y,t) = Y %ano o kAot g Mx—i— S S e FAmt ¢

L

=l m=1 n=1

B JE T f(x, y) cos (n — %) % x cos By dxdy

W o (r— 1) £ cot B ety

n =1

anm
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(n
oS —M——



u(w,y,t

G

nm

(m
sin &% z sin

—kAnmt o3

TLTI'

nm .
SIn — I SIn
L

)~

l\)l»—l

ydy dx

foL f({{ sin?

n
L

DT 1 sin

2

1
%ydydw
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2. up = k(U + Uyy + Us)
TXYZ = kT(X"YZ + XY"Z + XY Z")

T X Yy A

LA S
kT X+Y+Z
. X// Y// Z//
T+MI=0 “=-2- -2 _\=_
+ X Y  Z K
Y// Z//
X"+ puX = ———7—)\+,u:—u

Y+ Y =0
Y(0) = Y(H) =0

Z" + (X — v)Z =0

Lpme = Sin %z At = (%)2 + (%)2 + (%)2 0 =1,2 ---

inp ..onm omm AT
nmé smfxsm—ysm—z

H w

M]3
M]3

u(z,y, z,t) Z

n=1 m

Qpme €

1 ¢=1

Sy f(x y, z) sin %% x sin "y sin —zdzdydm
Anme = 2

foJot l"

n7r 2 mmw 2 4r
T sin® "y sin® 3 2 dz dy dx
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4.3 Vibrations of a rectangular Membrane

Problems
1. Solve the wave equation
U (7, Y, ) = & (g, Y, t) + uyy (7,9, 1)),
on the rectangle 0 < x < L,0 <y < H subject to the initial conditions
u(z,y,0) = f(z,y),

ut(xa Y, O) = g(:l:, y):

and the boundary conditions

a.
u(0,y,t) = u.(L,y,t) =0,
u(z,0,t) = u(z, H,t) = 0.
b.
u(0,y,t) =u(L,y,t) =0,
u(z,0,t) = u(zx, H,t) =0
C.

ux(O,y,t) = ’LL(L,y,t) = 07
uy(z,0,t) = u,(z, H,t) = 0.

2. Solve the wave equation on a rectangular box

O<zez<LO0<y< HO<z<W,

utt(xa Y, =z, t) = C2(“:m: + Uy + U/ZZ)7

subject to the boundary conditions
uw(0,y, z,t) =u(L,y,z,t) =0,

u(z,0,2,t) =u(x, H,z,t) =0,
u(x’ y’ 07 t) - u(x7 y7 W t) = 07

and the initial conditions
u(z,y,2,0) = f(z,y,2),

Ut(%ya 270) = g(x,y,z).
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3. Solve the wave equation on an isosceles right-angle triangle with side of length a
(2, y,t) = A (Uge + Uyy),

subject to the boundary conditions
u(z,0,t) = u(0,y,t) =0,

u(z,y,t) =0, on the line r+y=a

and the initial conditions
u(z,y,0) = f(z,y),

uy(,y,0) = g(z,y).
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Louy = & (Uge + Uyy)

TXY = AT (X"Y + XY")

T X// Y
= —)\
02T X + Y
.. X// Y//
T+MT =0 —=-%—-X=-
+ Ac % v "
X" 4+ pX = Y'"+ (A= pY =0

as in previous section

1
u(z,y,t z:: 2:21 {anm cosc\/ Apmt + bpm SIn c\/)\nmt} sin — 7

Initial Conditions
f(l', y) = U(ZE,y,O) = Z Z (pyp, SID ( 2) T sin mﬂ.y ylelds Apm
n=1 m=1 L H
foH foL f(z, y) sin (n - %) Txsin B ydx dy
Anm =
I' Jy sin ( — %) % 2 sin® %Xy dx dy
o0 o0 1
g9(z,y) = w(x, y,0) = > Y cy/Aum by sin (n — _)fx sin my
n=1 m=1 2 L H
L rH 4 (n—%) mm
; Iy Jo gz, y) sin 7= x sin "ty dy dx

e SEH sin? (n — ) Fasin® 2Ly dyde
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Yom = sin ZFy A = (”—;)2 + (%)2 m=12, -

nm .o mT

u(x,y,t) = Z Z {anm cos c\/ Apmt + by SIN c\/)\nmt} sin ng sin ?y

n=1 m=1

nm .o mT

[z, y) = z:: z::anmsinfxsm?y

— . nm . mm
9(z,y) = Z Z c\/ Anm b, SIND @ s —ry

Gpm 5 bpm in a similar fashion to part a.

ST f f(x, y) sin 0 @ sin Ty da dy

2m7r

ot Jy sin? 2 x sin® oy da dy

nm —

b fo fo g9(z, )Smmﬂ?smmydydx
" vV Anm fo 0 sm2ﬂ:1: sin? Iy dy dx
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c. see 1lbin 7.1

X,, = cos (n _L%) Wx My = (n _L%) i n=1,2,
2
Y,m = cos %y Am = (n _L%) i + (%)2 m =

s _ 1
u(z,y,t) = Z {anO cosc\/)th + by sin c\/)th} cos #

n=1

+ Z {anm cosc\/ Apmt + bpy sin Cw/)\nmt}cos(n%
m=1

n=1
f(z, y) yields ang, Gpm

g(x, y) yields bno, bum
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2. Since boundary conditions are the same as in 2 section 7.1

o0 (o0} o0 g
u(z,y,z,t) = Z Z Z {anmz coS c\/ Apmet + bpme SIN C\//\nmgt}sin n%x sin %y sin WW z

n=1 m=1 /=1

f(l‘7 Y, Z) y1€ldS Apme
Jo Jot Y (@, y, 2) sin 22 sin 22y sin 42 2 dz dy d

Apme — - -
. Jo St Sy sin® 2T sin® My sin® LT 2 dz dy da

g(z, y, z) yields byme

b . foL foH foW g(x, y, z )sm—x smmysm—zdzdydx
e N Dme J [ [ sin? AE z sin® Xy sin® %zdz dy dx
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3.
See the solution of Helmholtz equation (problem 2 in section 7.4)

Upm(z,y) = sinz(m—l—n)x sin zny — (=™ sinz(m+n)y sin “na
a a a a

7r
)\nm:— 2 2 , :1’2,-~-
a\/(m+n) +n n,m

The solution is similar to 1b

oo

uot) = 32 5 aun €05y At + b 50 ey Nt} Yuna.1)
n=1 m=1

Gnm > bpm 10 a similar fashion to la.
o = B T ) V) drdy

b fO Jo 9z, y)¢nm(x y) dy dx
" Cv )\nm fO fO nm('x y) dy dx
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4.4 Helmholtz Equation

Problems
1. Solve
V2 + Ao =0 [0,1] x [0,1/4]

subject to

¢(0,y) =0

¢x(1,y) =0

¢(z,0) =0

¢y(z,1/4) = 0.

Show that the results of the theorem are true.
2. Solve Helmholtz equation on an isosceles right-angle triangle with side of length a
Ugg + Uyy + Au =0,
subject to the boundary conditions
u(z,0,t) = u(0,y,t) =0,

u(z,y,t) =0, on the line T +y=a.
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1/4
¢=0 ¢,=0

Figure 33: Domain fro problem 1 of 7.4

1.
o(r, y) = XY

X"Y + XYY" + AXY =0

X" Y
X~ Ty o
X"+ pX = Y'+ A=Y =0
X(0) = X'(1) = 0 Y(0) = Y'(1/4) = 0
U Y
X, =sin(n — )7z Yom = sin(m — 3)4my
o = [(n = 3)n]’ M = [(n = D] + [(4m — 2) )’
n=1,2, m =1, 2,
pm = sin(n — 3) 7wz sin(4m — 2) 7y

Aom = [(n = 3)7]* + [4m — 2) @)? n,m=12, -
Infinite number of eigenvalues

A1 = in + 47?2 is the smallest.

There is no largest since \,,, — 00 as n, m increase
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Figure 34: Domain for problem 2 of 7.4

2.

The analysis is more involved when the equation is NOT separable in coordinates suitable
for the boundary. Only two nonseparable cases have been solved in detail, one for a boundary
which is an isosceles right triangle.

The function
umxr . UT

sin —y
a a

sin

is zero along the = and y part of the boundary but is not zero along the diagonal side.
However, the combination

vm
a

y F sin EXy sin o

sin 47 ¢ sin
a a

is zero along the diagonal if  and v are integers. (The + sign is taken when |y — v| is
even and the — sign when |y — v is odd).

The eigenfunctions
T T T T
Umn (2, y) = sin —(m + n)xz sin —ny — (—=1)™ sin — (m + n)y sin —nzx
a a a a
where m, n are positive integers.

The only thing we have to show is the boundary condition on the line z + y = a. To
show this, rotate by 7/4

1
if:%(f—ﬁ)
y=E+n)



sinz(m—l— 2n)§sinzmn — sin Z(m + 2n)nsin Zm¢ m =24, -
« a

wmn =

COSE(m + 2n)n COSEmf — cos T (m+2n){cosTmn m=1,3, -
a a

= Umn = 0 for £ = /2 whichisz + vy = a.

The eigenvalues are:

A = (%) (/(m + n)? + n?
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4.5 Vibrating Circular Membrane

Problems

1. Solve the heat equation
uy(r, 0,t) = kV2u, 0<r<a0<f<2mt>0
subject to the boundary condition
u(a,d,t) =0 (zero temperature on the boundary)
and the initial condition

u(r,0,0) = a(r, ).

2. Solve the wave equation
U (r,t) = (U + %ur),
ur(a,t) =0,
u(r,0) = a(r),
u(r,0) = 0.
Show the details.

3. Consult numerical analysis textbook to obtain the smallest eigenvalue of the above
problem.

4. Solve the wave equation

uy(r,0,t) — AV = 0, 0<r<a0<<2m,t>0
subject to the boundary condition
ur(a,0,t) =0
and the initial conditions
u(r,0,0) =0,

u(r,0,0) = [(r) cos bb.

5. Solve the wave equation
utt(r,Q,t)—c2V2u:0, 0<r<a0<6@<n/2,t>0
subject to the boundary conditions
u(a,0,t) =u(r,0,t) = u(r,m/2,t) =0 (zero displacement on the boundary)

and the initial conditions

u(r,0,0) = a(r, ),
u(r,0,0) = 0.
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1. uy = kV3u

0<r<a
u(a, 0,t) =0 0<60<2r
u(r,0,0) = a(r, d) t >0
TRO = kT [01(rRY + % RO"|
T 1 ., 1o
TR U Ee =
T+ kAT =0 %(TR’)’—F%:—)\TQ
%(TR’)’-F)WJ —% =
O +u0 =0 r(rR)Y + (M —p)R=0
©(0) =062 |R(0)] < o0
©'(0) = 0 (2n) R(a) =0
4 Y
fm = m? R, = Cim Jm (VAT) to satisfy | R(0)] < oo
sin m 6
O, = m =1, 2,
cos m 6
Rm(\/Xa) Cme(\/Xa) =0
po =0 ¢
©p =1

Anm  are solutions of I (\/X a) =0
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3 - L ey (Ao)
n=1 :90

m=0

o0

a(r, 0) = Z ano Jo (\/ Ano ) + Z (Gpm cOs MO + by sin mO) Iy (\V A7)
n=1

m=1 n=1

2T 19 oy (r, 0) Jo (v Ao ) rd rdd

0 = T R (o ) rd 6

A 29 (r, 0) cos MmO Jp (v Aum ) rdrdd
e 279 cos2 m O J2 (v Aum ) rdrdd
I oS a(r, 0) sin m0 Jy, (VA ) rdrdd

2T 9 sin® m @ J2 (v Aum ) rdrdd
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2. uy — (U + %ur)

ur(a,t) =0
u(r,0) = a(r)
ug (r, 0) = 0

. 1
TR— (R + -R)T =0

T R +.FR

2T R -

.. 1

T+ 22T =0 R+ ~-R +)MR =0
%,T_/

! (rR)Y + AR =0

-
multiply by r?

r(rR)Y + Ar*R =0

| R(0)| < oo

R'(a) =0

This is Bessel’s equation with 4 = 0
= R, (r) = Jo(\ A7)
where A, J) (v A, a) = 0

gives the eigenvalues A,

u(r,t) = Z {an COS \//\Tlct + b, sin C\/)Tnt} JO(\/)TRT)
n=1

amzi%mﬁm

o I a(r) Jo (VA1) rdr
Th Ids a,. = a, =
is yields a a 2 (o) rdr

0= wu(r,0) = Z C\/rnano(\/rnT) = b, =0
n=1
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4 uy — AV =0
u (a, 0,t) =0
u(r,d,0) =0

ug (r, 0,0) = B(r) cos 50

\
T+ 22T =0 0"+ u =0 r(rRY + Ar? — u)R =0
T0)=0 ©0) =062 |R(0)] < o0
©'(0) = 0 (2n) R'(a) =0
T = acos c\/ Ayt [}
+bsin eV t o = 0 Oy =1 R:Jn(\/xr)
Since T(0) = 0 R(a) = J,(VXa) - VA =0
=t O = { G0
\ \
T = sin cv Ay t Ao =0
or
T (VAma) = 0
m=12, -

foreachn = 0,1, 2, ---

oo o0

u(r,0,t) = Z Z { @pm cos N + by, sin nf} {Jn(\/)\nmr)} sin ¢/ Ay t

m=0 n=0

u (r, 0, 0) = Z Z { pm cos nO + by sin n @} J, (\/ Aum ™) €\ Aum €0S €/ A T
m=0 n=0 N————

=1 att=0

Since w(r,0,0) = B(r) cos 56 all sin n 6 term should vanish i.e. b, = 0 and all a,, = 0
except as (n = 5)

B(r) cos 50 = Z Asm €08 50 J5 (\/ A5 ) €A/ Asm

m=0
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This is a generalized Fourier series for 3(r)

\//\7 Jo B (1) J5 (/A ) dr
asm C 5m —
Jo JZ (/A5 ) rdr

u(r, 0, t) = Z A5 €08 50 J5 (\/ A5 1) sin ¢/ Mg t

m=0

where Mg, can be found from

\//\5m Jé (\/A5m CL) =0
and as,, from

_ Jo B (1) J5 (\/Asm ) rdr
cAsm Jo J2 (\/ Asm ) rdr

As5m
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5 uy — 2V2u =0
u(a, 0, t) =0
u(r, 0,t) = u(r,7/2,t) =0
T+ XAT =0 0"+ u =0 r(rRY + Ar? = u)R =0

00)=06(x/2)=0 |R(0)]| < oo

R(a) =0
\
fin = (2n)° Y
0, = sin 2n6 R(r) = Jop (VA2nmT)

n=12:- Jon (W A2mma) = 0m = 1,2, ---

u(r, 0, t) Z Z n Jon (W A2n,m ) sin 2n.6 cos ¢ /Aoy, m t

m=1 n=1 —
sinceut (r,60,0) =0

g(r, 8) = u(r, 6,0) Z Z n Jon (\/A2n,m T) sin 2n 6
W/Q Jon (\/A2n,mT) g ) sin 2n@rd0dr

amn
N/Q IS Jgn /A on.m ™) sin? 2n0rdrdo

113



4.6 Laplace’s Equation in a Circular Cylinder

Problems

1. Solve Laplace’s equation

1 1
—(rup ), + —uge + uz. =0, 0<r<a0<f<2r,0<z2< H
r r

subject to each of the boundary conditions

a.
u(r,0, H) = u(a,0,z) =0
b.
u(r,0,0) = u(r,0,H) =0
ur(a,0,z) =~(0,z2)
c.
u,(r,6,0) = a(r,0)
u(r,0, H) = u(a,0,2) =0
d.

u(r,0,0) = u,(r,0, H) =0
ur(av 0, Z) = 7('2)

2. Solve Laplace’s equation

1 1
—(rur)r—l——?ueg—i-uzzz(), 0<r<al0<f<m0<z<H
r r

subject to the boundary conditions

3. Find the solution to the following steady state heat conduction problem in a box
Vu =0, 0<z<L0<y<LO0<z<W,

subject to the boundary conditions
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)
Y0, r=0x=1L,

o=
ou
ay ) y 7y Y
u(z,y, W) =0,
3 4
u(z,y,0) =4 cos %x cos %y.

4. Find the solution to the following steady state heat conduction problem in a box

Vu =0, 0<z<L0<y<LO0<z<W,

subject to the boundary conditions

% =0, r=0,z=1L,
Z—Z =0, y=0,y=1L,
us(z,y, W) =0,
u,(z,y,0) =4 cos 3%3: cos %y.
5. Solve the heat equation inside a cylinder
%z%%(r%)Jr:—Q%Jr%, 0<r<a 0<0<2r,0<z< H

subject to the boundary conditions

u(r,8,0) = u(r,0, H) =0,

u(a,d,z,t) =0,
and the initial condition

u(r,0,2,0) = f(r,0,z).
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1
1. (T’ur),« + T—2U99 + uy,, =0
(a)
0"+ 10 =0 7" - \NZ =0 r(rR) + Ar* = p) R =0
©(0) =6 ((2mr) Z(H) =0 |R(0)] < o0
©(0) = 6'(2m) R(a) =0
J \
,U/()—O an:‘]m(\/)\nmr>
Oy 1 satisfies boundedness
Hm = m?
sin m 6
Om
cos m 6
I (VAnma) = 0
yields eigenvalues
m=12,--- [} n=12 ---

A > 0!

Znm = sinh /Ay (2 — H)

vanishes at z = H
u(r,0,z) = Z Z U €08 MO + by, sin m @) sinh \/ A (2 — H) Jp (W A 1)
m=0 n=1

T

This is zero for m = 0

a(r, 0) = i

Z (G €08 MO + by sin mO) sinh \/ A, (— H) Ty (VA7)
m=0 n=1

this is a constant

. J& 2 a(r, 0) cos m O Jpy (A ) 7d6 dr
" sinh g (— H) [& 2 cos? m 0 J2, (v Apm 1) Td0 drr
b — Jo 027r a(r, 0) sin m0 Jy, (v Apy 1) rd0 dr

sinh /A (— H) [& J27 sin? m 0 J2, (v/ Apm ) 7d6 dr
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1 b.

0" +u0 =0 Z" —\NZ =0 r(rR)Y + Ar: = p)R =0
Z(0) = Z(H) = 0 [ 72(0)] < o0
Y Y Y
Ly = > Zp = sin 5F 2z
sin m 6 )
On = M=~ ()
cos m
2
m=1,2,--- T(TR/),+<—<E> T2—m2>R
H
po = 0 T

extra minus sign

u(r,0,2z) = > > (anm cos mO + by, sin mo) sin %z I, (%

)
-
N———

ur(a, 0, 2) =v(0,2) = > Y (anm cos mb+ by, sin mb) sin nm_onTp (”_Wa>

m=0 n=1 H H m H
constant
W T (Ea) _ 3" S v (0, 2) cos m 6 sin LE 2 dzdf
" H ™\H 2m [ cos? m @ sin? o zdzdf

2” fOH v (0, z) cos m 8 sin 5F zdz d

Apm =
o (H
m[' (M ) o Jo cos2m951n nE zdzdf

027T foH v (0, z) sin m@ sin % z dz df
SR (m a) 7 S sin? mo sm2 LI 2 dzdf

bnm -
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O+ u0 =0

Solution as in la exactly !

But
u,(r,0,0) = a(r, ) = Y
m=0
A \/ Anm €Osh A/ A (—
"o alr

7" —\NZ =0 T(TR’)’+()\T2_M)R:O
Z(H) =0 |R(0)] < o
R(a) =0

(G €08 MO + by, sin m0) Ty (A A 7) A/ A cOsh A/ Ay (—H)

n=1

7 fea(r, 0) cos mO Jp (VA1) rdrdd
2T cos? m B J2 (VA ) rdrdf

0) cos m O Jp, (v Apm 1) rdrdl

flnm. = vV Anm cosh VA (—

H) [Z7 [& cos? m O J2 (v Apm 1) rdrdf

o Joa(r, 0) sin m 6 Jy (v Aum ) rdrdd

bnm
VAum cosh v/ A, (—H

) JZT [ sin? m 0 J2 (v Aam ) rdrdo
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1d.

" +pu0 =0 Z" —\NZ =0 rirRY + Ar* = p)R =0
I Z(0) = Z(H) =0 |R(0)] < oo
Y Y
as before M= = [(n— 1) 2]

X = . . 1N = 1\
u(r, 0, z) = Z Z (@pm €08 MO+ by, sin M) sin (n — 5) ﬁzfm ((n — §>ET)

m=0 n=1
0, Y 8 + bum sin m0) si ( 1) i ( 1) i
(a,0,2) = > > (apm cosm wm sinm) sin (n — 5}z (n—g)5

m=0 n=1 1
B ((n-3)
m n 2

Since u,(a,0,z) = v(z) is independent of 6, we must have no terms with € in the above
expansion, that is b,,, = 0 for all n, m and a,,, = 0 for all n,m > 1. Thus a;9 # 0

. m
1= s e 1 ()

H .
A Jo' v (2) sin 757 2 dz
U s (na J sin? & 2 dz
2H "0 \2H 0 2H

And the solution is

. s
u(r,0,z) = ayo sin QHZIO <2H >
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Z"+XZ =0 0"+ u® =0 r(rRY + Ar> = )R =0

Z0) =0 ©0)=06(r) =0 |R(0)] < o0

Z'(H) =0 \

Y

Z, = sin (n — %) & ©,, = sin m6 T(T’R/)/—{[(n — %) %}2 r? + m2} R
,Um:m2

wel-E mea w0y = 1o (=) 77)

n= -5 g m =1, 2, r)=In(ln-35) g7

n =1, 2,

009 5 B - ) ) omren o 1) 5

u(r, 0, z) = CmnIm (0 = 5 ) r)sinmbsin (n — o) 2

1IN =« 1

B0, z) = i i Conm I <<n - 5) ﬁa> sin m 6 sin (n — 5) T?

coefficient of expansion

I 36, 2) sin m 6 sin (n—% Z zdzdf

o = I, ((n - %) %a) JT 3 sin? m 6 sin? (n — 1) £zdzdf
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3. Upy + Uy + Uy, =0 BC: wu,(0,y,2) =0
uz (L, y, z) =0
uy (z, 0, 2) =0

uy (z, L, z) =0

3 4
u(z,y,0) = 4 cos %xcos %y
u(r,y, z) = X(@)Y(y)Z(2)
X// Y// Z//
TSI
X + Y + Z
X// Y// Z//
= T = — )\
X Y A
X"+ 2\X = 5
= = (%)
BC: X'(0) = X'(L) =0
X, = cos “Fuw n=20,1,2
Y// Z//
Y+ uY =0 5
= = ()
BC:Y'(0) =Y'(L) =0
Yo =cos Fy m=20,1,2-

Z" =N+ pwZ =20 e 2 e 2
L o= () ()] 2 -
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general solution

2
uw(z, y, 2 ZO z%) Ay cos %x cos mTy sinh \/(n;) + (T) (z = W)
2 2
u(z, y, 0 Zo Z% A €08 n%x cos %y sinh \/(TZT> + (%) 1174

But u(z,y,0) = 4 cos fx cos —y

Comparing coefficients

Apn = 0 form #4 orn # 3

F = 3 =1 — A h
orn = 3; m 43 sin 57 + 73

— Ays sinh %W =4

4
Ay = — ——F——
43 sinh‘%’rW
4 3 4 )
u(z, y, z) = —m cos %x cos %y smh%(z - W)
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4'uacac + U/yy + uzz = 0

123

uy($7 07 Z) =0

u(x, y,

u(z, y, 0)

L

= COS MfL‘

= COS My

47

7
= 4 cos— x cos — ¥

L

0,1,2 -

0,1,2 -



u(z, y, z) = Ao + Y, Amo cos %y cosh % (z — W)

m=1

+ Z Ap,, cos n%x cos cosh n%r (z — W)

n=1

o0

00 2 2
+ > > Ay cos %xcos%ycoshV(%) + (m) (z — W)

m=1 n=1 L

[e.o]

mm mm mm
u,(z,y,2) = Y — Apo cos — ysinh — (z — W)
2T L L

+ Z AOn cos n; x sinh n—; (z — W)
n=1

achG 2 mm 2 nm mm nm\?
+ Z Z\/( > (T) An COS Tzcos Tysmh \/<T)

m=1 n=1

Atz =0 uz(m,y,O):—ZAmo% cos%ysinh%w
;Aon—COS%J,‘Slnh%W
ii\/( )2 (m)214 CSE cosm 'h\/(m)2+(
2 7 mn CO8 —~ 7Y sin 7
3 4
But u,(z,y,0) = 4 cos%x Ccos %y

Comparing coefficients A,,, = 0 forn # 3 or m # 4
om om

Forn = 3 and m = 4 we have 4 = _TA43 sinh TW
4
Ap = —+——
43 —” sinh 5” w
Note that Agy is NOT specified.
4 3 4 5
u(x,y,z):Aoo—Wc gxcos%ycosh%(z—W)
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1 1

5 u; = ;(Tur)r + 7“_2u69 + Uy,

BC: u(r,0,0) =0
u(r,d, H) =0

u(a,0,z) =0

u(r, 0, z,t) = R(r)©(0)Z(2)T(t)

rozT = LezT(r
T

R + %RZT@” + ROTZ"

T l(?“ R/)/ 1 @// YAl
T R ez
Z// T/ 1 R// "
zn _ T GeR)Y 1o
Z T R r2 ©
7"+ \NZ =
BC: Z(0) = 0
Z(H) = 0
a2
Zn:sin%z
2
)\n:(%) n=1,2-
1O T 1ERY oy
20 T r R H
o 1", r(rRY) nm\% ,
e 7" TR +(ﬁ) Te
0"+ 0 =0

BC: ©(0) = ©(2m)

0'(0) = ©'(2n)

4
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Hm =
T  L(rRY (mr 2 m?
T~ R H 2 =Y
|T" + vT = 0]
%(TR/)/ N (mr)Q N m?
= —yU _ o

R H 72

r(rR')

2
= —vr? + <@> r? 4+ m?

R H

r(rR) — (v — (M)Q)T2R—m2R =0

H

BC: |R(0)] < o0

R(a) =0

nm\ 2
ané - Im( Vp — <F> T)

This solution satisfies the boundedness at the origin. The eigenvalues v, can be found by
using the second boundary condition:

nm\ 2
Since the function 7,,(z) vanishes only at zero for any m = 1,2, - - - (Ij is never zero) then
there is only one v (for any n) satisfying

nm\ 2
_ (¥ — 0 —1.9 ...
v (H) a m .2,

(%)
vV = |(—
H
mr)?t

The solution fot T"is T}, = e~ (5

The solution for R is I,,,(0-7) which is identically zero. This means that u(r, 6, z,t) = 0.
Physically, this is NOT surprising, since the problem has NO sources (homogeneous boundary
conditions and homogeneous PDE).
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4.7 Laplace’s equation in a sphere
Problems

1. Solve Laplace’s equation on the sphere

2 1 cot 6 1
Urr+;ur+ﬁu%+7ue+m“w:07 0<r<a 0<f<m 0<p<2m,

subject to the boundary condition

ur(aa 0, @) = f(0>

2. Solve Laplace’s equation on the half sphere

1 cot 8 1

2
urr+;ur+ﬁu09+7u0+mu¢¢:0, 0<r<a, 0<f<m O0<p<m,

subject to the boundary conditions

u(ga 0, @) = f(ea 30)7

u(r,0,0) = u(r,0,7) = 0.
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L. ’LL(?", 97 90) = Z An(]?"npn (COS QO)

n=0

oo o0

+ D > "B (cos @) (App €08 My 4 By sin mp)

n=0 m=1

(7.7.37)

Uy (av 07 90) = f(e) =

= > nAya* " P,(cos 6)

n=0

+ > > na" "t P (cos 0) (Apm cos mp + By, sin m)

n=0 m=1

v Jo f(8) P, (cos ) sin 6 dO

Apna™! =
orna Jo P2 (cos ) sin 6 df
a1 A — ST 2™ £(0) P (cos 6) cos m g sin 0 dp df
" N 02” [P (cos 6) cos mp]? sin 6 dp df
a1 B — [T [2™ £(0) P (cos 6) sin m o sin 6 dyp df
o I 02” [P (cos 6) sin m p]? sin 0 dp df
. JT JZT £(0) P (cos 6) cos m @ sin 0 dp df

nat [ 02” [P™ (cos ) cos mpl]? sin 0 dy df

ST JE £(0) P (cos 6) sin m @ sin 0 dp df

Bpm =
nar=1 [T [27[Pm (cos 6) sin m ]2 sin 0 dip df
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= u(r,0,0) => > 1" P"(cosb) A,y sin me

e equation

|

R equation
u(a, 0, p) = f(0, p) = Z Z " Ay P (cos 6) sin m g
Jo Jo f(8, ) P (cos 0) sin mp sin 0 df de
—_———

av A, = area elem.

J5 Jo (P (cos 0))2 sin® m o sin 0 df dyp

I Jo f(8, 9) P™(cos 6) sin m sin 6 df dyp
—

_ area elem.
Anm -

am 5 f5 (P (cos 6))2 sin® m ¢ sin 0df dy

(r, 0, ¢) = > > r"P"(cos 0) Ay sin m

n=0 m=1
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3. The equation becomes
1
qu—l-COtHUQ—l-,—QQuW,:O, 0<f<m0<ep<2m
sin

Using separation of variables

1

sin’ @

O"® + cot HO'P + 0P =0

Divide by ®© and multiply by sin?# we have

@// @/ (b//
sin? 6’5 —|—cos€sin06 =—3 —H

Thus
" + pd =0
sin? 00" + sinf cos Q" — 1O = 0
Because of periodicity, the ® equation has solutions
sin - mey m=1,2, ...

d,, =
cos mep

@0:1
o = M* m=0,1,2, ...

Substituting these u's in the © equation, we get (7.7.21) with a; = 0. The solution of the
© equation is thus given by (7.7.27) - (7.7.28) with oy = 0.
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5 Separation of Variables-Nonhomogeneous Problems

5.1 Inhomogeneous Boundary Conditions

Problems

1. For each of the following problems obtain the function w(x,t) that satisfies the boundary
conditions and obtain the PDE

: wp(z,t) = kg, (x,t) + x, O<z<lL
u.(0,t) =1,
u(L,t) =t
b.
up(z,t) = kg, (x,t) + x, O<z<L
u(0,t) =1,
ug(L,t) =
c.
wp(z,t) = kg, (x,t) + x, O<z<lL
ug(0,t) =t,
uy(L,t) = t*

2. Same as problem 1 for the wave equation
utt—CQum:xt, O<ax< L

subject to each of the boundary conditions

a.

u(0,t) =1 u(L,t) =1t
b.

u,(0,t) =t uy(L,t) =t
C.

u(0,t) =0 u.(L,t) =t
d.

u,(0,) =0 ug(L,t) =1
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la. u,(0,¢) =1
u(L,t) =t
w(z, t) = A(t)r + B(t)
1= w,(0,t) = Alt) = A(t) =1

t =w(l,t) = A(t)L + B(t) = B(t)=t—-1L

b. w = Az + B
1 =w(0,t) = B(t)
1 = w,(L, t) = A(t)
w=x+1
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c. wy(0,t) =t
we(L, t) = ¢
try w = A(t)x + B
w, = A(t) and we can not satisfy the 2 conditions.
try w = A(t)2* + B(t)=x
w, = 2A(t)z + B(t)
t = w,(0,t) = B(t)
2 = wy(L, t) = 2A(t)L + B(t) = A(t) = £=¢

2L
=t
F oty
w = xz X
2L

v, + (2t221x2 + x) = k(vgp + t2L_t) +

2t — 1
v = kvgy — —— 2% —z + k

+x

ot — 1 2 —t
33'2

vy = kvg, —
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2 _ .
cw =5t ot as in lc
1..2
Wit — ZZ'
2 —t
wacac - L

L
Uy — Py = — 7T + c“QT’t + at
w(0,t) =0 wy(L, t) =t

w = Ar + B w, = A
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A(t) =
1 2
w = ﬁl‘
wtt:(] wm:%

v =u+w

vy — 2 (vm + %) =t

2 C
Utt_CUm:—i-——i—xt
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5.2 Method of Eigenfunction Expansions

Problems

1. Solve the heat equation

subject to the initial condition

and each of the boundary conditions

a.

2. Solve the heat equation

subject to the initial condition

and the boundary condition

Uy = kumx +z,

Up = Ugy T € 7,

u(z,0) = cos 2z,

u(z,0) = z(L — x)

O<z<L

u.(0,t) =1,
u(L,t) =t.
u(0,t) =1,
u(L,t) =1
ug(0,t) =t,
ugy(L,t) = t*
t O<z<m t>0,
O<z<m,

uz(0,t) = uy(m,t) = 0.
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1. w = kugy + x

u(z, 0) = (L — x)

a. uz(0,t) =1
= w=x+1t—-L
u(L,t) =t
Solve v, = kvy, — 1 + 2 (see la last section)
v,(0, ) =0 v(x,0) =2(L —z) —(z — L) =(x+ 1)t — x)
v(L,t) =0
2
eigenvalues: [(n — %) ﬂ n=12---
eigenfunctions : cos(n — 3)Tw n=12---
v—iv (t)cos<n—1> i
ot " 2) L
oo I\ 7 J& (=1 + z) cos (n—%)%xdw
—1+x:ancos<n——)—x = |Sp = 7
n=1 2/ L Jo~ cos? (n - %) Txdr

O AR (B HIBECS

n=1

> 1\
+Z sncos<n—§> Zm

n=1
Compare coefficients

bu(t) + b ((n— )

2
)vn:sn

B

2 t ™12
Uy = vn(O)e_[(”_i) Tk Sn/ el(n=2) F1 k=7 gp
0

see(s. 2. 39)

v,(0) = coefficients of expansion of (1 + z) (L — x)

2

L 2 S N s
Jo~ cos (n 2) Tadr

B J& (1 + 2) (L — x)cos (n - l) Tadr

n, (

uUu=v+w
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1b. u(0,t) = u, (L, t) =1
sw=ux+1

UV = KUggy + T

v(0,t) =0
ve (L t) =1
v(z,0) =x(L —z) — (z + 1)
2
eigenvalues: [(n — %) ﬂ n=1,2,
eigenfunctions: sin (n — %) T n =1, 2,
> wtysin (n— 1) 7
v = vp(t) sin (n — = | —x
= 2) L
1IN 7 Jo x sin n—%)%xdw
x ansm(n—i)— Sn = —T 3 N
Jo sin (n — 5) Trdr

n=1

(-

1)1
3) 7

vn(t) = v,(0) e ln=3) FPkt Sp L e(

vn(0) = fo[ (L — z) — (2x + 1)]1sinﬂ<n _ 5) x
fo S (n - 5) Trdx

T

Coefficients of expansion of initial condition for v

Uu=v+w
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w = tggzth + itz
Ut:kvm—Tx2_x+k .

00, ) = w(L,t) =0 = A =(%) n

Lol 21,2 2t nmT
_fo{ o o0+ k L}COSLxdx

Sp(t
0 foL cos? nL—ﬂIdx

on(t) = va(0) e CE) 4 Jo $a(7) k() -1 g

1 00
v(z, t) = zvo(t) + > va(t) cos 2N
2 n=1 L
(0) Ji' @ (L — ) cos "Tade
vn(0) =
Jo cos? = rdr
—or Bty
Y
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2. U = Uy, + €7t

O<zx<m, t>0
u(z, 0) = cos 2z O<z<m
ug (0, ) = ug (m,t) =0

Since the boundary conditions are homogeneous we can immediately expand u(z, t), the
right hand side and the initial temperature distribution in terms of the eigenfunctions. These
eigenfunctions are

¢n = COS Nx

n=1
by initial condition
un(0) =0 n # 2
=
¢ > 1
et =) s,(t) cos nx + §So(t)

n=1

Jo et cosnedr et [ cos nxdx
sn(t) = =

Jo cos? nxdx Jo© cos? nx dx

for n # 0 the numerator is zero !!

For n = 0 both integrals yields the same value, thus
so(t) = et

$p(t) =0, n#0

Now substitute wu;, u,, from the expansions for u:

1 o o0 1 o
iuo(t) + ) n(t) cos nz = > (—n?) un(t) cos nz + iso(t) + > su(t) cos nx
n=1 n=1 n=1
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Forn =0
n #0 U, + nlu, =0
Solve the ODES

U, = Cp e un,(0) =0

Uy = —et 4+ 00 Uo(O) =0

u(z,t) =1 —e ' + e cos 2

= Ch—1=0
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5.3 Forced Vibrations

Problems
1. Consider a vibrating string with time dependent forcing
Uy — gy = S(2,t), 0O<z<lL
subject to the initial conditions
u(x,()) = f(l'),
ug(x,0) =0,
and the boundary conditions
u(0,t) = u(L,t) = 0.
a.  Solve the initial value problem.
b.  Solve the initial value problem if S(z,t) = coswt. For what values of w does resonance
occur?

2. Consider the following damped wave equation

Ut — gy + Buy = coswt, O<z<m,

subject to the initial conditions
u(x,()) = f(l'),
ug(x,0) =0,

and the boundary conditions
u(0,t) = u(m,t) =0.

Solve the problem if 3 is small (0 < § < 2¢).

3. Solve the following

Uy — gy = S(2,1), O<z<lL

subject to the initial conditions
U(ZL‘,O) = f(l‘),
ug(x,0) =0,

and each of the following boundary conditions
a.

u(0,t) = A(t) u(L,t) = B(t)
b.

u(0,t) =0 uz(L,t) =0

C.

u.(0,t) = A(t) u(L,t) = 0.
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4. Solve the wave equation

Ut — CPUgy = T, O<z<L,

subject to the initial conditions
u(z,0) =sinz

uy(z,0) =0
and each of the boundary conditions
a.
u(0,t) =1,
u(L,t) =t
b.
ug(0,t) =t,
uy(L,t) = t*
C.
u(0,t) =0,
ug(L,t) =t
d.
u.(0,t) =0,
ug(L,t) =1
5. Solve the wave equation
utt_ul’l’:l) O<I<L,
subject to the initial conditions
u(z,0) = f(z)

ut(xv O) = g(l‘)

and the boundary conditions
u(0,t) =1,

uz (L, t) = B(t).
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la. uy — g = S(x, t)

u(0,t) = u(L,t) =0

u(z, t) = i Un(t) on()

n=1,2--

Jy f(z) sin 2 2 dx

fOL sin? e

un(0) = ¢ = since u(z,0) = f(z)

xdx

U,(0) = cac™™ = 0 since w(x,0) =0 = ¢ =0

Z{c cos L et + L /tS(T)SiDCE(t—T)dT}SiHEl‘
L o " L L

— cnm

c1 is given above.
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b. If S = cos wt

L -
cos wt [y sin

nm
L

x dx

Sp(t) =
®) fOL sin? e

where A,, =

[e.e]
u(z, t) = Y e cos
n=1

x dx

= A, cos wt

L -
Jo' sin 2T xdx

L

. .
Jy’ sin® %% x dx

a

nTwc L

t +

c. Resonance occurs when

cnm

nmc

¢
A, / cos wT sin (t — 7)dr
0

This integral can be computed

— nm —
w=c* foranyn =1,2, -
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2. Uy — CPUgy + Bus = cos wt

n=12:-

t) = Y un(t) sin nx
n=1

coswt = Y s,(t) sin nx

__ cos wt foﬂ sin nx dz .
sp (t) = T ede A, cos wt

o o0
Z i, + *n*u, + B,) sin ny = Z Sp(t) sin nx
n=1

3
Il
—

(*) iy, + By + A nPu, = s,(t) = A, cos wt
For the homogeneous:

— 2 _ C2n2
Let u, = e (W? + Bp+ An*) =0 u:—ﬁivi &

For B < 2c¢, 3 — 4c?n?> < 0 = complex conjugate roots

VAR 2y 4 oy sin Y220 "2> o~ (B/2)t

Uy = (01 cos

T

Solution for homogeneous.

Because of damping factor e~ (32t there should not be a problem of resonance. We must
find a particular solution for inhomogeneous.

ul = B, coswt + C, sin wt
U, = —B,wsinwt + C,,w cos wt

i, = — B, w?cos wt — C,w? sin wt
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Substitute in (*) and compare coefficients of cos wt

—B,w? + BC,w + *n*B, = A,
Compare coefficients of sin wt

—C,w? — B,w+C, =0

2.2 9
Colfw+ (1 —w?)} = A,
=D,

C, =

Bn _ An (17’11}2)

D, w
P _ ﬂ(l_“ﬁ) An g
U, = H*—p— coswt + 7= sinwt| where

2n? — w?
D, = — (1 — w? A, =
fw + w ( w) I sin? nx dx

Therefore the general solution of the inhomogeneous is

Jy sin nxdx

Uy = 2

(01 Cos 7”40232_’6215 + 9 sin Vicn? -5 t) e~ (B/2)8) 4 % 1-w?
n w

coswt + g

sin wt

(**) u(z, t) = i un,(t) sin nx

n=1

w(z, t) = Y U,(t) sin nz
n=1

Un(t) = (c1 cos rt + ¢y sin rt) (—g) e 5t (—rcy sin rt 4 rey cos rt) e /2

_ An — 2 1 An
(1 — w?) sinwt + 5w cos wt

/4c2 n2 — [62

where r = 5
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u(z, 0) = 0 = Z {cl <—§> + reg + D—w} sin nz = 0
n=1

n

= —01§+r02+é—:w:0 (#)

u(z, 0) = f(z) = u,(0) are Fourier coefficients of f(x)

1y (0) = (q LAl w2> _J5 f(@) sin nade

D, w I sin? nx dx

=  we have ¢;

Use ¢; in (#) to get ¢z and the solution is in (**) with u,, at top of page.
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3. Uy — g, = S(xt)
u(z, 0) = f(x)
w(z, 0) = 0
a. u(0,t) = A(t)

u(L,t) = B(t) = w=oaz+pf

B = At)
oL + 3 =08
o = Bzﬁ

w — B(t)ZA(t)x+A(t)

Wy = 0 Wy = “ZAx—l—A'

vV=UuU—w
uUu=v+w

Uy — gy = S, t) — wy = S(a, t)

u(z, 0) = flz) — 2OZAO 5 A(0) = F(x)

v(xz,0) =0 — wy(x,0) =0 — Mw — A(0) = G()
v(0,t) =0
v(L,t) =0
Solve the homogeneous

2
= ()

n=1,2--

¢n = sin Bz
v(z, t) = > v,(t) sin —x

n=1 L

L & .
. > . nmw S(z, t) sin 2 x dx
Sz, t) = Sp(t) sin —x  ,  |s,(t 0 ’ L
&) n§=:1 ©) L Q JE sin® 2%z dx




2
Uy, + (CZ“) Uy = Sp
v, (0) coefficient of expanding F'(x)

0,(0) coefficient of expanding G(x)

cnm e CNT t sin 2% (t—1)
Un = €1 o8 Lt+£2,81n Lt—l—fosn(T)%nde
1 1
0
v (0) WO e 8.3.12-13)
L
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u (L, t) =0 = Homogeneous.

L

n =1, 2,

S (n - Y
u =Y uy(t)sin x

n=1 L

S (n - Y
S =) su(t) sin 7 x

n=1

un,(0) coefficients of f(z)

co = 0 (since uy = 0)
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U =0+ w
Uy — Pugy = S(a, t) — A(t) (x — L) = S (x, t)
v(z,0) = flz) = A0)(z — L) = F(z)

v(z,0) =0 — A(0)(x — L) = G(x)

continue as in b.
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4&. U — C2 Upye = xt

u(z, 0) = sin z

ur(z, 0) = 0

u(0,t) =1 P

= w(z, t) = r+ 1w = —
u(L,t) =t
wtt—O
Uy — Vg = at
2

v(0,t) = v(L,t) =0 = )\n:(%) ¢ = sin BT x n=12---

v(z, 0) = sin x — (—% + 1)

v(z,0) =0 — 7

nim

) = f:l v (t) sin 77

L 1 nm
Jo ot sin *F v dx

xt = i Sp(t) sin BT = s,(t) = 2
n=1 L Jo' sin® 2 xdx
Lo I : n7r
Lonm Jo (sinz + £ — 1) sin **xde
smx+——1 v,(0) sin — = 0,(0) =
nz::l ! L (0) Iy sm2 “Exdy

s m S Ry

> 0n(0) sin ——w 0,(0) = — 7L L

n=1 L Jo' sin® == v dw

¢ : _
— U, = €1 COS C\/Apt + cosin e/ A\, t + / 5n(7) sin c\/)\n)\(t T) ir
0 CcA\/ n

v,(0) = ¢
9,(0) = cacV/A,

continue as in 3b.
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b. uy — uy, = ot

u(z, 0) = sin x

u(z, 0) = 0
(0, 1) =t 2 —t 2% — 1
= w(z, t) = 57 z° + tx W= 57 7’
u (L, t) = t*
z? t* —t
Wyt = Wye =
tt L L

L
v(z, 0) = sin since w(z,0) =0
vi(2,0) =0 — 2 + &
v(z, t) = —vo(t) + D va(t) cos %x
n=1
s(x,t) = =so(t) + Y su(t) cos n%x
n=1

1 L 2 t?—t
= s,(t) = vt — = 4+ ¢ )cosmxdx n=20,1,2,---

1 o
sin z = ~vp(0) + > v,(0) cos i
2 P L

L -
Jo' sin x cos 2 x dx

L
= w0 = Jy cos? 2Z xdx

n=01,2---

2

x 1. > . nm
—T+ 57 = 51}0(0) + nz::l 0,(0) cos -
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The solution of the ODE for n = 0 is obtained by integration twice and using the initial
conditions

wl(t) = /Ot </O5 sO(T)dT> de + vo(0) + t(0)

n n t sinc™ (t — 1
anCncosc—WthDnSiHC—ﬂt‘i‘/ $n(T) L )
L L 0 T

dr

t sin &% (t — 71
sin C?zﬂt +/ Sn(T) Al >d7'
0

cnT

L

Lin (0
val(t) = v(0) cos Czﬂt L0

cnm

Now that we have all the coefficients in the expansion of v, recall that u = v + w.
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C. utt — C2 uacac e xt
u(z, 0) = sin z

Ut(l', O) =0

u(0,t) =0
=  w(z, t) = at; wy = x
ug (L, t) =t

wy = 0 Wy, =0
w(:z:,O) =0 wt(xao) =T

v(z, 0) = —x
> —1/2
v(z, t) = D v,(t) sin (n—1/ )Wx
n=1 L
> (n—1/2)m & at sin C22T 4 gy
xt = Sp(t) sin x = S,lt) =
n§=:1 ®) L Q & sin? ("72/2)” xdx
. > . (n—=1/2)7 JiE sin @ sin C=AT 4 g
v(x,0) = sin x = v,(0) sin ——x = ,(0) =
(2,0) 3 60 H 0 = e e
>, . (n—=1/2)7 ' — JF xsin %xdx
v(x,0) = —x = U,(0) sin ——«x v,(0) =
(00) = =2 = 3 in(0) sin 0 = e g

/ N t in cyvA\, (t —
= v, = €1 COS c\/A\,t + ¢c9 8in ¢ )\nt+/ Sn(T) sin ¢ n)\( 7') dr
0 cA/ n

v,(0) = &1

0,(0) = cocv/ A

continue as in 3b.
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d. uy — Auy, = xt

u(z, 0) = sin x

ur(z, 0) = 0
ux(O, t) =0 1'2
= w(x,t):ﬁ; wy =0
u (L, t) =1
wy = 0 Wee =
22
Thus w(zx,0) = 5 we(x,0) = 0
2 c?
vtt—cvm:xt—i—z
———

s(x,t)

v(0,t) = v (L, t) =0 = An = ("”)2 ¢n = cos

2L
ve(z, 0) = 0
v(z, t) = —vo(t) + D va(t) cos ™
2 = L
1 > nm
s(x,t) = =so(t) + > su(t) cos —x
2 o L
1 [ ? nm
. - - —=0.1.2.---
= su(t) 7 ) <:I:t + L) cos — xdx n=20,1,2,
x? 1 > nm
v(x,0) = sin x — °F = 21)0(0) + nz::l v,(0) cos -
1 L x? nm
_ - nr — — - —0.1.2.---
= v,(0) L/o (smx 2L> cos — xdx n=20,1,2,
. nm
v(2,0) = 0 = =99(0) + > 0,(0) cos 7 0,(0) = 0
n=1
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The solution of the ODE for n = 0 is obtained by integration twice and using the initial

conditions
wl(t) = /Ot </O5 SO(T)dT> de + vy(0)

n n ¢ sin ¢ t—1T1
anCncosc—WthDnSiHC—ﬂt‘i‘/ $n(T) L )dT
L L 0 cT

v,(0) = C,

0,(0) =0 = D,e™ =D, =0

¢ in am (4 _
vn(t) = v,(0) cos DT+ Sn(T) sin 7 =~ 7) d
L 0 =

T

Now that we have all the coefficients in the expansion of v, recall that u = v + w.
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D, Uy — Ugy = 1
u(z, 0) = f(x)
uy(z, 0) = g(x)

g
—~
=

~
~—

I

1
} = w(z, t) = xB(t) + 1; w, = zB(t)
B(t)

S
8
—~
i

~
~—

I

Wy = xé(t) Wey = 0
w(z,0) = zB(0) + 1 wy(x,0) = zB(0)

L L
> —1/2
v(z, t) = D v,(t) sin (n=1/ )Wx
n=1 L
> —1/2
S(z,t) = ) su(t) sin (n L/ )Wx
n=1
N t) L S(a,t) sin = 1/2 T xdr
sp(t) =
[F sin? 2= 1/2 T xdx
e _(n—1/2)x J& F(z) sin @A 4 gy
F(x) = Up(0) sin ———=x = v,(0) =
(@) = 3 0) H L e
> . (n—=1/2)7 . fOL G(z) sin (n— 1/2 T xdr
G(xr) = U,(0) sin ———x = 0,(0) =
) nz::l ® L © JiE sin? M:pdz

¢ in v\, (t —
= v, = €1 oS \/ At + cosin /A, t + / Sn(T) S \/)\L 7) dr
0 n

v,(0) = ¢
Un(O) = CQ\/)\_n

continue as in 3b.
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5.4 Poisson’s Equation
5.4.1 Homogeneous Boundary Conditions

5.4.2 Inhomogeneous Boundary Conditions

Problems
1. Solve

Vu = S(x,y), 0<z<L, O<y<H,
a.

Use a Fourier sine series in y.

b.
u(0,y) =0 u(L,y)=1

u(z,0) =u(x,H) =0
Hint: Do NOT reduce to homogeneous boundary conditions.

| uz(0,y) = u,(L,y) =0
Uy (2,0) = uy(z, H) =0

In what situations are there solutions?
2. Solve the following Poisson’s equation
Viu = e*sinz, O<zx<m O<y<l,

u(0,y) = u(m,y) =0,
u(z,0) =0,

u(z, L) = f(x).
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l.a. V2u = s(z, y)
u(0,y) = u(L, y) =0
u(r,0) = u(z, H) =0 = sin Ty

Use a Fourier sine series in y (we can also use a Fourier sine series in = or a double Fourier
sine series, because of the boundary conditions)

u(z, y) = > uy(z) sin 22y
n=1 H

S(z,y) = Y sn(z) sin 2T
n=1 H

Uyy Uz

() — (%)2 up(z) = 8, ()

Boundary conditions are coming from u(0, y) = w(L, y) = 0

S u,(0)sin -y =0 = u,(0) =0
n=1 H

u, (L) sin %y =0 = wu,(L)=0
n=1
" :Sinhn_J(L_”’)/x inh "™ ¢4
sinh 57 x L .. nT
n h— (L — &)d
“ox gy nzp, J, S8 st g (L= O dS

Let’s check by using (*)

un(0) = 1°" term the integral is zero since limits are same

2" term the numerator is zero = sinh 20
un(L) =  1°" term the numerator sinh 5% (L — L) = 0

2" term the integral is zero since limits of integration are the same.
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_ _—7cosh"—;(L—x)/m L sinh 2% (L — x) op T
= i aEr o SO sh St T e salw) sinh T
integrand at upper limit
‘g cosh TFa L ., nm sinh 57 x a7
n h— (L=&)d —Sp h —— ([, —

integrand at lower limit

Let’s add the second and fourth terms up

_m Sp () < sinh nﬁﬂ (L — x) sinh %m — sinh %m sinh % (L — x)
=0
nm 2 3 h nTm L nm nm
i, = (_F) sinh 7 (L — ) /xs (f)sinhmﬁdf%—_F COShF(L_x)S(x)sinhEx
" —~5F sinh %% L o —~2F sinh %% L "

(%)2Sin “rroL © 'hnW(L &) de &F cosh &F x (x) sinh (L )
+ NT o nm Sn s ——-— - + nr - nn —Sp\T) SInn —— — T

—=F sinh 57 L Ja H —5F sinh 5F L
Let’s add the second and fourth terms up
#@%L sinh%x cosh nﬁﬂ (L — x) + cosh %x sinh % (L — x)p = su(x)

=sinh 5% (z — (L —z)) =sinh 57 L

2
The integral terms in i, are exactly (%) u,, and thus the ODE is satisfied.
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b. VZu = S(z, y)
w®,9) =0 w(l,y) =1

nm

u(r,0) = u(z, H) = 0 = sin Ty

Use a Fourier sine series in y

u(z, y) = Z up, () sin n—ﬂy
n=1 H

S, y) = 3 sn(x) sin =y
n=1 H

Boundary conditions are coming from u(0, y) = 0 u(L,y) =1
S un(0) sin oy =0 = u,(0) = 0
n=1 H

1 H
un(L)sin%yzl = un(L):ﬁ/O 1-sinn§ydy

n=1
4
= u,(L) = — for n odd and 0 for n even. (see (5.8.1)

For n even the solution is as in la (since u,(L) = 0)

For n odd, how would the solution change?

4
Let w, = ——=x, then @, = 0
nmL
Let v, = u, — w, then v,(0) = 0 and v,,(L) = u,(L) — w,(L) = 0
and
" H " H) nrnlL "
This is the s, to be used in (*) in la
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C.

Viu = S(z, y)
uz (0, y) = 0 ug(L,y) =0 = cos Fux
uy(z,0) = uy(z, H) = 0 = cos %y
Use a double Fourier cosine series
mm

u(z, y) = D) Upm COS %x co8 — Yy

n=0m=0

S(z,y) = D> Spum cos BT & cos My
n=0m=0 L H

_ Jo' o Sz, y) cos Ty cos Exdr dy

2 mmw 2 nmw
Jo' Jo© cos? BEy cos? B wdx dy

5 S [(F) () e oo = stew

2 2
~tnm {(7) + (%) } = Snm
Substituing for s,,,, we get the unknowns wu,,,
AL S(x, y) cos By cos BE g da dy
0o Jo H L
2 2
[(”—L”) + (%) }ff fOL cos? "y cos? “E xdx dy

Upm =

What if A, = 07 (i.e. n = m = 0)
Then we cannot divide by A,,, but in this case we have zero on the left
= fy' i S(x, y)dedy = 0

This is typical of Neumann boundary conditions.
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2. V?u = e¥ sinx

u(0,y) =0 u(r,y) =0 = sinnzx
u(@, 0) =0 ulz, L) = f(z)
Use a Fourier sine series in

u(z, y) = D uy(y) sin nx
n=1

S(x, y) is already in a Fourier sine series in z with the coefficients s;(y) = €* and all
the other coefficients are zero.

x x
Z —n?u, sin nx + i, sin nz y = Z Sp(x) sin nx
n=1 n=1

Uz Uyy

in(y) —nuu(y) =0  forn#1
i (y) — w(y) = e®

Boundary conditions are coming from u(z, 0) = 0 u(z, L) = f(x)

Y uy(0)sinnz =0 = u,(0) =0
n=1

> un(L)sinnz = f(z) = un(L) = z/ f(x) sinnw dr
n=1 0
The solution of the ODEs is
1
ui(y) = ger + aqsinhy + B coshy
——

particular solution
and

un(y) = apsinhny + [, coshny n#1
. 1 1
Since u1(0) = 0 we have 3 + 6 =0 =0 = ~3
Since u,(0) = 0 we have 8, = 0 n#1
1

1
Using (L) we have 3 e*r + a; sinh L — 3 cosh L = wuy(L). This gives a value for oy

ui(L) + 3coshL — et
sinh L

a1 =

Using u, (L) we get a vlaue for ay,
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U, (L)

n — 1
@ sinh nL n#

Now we can write the solution

Un (L )
sinh nL

1 1 >
u(z,y) = (a1 sinhy — gcoshy + §€2L> sinx + E ( sinhny) sin nx
n=2

with o as above.

166



5.4.3 One Dimensional Boundary Value Problems

Problems

1. Find the eigenvalues and corresponding eigenfunctions in each of the following boundary

value problems.

(a) Y = XNy=0 O0<z<a Y0 =1y(a) =0
(b) ' = XNy=0 0<zxz<a y0) =0 yla=1
(c) v+ Ny =0 0<z<a y(0) = ¢'(a) =0
(d) v+ XNy=0 0<z<a y0)=1 y(a=0

2. Find the eigenfunctions of the following boundary value problem.
Y + XNy =0 0<ax<2r y0)=y2r) ¥(0) =y 2nr)
3. Obtain the eigenvalues and eigenfunctions of the problem.
V' +y +A+1l)y=0 O0<z<7m y0) =ylx)=0
4. Obtain the orthonormal set of eigenfunctions for the problem.
(a) Yy + Ay =0 O<z<m y'(0) =0 y(r) =0
)

(b) v+ (1+Ny=0 O0<zxz<nm y0) =0 ym =0
(c) y' + Ay =0 —T<xz<T y(—m) =0 ¢'(m) =0
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la.

case 1: A =10

implies y = Ax + B.
Using the boundary conditions, we get y'(x) = A = 0. Thus the solution in this case is

y()=B

case 2: A # 0
The solution is
y = Ae + Be ™

or

y = C'cosh Az + D sinh \z

To use the boundary conditions we need

y'(r) = CAsinh Az + DX cosh \x

The condition y'(0) = 0 implies AD = 0 and since in this case A # 0, we have D = 0.
Now apply the other boundary condition
AC'sinh A\a = 0
This implies C' = 0 which yield the trivial solution

nmi
or sinh Aa = 0 which means Aa = n7i. So A = — and the eingenvalues \? are
a

2
e (2)
a

sinh nmi = sin n, n # 0

with eigenfunctions
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1b.
Y — Ny = O<z<a

y(0) =0, yla) =1
case 1: A =10
y// — 0

implies y = Ax + B.

1
Using the boundary conditions, we get y(0) = B =0, and y(a) = Aa+ B =1,0r A = —.
a

Thus the solution in this case is

y(z) = aflf

case 2: A # 0

The solution is
y = Ae + Be

or

y = C'cosh Az + D sinh Az
The first boundary condition gives C' = 0. Now apply the other boundary condition

Dsinh da =1

1
- . The problem is when Aa = nmi (causing the denominator to
sinh A\a

nmi
vanish). So for any \ # " the eigenfunctions
a

This implies D =

(z) = sinh \x
A sinh \a

lc.
y'+Xy =0 O<z<a

y(0) =0,  ¥(a) =0

The eigenvalues and eigenfunctions are
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1d.
' +Xy =0 O<z<a

y(0) =1,  y(a) =0
case 1: A =10

y”ZO

implies y = Ax + B.
Using the boundary conditions, we get y(0) = B = 1, and y'(a) = A = 0. Thus the
solution in this case is
y(r) = B

case 2: X # 0
The solution is
y = Ccos Az + Dsin Az

The first boundary condition gives C' = 1. Now apply the other boundary condition

—Asin A\a + ADcos ) a =0

Suppose sin Aa # 0, then this implies D = tan Aa (since A # 0).
The eigenfunctions are

1
y(x) = cos Az + tan Aasin Az, where sin Aa # 0, X # (n + 5)1
a

The last condition ensures tan Aa # 0.
When cos Aa = 0 or A = (n+ 3)Z the eigenfunctions

1
y(x) = cos(n + i)zx clearly sin Aa # 0 in this case
a
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Y+ Xy =0 0<x<2rm
y(0) = y(27)
y'(0) = ¢'(2m)

The eigenvalues
A=n,n=01,2 ...

The eigenfunctions

v +y+N+1)y =0 O<z<m

y(0) = y(m) =0
Try y = e#*, then
PHp+A+1=0

The characteristic values p are then

—144/1—4(A+1)
5 .

ILL =
There are 3 possible cases.
case 1: 1 —4(A+ 1) > 0, then we have two real p.
1 1
Hi=—5+7 peg=—5 =T

2 2
1—4A+1)

where r = 5 .
The solution is y(r) = e™*/2 (A" + Be™™).
Now use the boundary conditions to get a system of two equations for A, B.
A+B=0
A"+ Be " =0

The determinat must be zero to get a nontrivial solution, i.e.

or
sinhrm = 0

This implies rm = nmi, or r = ni. In terms of \, we have

1—4(A+1)
2

= (n1)
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The eigenfunctions are then

y = 2B sinhnix = 2B sinnx

case 2: 1 —4(A+ 1) = 0, then we have two real identical pu.

1

M1=M2=—§

y(z) = e **(Az + B)
The first boundary condition gives B = 0. The second boundary condition gives Awe~™/2 = 0
or A = 0. Thus the soultion is trivial in this case.

case 3: 1 —4(A+ 1) < 0, then we have two complex conjugate .
1 1

fo = =5 8 pr = —5 = st
AA+1)—1
2
The solution is y(x) = e~*/2 (A cos sx + Bsin sx).

Now use the boundary conditions to get a system of two equations for A, B.

where s =

A=0
e P2Bginst =0

Clearly B # 0 to get a nontrivial solution, thus sinsm = 0 or sm = nm, i.e. s =n. In
terms of A\, we have

4A+1)—1
9 =n
AN+ 1) =4n* +1

_ 4An? -3

An

The eigenfunctions are then
y=Bsinnz,n=1,2,...
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4a.
' +dy =0 O<az<nm

y'(0) =0  y(n) =

1 2

1
cos(n + E)x

To get orthonormal set, we need to divide by the normalization factor,

u 1
llynll = \// Cos2(n+§)xdx = \/7/2
0
The normalized eigenfunctions are

cos(n + 3)x

/2

4b.
Y +(1+Ny =0 O<z<m
y(0) =0  y(7r) =0

Let p =1+ A, then
Yn = SINNT

,Un:n2

or
A\, =n2—1

The normalization factor is the same as before.
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4c.
v '+ Ay =0 —T<zr<Tm

y(=m) =0 y(r) =0
case 1: A =0, the solution is y = Ax + B

The boundary conditions give A = 0
The solution is then y = B for A = 0.

case 2: A < 0, the solution is trivial

case 3: A > 0, the solution is y = A cos vV Az + Bsin vV z
Differentiate and use the boundary conditions, we get

VA(=Asin VAr + Bcos Var) =0
VA(Asin VAt + Bcos Var) = 0

To solve the homogeneous system (we can drop the factor v/ since it is not zero), we must
have the determinat equals zero

— sin \/X?T CcoS \/XW — 0
sin \/Xﬂ' CcoS \/XW N

—2sin VA cos VAT = 0
If cos v Am = 0, then

1
An:(n—§)2, n=12,...
and the system is
AsinvVAr =0
or
A=0

and B is any value since it doesn’t show in the system. Thus the eigenfunction is
1
BsinVAz = Bsin(n — a)x
If sin VAm = 0, then

M=n’n=12,...

and the system is
Bcos VAT =0

or
B=0

and A is any value since it doesn’t show in the system. Thus the eigenfunction is

AcosVx = Acosnx
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In summary
=0 y=2D

n=(n—2)? y:Bsin(n—i)x

Now normalize each.
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6 Classification and Characteristics

6.1 Physical Classification
6.2 Classification of Linear Second Order PDEs

Problems

1. Classify each of the following as hyperbolic, parabolic or elliptic at every point (z, y) of
the domain

T Ugy + Uy = 22

T Uy — 20y Ugyy + YUy, = €7

€ Uy + YUy = 1

Uy + Ugy — Uy, = 0 in the left half plane (z < 0)
T Uy + 20YUsy + YUy + YUz + YPu, =0

Uy + 2Uy, =0 (Tricomi equation)

o0 T

2. Classify each of the following constant coefficient equations

Mgy + DUy + Uyy + Uy + Uy = 2

Uy + Ugy + Uyy + Uy = 0

gy + 10Uy, + 3uy, =0

Uggy + 2Ugy + 3tUyy + duy + Suy +u = e*
2Upy — gy + 2uyy +3u =0

Ugg + DUgy + 4Uyy + Tuy = sinw

o0 T

3. Use any symbolic manipulator (e.g. MACSYMA or MATHEMATICA) to prove (6.1.19).
This means that a transformation does NOT change the type of the PDE.
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B =0 C =1 A = —Ax
hyperbolic  for x < 0
parabolic xr =0
elliptic x>0

A =0 parabolic

Q
I
@1\3

B = 2zy

A = —4e%eY elliptic

Il
e
@

B =
B = C = —x A =14+ 4z

PN

hyperbolic 0>z > —

=

parabolic x

=

C =y’ A =0 parabolic
B =0 C=x AN = —4dx
hyperbolic x <0
parabolic xr =0

elliptic x>0
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10

Discriminant

25-16 >0

1-4<0

100 - 36 > 0

4-12<0

16-16 =0

25-16 >0

hyperbolic

elliptic

hyperbolic

elliptic

parabolic

hyperbolic
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3. We substitute for A*, B*, C* given by (6.1.12)-(6.1.14) in A*.

A* = (B*)? —4A*C"

[2A&m: + B (&any + &) + 2CEm,)° —

4[AE + B&.g, + CE2| [An2 + Buny + O]
AAPEN? + AAE N, B (&any + &) + 8AENCEyny
B (&my + &yma)” + 4B (&amy + &) Céyny
ACPEmT — AA’En? — 4AEBn,n, — 4AECY,

— AB&E AN — ABEEynen, — ABEE,C)

- 4C§§A77§ - 4C§;anny — 4025377;.

-

Collect terms to find

A" = 4ABEn.ny + 4ABELNT + BACEE nn,
BX(E2n2 4 26,6 many + E02)

ABCELn, + ABCyny &) — 4ABEM, 1,
— 4ACEm; — AABEEmE — AB*EE e,

— ABC&Em: — 4ACE N2 — ABCE n,n,

A* —4AC (5%775 - 2€x§y77x77y + 5;”%)

+ 32 (53775 - 2§x§ynxny + 5737];3)
= J2A,

since J = (&:1y — EyM)-
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6.3 Canonical Forms

Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for
each

T Uy + Uy = 2

Uz + Ugy — TUyy =0 (x <0, ally)

T2 Uy + 2TYUyy + y2uyy + zyu, + y2uy =0
Ugg + TUyy = 0

Uz + y2uyy =Y

Sin® Ty, + sin 22y, + cos? ru,, =

o0 T

2. Use Maple to plot the families of characteristic curves for each of the above.

w

. Classify the following PDEs:
(a) 0%u N 0%u N ou y
a) — 4+ —+ — = —
o2 0x2 Oz
0w Pu  Ou

) 5z ~ 520y Ty

4. Find the characteristics of each of the following PDEs:
()82u+362u +262u 0
a =
ox? 0x0y 0y?
2 2 2
(b)f)u_Qc?u +8u _
ox? oxdy  0y?

(S8

. Obtain the canonical form for the following elliptic PDEs:
( )(92u+ 0u +82u 0
a =
or?  Oxdy  Oy?
0%u 0%u Pu Ou
b -2 5 — =0
(b) ox? 0x0y + oy? + dy

6. Transform the following parabolic PDEs to canonical form:
(a) 0u 6 0*u +982u N ou

a p— —_—
0x? 0xdy oy?  Ox

0u Pu  Pu  _Ou  _Ou 0

(b) 927 +28x8y+3y2 +7%_88_y =

Yy _
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la.

2
TUgy + Uyy = T

A=z B =0 Cc =1
If z > 0 then A < 0 elliptic

=0 = ( parabolic

<0 > 0 hyperbolic
characteristic equation

@ B + v —4x B +v/—x

dx 2x T

Suppose < 0 (hyperbolic)

Let z = —x (then z > 0)

then dz = —dx

and

dy _ dy _ EVE_ 1

dz dx —z \/z
dz

y = £2z +c
yF2Vz=c

characteristic curves: y F 22z = ¢
2 families as expected.

Transformation: £ = y — 2+/z

n=y+2yz
Upy = Uge & + gy Ex Mo + Uny 1o + Ug Epw + Uy N
§o =& 2 = —&

1

§. = —2(%21/2) = —% = & = ﬁ

181

A = B? — 4AC = —4x



m :2<_Z_1/2> - s =
2 NE NE
£y21

nyzl

bre = (Ea)o = (%) = (%) % = - (—%23/2) -

Now = (M) = (—%)x = (‘%) o = T <% 2_3/2> B 22_3}2

fxy = fyy = Ney = Nyy = 0

1 2 1 1 1
Ugz = ;UES - ;ufn + ;“nn + 93/2 Ue = 9:3/2 Un

2 2
Uyy = U § +2Uey &y 1y + Upy 1, +ug Sy Uy Ty

=1 =1 =0 =0
= Uge + 2ugy + Upy
Substitute in the equation

1 2 1 1 1

\x/{;uff 7 Yen + ~ Unn + 5,372 e — W“n} T Uge + gy + Uy, =

—z

1

—Uge + gy — Upy — 2172

221/2

2

4u§n - z

1 1
—2\/3% + —2\/5’&77 =
The last step is to get rid of z

¢ —n = —4y/z (using the transformation)

2 4

4
2 2 n—f)
gy — —— e + w, = [1—=
R S R < 4

N jzﬁ:n—é;/z:(n—é)
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For the elliptic case x > 0

dy _ i
dr — /x

d
dy:j:i—x

Nz
y = +i2y/rdr + ¢
£ =y —2iVz
n=y -2V

1
a=gE+n =y

1
525(5—77):—2\/5

7
Ugy = Uga &i + 2uaﬂ Oy, ﬂx + Ugp Bg + Ug Qgr + (%] Bxx
Uyy = Uaa 0432; + 2uap oy By + ugp 52 + U Oty + Ug By,

ay =05 ay =15 0z =y =0

1 1
Br= =2 ST = —am 2 B = 03 B = 527 By = 0

1
gy = ugg(—2"?)? + ug (5517_3/2)
Uyy = Uaa

1
xlugs - 7t + §u§$3/2:| + U = 2°

-1/2 ug = 72

1
usg + Uqa T 51‘
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Again, substitute for x:
—-2/x = f3

1
= V1 = ~3 6

2
= ="
T 4ﬂ

11 1 ,\2
uaa+u55+——1u5:(—ﬂ>
2 —1p 4

1 1
Ugo + Ugp = Buﬁ+1—654

For the parabolic case = 0 the equation becomes:
0 Upp + uy, =0

o

which is already in a canonical form

This parabolic case can be solved. Integrate with respect to y holding = fixed (the
constant of integration may depend on )

Integrate again:

u(z, y) =y flz) + g(x)
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1b. Upy + Upy — TUy, = 0

A=1 B =1 C =—zx
A =1+ 4z > 0 if x > —i hyperbolic
=0 = —i parabolic
<o <1 ellpti
dy 1+V1+da
dx 2

Consider the hyperbolic case:
2dy = (1 £ V1 + 4x)dzx

Integrate to get characteristics

2 1
2y =z + - - — (14 42)’? + ¢
3 4
1 3/2
2y—xq26(1+4x) =c

1 3/2
5:2y—x—6(1+4x)

1 3/2
77:2y—x+6(1+4x)
fo=—1—>-2 .41+ 4)"? = -1 -1+ 4z
bow = —= (1 + 42)7V? . 4 = —2(1 4 4a)7Y/?
£y22 gyy:O §xy:0

1 3
m:—1+6-§-4(1+4x)1/2:—1+\/1+4x
New = +2(1 + 4x)~1/2

y = 2 Ney = 0 Ny = 0
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Now we can compute the new coefficients or compute each of the derivative in the equa-
tion. We chose the latter.

Uge = tge(=1 = V1 + 42)* + 2ugy (=1 — V1 + 42)(=1 + V1 + 4x)

+tgy (=1 + VI + 40)° + ue[-2(1 + 42)7%] + w, [2(1 + 4a)7'/?]

= uee[l + 2V1 + 4z + 1+ 42] + 2ug,(1 — (1 + 42))

Fupn[l — 2vV1 + 4z + 1 + 4a] — 2(1 + 42) Y2 ue 4+ 2(1 + 42)" %,

Ugy = 2uge (=1 — VI + 4w) + ugy [2(=1 = V1 + 42) + 2(=1 + V1 + 42)]
gy 2(=1 + V1 + dx)

Uyy = duge + 2ugy - 4 + Uy, - 4

= Ugy + Ugy — TUyy =

Uge [2 + 4o 4+ 2V1 + da] + 2ug, (—4x) + wyy (2 + 42 — 2V/1 + 4a)

—2(1 + 4z) Ve + 2(1 + 4x)" 2w,

+2uge (1 — V1 + 4x) + uey (—4) + 2wy, (-1 + V1 + 4z) —

Az (uge + 2uey + Uyy) =
2+4r+2V1+4r —2 —2V1 +4x — 4x) uge + (—8x — 4 — 8x)ugy,

+ (2442 — 2T+ 42 — 2 — 21 + 4z — 4x) upyy — 2(1 + 42)7Y2 (ue — u,) = 0

—4 (1 +42)ue, — 2(1 + 42)7Y% (ue — uy) = 0
1
ey + 201+ 422 (ug — ) = 0
Now find (1 + 4x)7%/2 in terms of ¢, i and substitute
1 3/2
5—77:—5(1+41’)

3(n — &) = (1 + 4a)*?

(1 + 42)72 = 3(n — ¢!

1
Uen = —m(us — Uy)
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1
Uen = m(un — )

The parabolic case is easier, the only characteristic is

1
=1+ K
) 2$
and so the transformation is |
§=y— §$
n=x

The last equation is an arbitrary function and one should check the Jacobian. The details
are left to the reader. One can easily show that

A*=B"=0
Also

cr=1

and the rest of the coefficients are zero. Therefore the equation is

Upy =0
In the elliptic case, one can use the transformation z = —(1+44xz) so that the characteristic
equation becomes
dy 1£4/z
de 2

or if we eliminate the x dependence

dy dyde — 11+2

dz drdz 4 2

Now integrate, and take the real and imaginary part to be the functions £ and n. The rest
is left for the reader.
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lc.

22 Uy + 20y Uy + y2uyy + TYyu, + yQUy =0
A = 2? B = 2zy C = y?

A = 42%y* — 422 y?* = 0 parabolic

dy  2zy y
dx 202 x

E=Iny—Inx = g:gn(g)jes:g
X

x
n=ux arbitrarily chosen since this is parabolic

—1 1 1
g:vZT fy:§ fmx:? gwyzo

Ne =1 77y=77m:77xy=77yy=0

1 1 1
Uoa = ~ 5 Uee + 2“517(_5) + Upy + 22 e
1 1
Uzy = T2y Uge + Usng
1 1
Uyy = —= Uee — — U
vy yQ §¢ yg 3

Uuge — 2Tugy + 1 Upy + ug — g + 20Ugy + Uge — Ug

1 1
xy(-; ug + uy,) + y2(§ ug) = 0

% Uyy + YU, = 0

Uy = — € Uy y =e*x therefore y/z = €*

This equation can be solved.
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1d. Upe + zuy, = 0

A=1 B =0 C =z
A = —4dx > 0 if x < 0 hyperbolic
=0 xr = 0 parabolic
<0 x > 0 elliptic
Parabolic = = 0 = Uz, = 0 already in canonical form

Hyperbolic x <0 Let (= —=x
A =4 > 0

d 2
—y—:lz%zzzlzc Note: dx = —d(

dr
dy = +/¢ (—d¢)
y + %C?’” =c
B 2 5/
§=y+ 3C

_ 23/2
n=y 3C

Continue as in example in class (See 1a)
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le. umx—i-yQuyy:y
A=1 B =0 C =y

A = —4y* <0 ellipticify # 0

For y = 0 the equation is parabolic and it is in canonical form u,, =

dy +v/—4y?

:7::i:-
dx 2 i
d
Y~ tide
Yy
Iny = +ix + ¢
¢ =lny + iz
n =lny —
1
a =Iny a; =0 ay = —
Yy
0= G, =1 By =0
Uy = Ug By + Ug Oy = Ug
Uy = Uy — + U [y = —Uq
Yy
Use = (Ug)a = upg
<1> N 1( ) 1 n 1
Uyy = | — Uq —\Ua)y = =5 Ua — Uaa
Y \y/, y y? y?

= + y? ( ! + ! )
Ugp Yy - Uy — Uaa =Y
y? y?

uaa+uﬁﬂ_ua:y

But y = e

«

=  Uga + Ugp — Uy = €
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1f.

sin? zu,, + sin 2z Ugy + cos? TUyy = T

A = sin’z B = sin 2z = 2sin x cos x C = cos’zx

A = 0 parabolic

dy 2sin x cos x
o = T a2 = cot x
dx 2sin“ x
y =1Insinzx + ¢
=y —Insinz &, = —cotuw § =1
n=y Ne = 0 ny =1
Uy = —cot xug + uyn, = —cot T ug
Uy = Ug + Uy
1 2
Upy = (—coOt TUe), = oz + cot” wuge
Upy = —cot z (ug)y, = — cot = (uge + ugy)

Uyy = Uge + 2ugy + Uyy

2
COs™ X
L.H. S = u +sin’x

SlIl2 i

uge + 2 sin @ cos x (—cot z)(uge + ugy)

+ cos” @ (uge + 2ugy + Upy)
L.H S = COS2ZL‘U777] + ug

Therefore the equation becomes:

congcum7 +u =z
Insinez =y —&=n-—¢
sinz =" ¢ = cosfx =1-—sinfz=1—¢2"9

x = arcsin €77 ¢

1 —e2=9u,, + ue = arcsin e"~¢
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2a.

y+2y/z=¢ z>0
eq: y+2x*sqrt(z) =
-

char:=solve (eq,y);

chars:=seq (char, c= -5..5);

plot ( {chars},z =0..10,y = —5..5);

«—— maple command to give the equation

maple command to solve for y

+«—— maple command to create several characteristic
curves for a variety of ¢’s.

+—— maple command to plot all those curves

Figure 35:

Maple plot of characteristics for 6.2 2a

Figure 36:

Maple plot of characteristics for 6.2 2a
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2b.

1 1
yzixiﬁ(l—kllx)?’p—kc

14+42 >0

4o > —1

T > —.25

Figure 37: Maple plot of characteristics for 6.2 2b

Figure 38: Maple plot of characteristics for 6.2 2b
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2c.

In

In y

]|

= ¢ parabolic

zet = kx

“

Figure 39: Maple plot of characteristics for 6.2 2¢
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2
2d. y £ §z3/2 =c

o
\
y
P
L 23
2
A \
N\ \

Figure 40: Maple plot of characteristics for 6.2 2d

A/
¥
2
/
o ¥

Figure 41: Maple plot of characteristics for 6.2 2d
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2e. elliptic. no real characteristic

2f. y =Insinz 4 ¢

A
A
7N

Figure 42: Maple plot of characteristics for 6.2 2f
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g g Lu Pu Ou
02 T o2 T or

A=1, B=0, C=1.
The discriminant A = 02 —4-1-1 = —4 <0
Therefore the problem is elliptic.

L P O o
C T 02 Oxdy Oy

A=1, B=-1, C=0.

The discriminant A = (=1)2—4-1-0 = 1> 0
Therefore the problem is hyperbolic.
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0*u 0%u 0*u
3 2 =0
ox? * 0x0y + oy?

4. a.

A=1 B=3, C=2.

The discriminant A = 32-4-1-2 =9-8 =1>0
Therefore the problem is hyperbolic.
The characteristic equation is

dy BEvVA 3+1
de 24 2
The first equation is
dy
-2 —_9
dx
and the second is
dy ]
de
Integrating, we get
y=2zx+C
and
y=x+D

Both characteristic families are straight lines.

0%u Pu Pu
ox? oxdy  0y?

4. b. 0

A=1,B=-2 C=1.

The discriminant A = (=2)2—4-1-1=4—-4 =0
Therefore the problem is parabolic.
The characteristic equation is

dy BEVA -2 .
de 24 2

Integrating, we get

y=—x+C

The characteristic family is straight lines.
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0%u N 0%u N Pu
ox2  Oxdy Oy

5. a. 0

A=1,B=1C=1.

The discriminant A = 12 —-4-1-1 =1—-4 = —-3<0
Therefore the problem is elliptic.
The characteristic equation is

dy  BEVA 1+iV3
de 24 2

The solutions are

1 3
yzixiigx—i-(]

The transformation is

1

= —lx—l—iﬁx
T=Yy-5 9

In elliptic problems we use another transformation (to stay with real functions)
a=y——-r
Y73
V3
=—u
g 2
Since these are linear functions, we only need the first partials

1
Oy = —=, oy =1

PO

ﬁ:v - 77 ﬁy =0
Use the formulae for A*, B* etc with « for £ and 3 for n, we have
1 1 3
A*:l,__Q 1-(=2)-1 1.12:_

B* =0 as should be for elliptic

3
*:A*:_
¢ 4

The rest are zero (since they were zero and the transformation is linear)
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Thus the canonical form is

— (Uga + uﬁﬂ) =0

or

Uaa T+ Ugg = 0
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0%u 0%u Pu Ou
-2 +5 + =
ox? 0x0y oy? Oy
A=1,B=-2 C=5 D=0, E=1, F=G =0.

The discriminant A = (=2)*> —4-1-5=4-20 = —16 <0

Therefore the problem is elliptic.
The characteristic equation is

5. b. =0

dy BEVA —2+4i

— 142
dz 24 2 e

The solutions are

y=—-x+t2ix+C

The transformation is
E=y+z+2x
n=y+x—2x
In elliptic problems we use another transformation (to stay with real functions)
a=y+ux
0 =2x
Since these are linear functions, we only need the first partials
o, =1, ay =1
ﬁ:v = 27 ﬁy =0
Use the formulae for A*, B* etc with a for £ and 3 for n, we have

A*=1-1"-2-1-145-1*=1-2+5=4
B* =0 as should be for elliptic

Cr=A"=14
D'=1-1=1
E*=1-0=0

Fr=G"=0

Thus the canonical form is
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or

4 (Uae + upg) + o =0

Uge T Upp = _Zua
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0%u 0*u v Ou
6.a. — —6 9 e =1
& or? 0x0y + oy? * or ¢

A=1,B=—-6,C=9, D=1, E=F=0, G=1+¢".
The discriminant A = (=6)> —4-1-9 = 36 —36 = 0

Therefore the problem is parabolic.
The characteristic equation is

dy BxVA -6 5
de 24 2
The solution is
y=-3xr+C
The transformation is
E=y+ 3

n =y arbitrary for parabolic

Since these are linear functions, we only need the first partials
éax = 37 gy =1

Ne =0, n, =1

Note that the Jacobian of the transformation is NOT zero.
Use the formulae for A*, B* etc, we have

A*=1-9-6-3-149-1=0

B* =0 as should be for parabolic
C*=0-04+9=9

D*=1-3=3
E*=0
F*=0

G"=1+¢e"

Need to substitute for z,y into G*.
Note that from the transformation y =7 and 3z =& — 7, so

G* =1 4 M&=m/3
Thus the canonical form is

1 1
Uy + U =g (1 + e”@’”)/r’)
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82u+282u+82u+@ @—O
ox? oxdy  0y? ox oy

A=1,B=2 C=1, D=7 FE=-8 F=G=0.
The discriminant A = 22 —4-1-1 =4—-4 =0

Therefore the problem is parabolic.
The characteristic equation is

6. b.

dy BEVA 2

il Z -1
dx 2A 2
The solution is
y=x+C
The transformation is
{=y—z

n =y arbitrary for parabolic

Since these are linear functions, we only need the first partials
éax - _17 gy =1

e =0, ny, =1

Note that the Jacobian of the transformation is NOT zero.
Use the formulae for A*, B* etc, we have

A*=0
B* =0 as should be for parabolic
C*"=040+1=1
D'=7-(-1)—8-1=-15
E*=-8-1=-8
F*=0
G"=0

Thus the canonical form is

Upy — 1dug — 8u,y =0
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6.4 Equations with Constant Coefficients

Problems

1. Find the characteristic equation, characteristic curves and obtain a canonical form for

Mgy + DUy + Uyy + Uy + Uy = 2

Uy + Ugy + Uyy + Uy = 0

gy + 10ugy + 3uyy, = v+ 1

Ugg + 2Ugy + 3tUyy + 4uy + Suy +u = €*
2Upy — gy + 2uy, +3u =0

Ugg + OUgy + 4Uyy + Tu, = sinw

D Q0 o

2. Use Maple to plot the families of characteristic curves for each of the above.
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la. 4ugz, + Sugy + Uy + up + uy = 2

A=1
B =5
C =1

A =5 —4.4-1=25-16=9 >0  hyperbolic

d 5+ V9 5+ 314
dy _5EVO_5E3

de — 2-4 8

1
dy = dx dyzzdx

1
y=x+c y:Z:L’ch

1
uy = ue (—1) + w, (_Z>
Uy = Ug + 1+ uy - 1

1 25 5
duge + 2uey + Zunn —dUge — Zufn_ Zunn+ Uge + 2Ugy + Uy

1
—u§—1un—|—u§—|—un =2

All wge, uy, and ug terms cancel out

9 3
—ZUEW + Zun = 2
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Uen = %un - %
This equation can be solved as follows:
Let v = u, then ue, = vg
v =tv -3
This is Linear 1% order ODE
, 1 8
Vo — —v = — =
9
Integrating factor is e3¢
,lf r_ 8 ,lé
ve 3%) = ——¢e’3
(e by = — ¢
8 8
ve 3¢ = — 2 e’%édf = —e*%§+0(77)
9 3
v=2=2+4C(nest
To find u we integrate with respect to 7
8
tn = 3 + Cn) e
8 1
u=n+es c1(n) +K(¢)
3 ——

integral of C'(n)

To check the solution, we differentiate it and substitute in the canonical form:

1 1
ug = 0+ gefer (n) + K'(€)



N 1 8+
— U, = —
3 9

Substitute in the PDE in canonical form

In terms of original variables u(z,y) = $(y — 12) + e3 =) ¢y (y — 1) + K (y— )
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1b. Upy + Upy + Uy + up = 0

A=1 B =1 =1 A=1—-4=-3<0 elliptic
@_11\/—3
dr 2
2dy = (1 £ V/3i)dx
€ =2y — (1 4+ V3i)x n =2y — (1 - V3iz
1
a=g5E+n=2-u
1
525(5—77)2—\/%
1
ay, = —1 oy = 2 Oy = 0 Ozy = 0 Qyy = 0
5x:_\/§ ﬁy:O ﬁxwzo ﬁxyzo ﬁyyzo

Una + 2unpg (—1) (—\/5) + ugs + 3 + Uaa(—2) + Uup (—2\/5) +4Upy — Uy — \/§Ug =0

Uzy

SUga + 3Ugg — Uq — \/gug =0

1 3
Ugo + Ugs = gua + %uﬂ'
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le. Bugy + 10uUpy + 3uyy = ¢ + 1
A=C=3 B =10 A =100 — 36 = 64 > 0 hyperbolic

dy 10£8 /73

dr 6 N1/

1
E=y— 3z =Y - 37
£x2—3 fyzl gwxzo gxy:() gyy:()

7]a:=_§ ny:]- nacac:O nfcyzo nyy:O

3 <u§§ (=3)* + 2ugn (—3) (_%) + U (_%)2>

+10 (ugg(—3) + Ugq <_3 - %) + Uy <_%>>

+3(uge + 2ugy + Uyy) = w + 1

1 _
= — =X
n Yy 3
§—n=—3
3
x—g(n—ﬁ)
64 3
ugn:_5£1)2(77_£)_6_34
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To Find the general solution !

9 3
ugn = — 55 (1= &) = &=
9 1 3
ug = — 512(277 =18 = g+ f(E)
9 1
u = 512(2 é——fn)——n§+F(§)+G(n)
9

= o SEE M) — e+ F () + G ()

u(@, y) = 10924 <y N %HC) ly = 32) (%x N 3x> _6_34 < N %HC) ly = 32)

+ F(y — 3x) +G(y—%m)

zﬁ-%gw@—%x) (y—3w)—6—i<y—%x) (y — 3z) + F(y — 3x)
+G (y — 5x)
u(x, y) = (—Eggx - 6_?21) (y — %x)(y —3z)+ F(y — 3z) + G (y—%x)
check !
we =~ (y = 30)(y — 30) + (~osw — ) (~3) (v — 30)
(e ) (v 50) (9 - 3w =30 -5 (v )
Y= (_%8 634> (y=3v)+ (_Egsx B 6_34> (y_%x)JrF/(y_BxHG/ (y_%x)
o = = (=3 ) (0 = 30) + T (= 39) + (—gt — =) — 5 (-0 (v — )
- (_%) (y_ %x> _3(_%)(_%33 a 634> O+ GH
e = 52 (y = 30) F (5= 32) +2(~roox — 2) +OF(y = 30) + 5C"(y — 50)
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3 3 3 3 1 3 3

1
= 2 (=33 =3 (g — 2y m L (y—Zp) — = (g — 2
Uy s W =32 = 3017 — 1) g W37 5 (g ~ 6

14 ]' 1! 1
=3 (y - 32) — 3G (y — 3o)

3 3 3 3 1

_ 22 22 a2l _ 3 G//(__)

UYyy TR T IR At L y—3*

3 27 1 3 3 1
Uy + 10Uyy + 3uy, = — (y — 32) + — (y—zx) + 6 (——x — —) + 27TF" + 3 G"

64 64 3 128 64

30 15 1 100 / 3 3 10
- _3 _ _ _ o . _30F//__G/l
g W =37 — g (v —37) — 3 < 128" 64) 3

3 3
- . F// 1!
+0 < 128" 64> + 357 + 3G
12 12 1 64 3 3
BT AR A e S P T
9 1 1
= —r — —v+ -z +1 =z +1

16 16 2

checks
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1d. uge + 2ugy + 3uyy + 4u, + Suy + u = €*

A=1 B =2 C =3 A=4-12=-8<0 elliptic

@:L V_8:1:|:2'\/§
dx 2

y=(1+ivV2)z+C

E=y—(1+iV2)z

n=y—(1-iV2z

a=y—=x

= V2 spo L

’ v

o, = —1 oy, =1 gy = Qlgy = Quy = 0

Bx:_\/i ﬂyzo ﬁ:m:ﬁxy:ﬂyy:o
uaa(—1)2 + 2uaﬁ : \/5 + ugg - 2
+2 (—uaa + Uqp (— \/5)) + 3 Uga +4(—ua - \/iug) + bug + u = €*

2Uaa + 2ugps + Uq —4\/§uﬁ +u =€

Una + Uss = — 2 +2V2us — Lu + Le /Y2
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le. 2uyy — 4Uzy + 2uyy + 3u = 0

A=C=2 B = -4 A=16—-16=0 parabolic
@_—4i0__1

de 4 N

dy = —dx

£:y+$ éle fyzl g:v:v:facy:fyyzo

n=x 77x:177y=077m=77xy=77yy:0

2(uge + 2ugy + upy) —4 (Ueg + Ugy) +2uce +3u = 0

22Uy, + 3u =0
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. upy + dugy + 4uy, + Tu, = sin x

A=1 B =5 C =

dy 543

o220
dx 2 ~

gzy_llx fx:_4 Ey

n=y—x n,=—-1mn

A=25-16=9>0

=1 g:v:v:facy:fyyzo

:]_ nacx:nacy:nyyzo

16uge + 2uey - 4 + upy + 5 (—duge + uey (=4 — 1) + uyy, (=1))

+4 (uge + 2ugy + uyy) + 7(ue + uy) = sin x

—9ue, + T(ue + u,) = sin

= Tl + ) — o s
ugn—9u§ Uy gsmx
£§—n= -3
o n=¢
rT = —
3
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2a. y=1x 4+ c

y:ix—kc

Figure 43: Maple plot of characteristics for 6.3 2a
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2b. elliptic . no real characteristics
2c. y=3r+c

y:éx—kc

Figure 44: Maple plot of characteristics for 6.3 2c
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2d. elliptic . no real characteristics

2¢. y=x+c see 2a

2f. y =4z + ¢

y=2x+c — (see 2a)

Figure 45: Maple plot of characteristics for 6.3 2f
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6.5 Linear Systems

Problems

1. Classify the behavior of the following system of PDEs in (¢, z) and (t,y) space:

ou o o
ot dxr 0Oy
o0 o o0
ot Ox Oy
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1. Let the vector U be defined as

Then the equation can be written as
U, = AU, + BU,

where

p=(5" )

The eigenvalues of A are

or
X 4+1=0

A=+
So the system behaves like elliptic in the x,t space

The eigenvalues of B are

A+1 0
0 A—1
or
AN —1=0
A= +1

So the system behaves like hyperbolic in the y, ¢ space
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6.6 General Solution

Problems
1. Determine the general solution of

Ugy — C%uyy =0 ¢ = constant
Ugpy — SUgy + 2Uyy = 0

Ugg + Uzy = 0

Ugg + 10Uy + Yuyy =y

Ao op

2. Transform the following equations to

U§77 =cU
by introducing the new variables
U = ye~(@&+6n)

where «, (8 to be determined

A, Ugy — Uyy + 3Uy — 2Uuy +u =0

b, 3ty + Tgy + 2uyy +uy +u =0
(Hint: First obtain a canonical form)
3. Show that )

Ugy = QU + by — —u +d

4
is parabolic for a, b, d constants. Show that the substitution

u(z, t) = v(av,t)e%‘E

transforms the equation to
b
Upe = QU + de™ 27
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Uy guyy:()
A=1 B =0
d +2

dy _ 42 _ 1
dx 2 c

1
y==x-2 + K
c

1

§=y+-x
c
1
n=y - -x
c

Canonical form:
ugny = 0

The solution is:

u=f(&) +gm)

4
A =—>0

C

2

hyperbolic

Substitute for £ and 7 to get the solution in the original domain:

u(r,y) = f(y + %x) + 9y — Ew)
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1b. gy — 3ugy + 2uy, = 0
A=1 B = -3 C =2 A=9-8=1 hyperbolic

dy —-3+1 72
29 _ 1
dx 2 \

y = 2z + K,

y=—x + Ky

§=y+ 2z §e = 2 & =1

n=y+zr =1 n=1

Uy = 2Ug + Uy

Uy = Ug + Uy

Usw = 2 (2uge + ugy) + 2ugy + uny

= Upe = duee + dugy, + Uyy

Uy = 2 (uge + Ugy) + Ugy + Upy = 2uge + Bugy + Uy

Uy = Ugg + 2Ugy + Uy

Uz — By + 2uyy = uge + duey + gy — 3 (2uge + 3ugy + uyy) +2 (Uee + 2ugy + uyy)
= TUgq

= Ugy, =0

The solution in the original domain is then:

w(z, y) = fly + 2x) + g(y + )
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A= B =1 C =0 A =1 hyperbolic
dy +1+1 1

= = 0

dx 2 ~

Yy = +x + K1

y = K

n=y n, =0 mn =1
Uy = —Ug +u”ﬂﬁz = —Ug
=0
Uy = Ug + Uy
Ugy = Uge
Ugy = —Ugg — Ugy
Upy + Ugy = —Ugy = 0

The solution in the original domain is then:
u=fly—2x)+gQ)
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1d. ugy + 10ugzy + uyy, = ¥y
A=1 B =10 C =9 A =100 —-36 = 64 hyperbolic

dy 10 £8 9
“y 1
dx 2 N
E=y—9r & =-9 §=1

n=y—-—x n=-1 mn =1
Uy = —ug — uy
Uy = Ug + Uy

Uy = —9(=uge — ugy) — (—uey — uyy)
= 81’&55 + 18’&577 + unn

Uy = =9 (Uge + ugy) — (Ugy + Uyy)
= —uge — 10ugy — uyy
Uyy = Uge + 2ugn + Uyy

Ugy + 10Uz, + 9uyy = (81 — 90 + 9)uge + (18 =100+ 18)ug, + (1 — 10 + 9wy, = y
N— ————
=0 =0

—64ue, =y

Substitute for y by using the transformation

E=y— 9

9y = 9y — 9z

£ —9n= —8y
9 — ¢

y= 73
In—¢

Uey = — _ & 9
K —64 512 512

£ 9

Y T 512 T 512
To solve this PDE let ¢ be fixed and integrate with respect to n
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1
== 551 ga” O
_1527] 9 1 9
= a5 2t O

The solution in zy domain is:

ule, g) = CIPWZD Dy gy ) 4 Py~ 90) oty — 0
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2a. Upy — Uyy + Uy — 2uy +u =0

U = ye(@&+08n)

A=1 B =0 C =-1 AN =4 hyperbolic

E=y—x
n=y+tw
Uy = —Ug + Uy

Uy = Ug + Uy

Uss = —(—Uge + Ugy) + (“Ugy + Uyy) = Uge = 2ugy + Upy

Uy = Ugg + 2Ugy + Uy

—4ug, — 3ug + 3u,y — 2ug — 2u,) +u =0

—4ug, — Sug + uy +u =0

U= ue @88 = o = [Jela&+hn

ug = U el t8n o7 el@&+B8m

u, = Une(a§+ﬁn) + 5U€(a§+ﬁn)

Uey = Ugne(a§+ﬁn) + BU; ela+pm) o aUne(aEJrﬁn) + aﬁUe(aEwLﬁn)
—4Uey, — 48U — 4a U, — 4aBU — SU¢ — 5aU + U, + U + U =0

—4Ue, + (=48 = B)Ue + (—4a + VHU, + (—4afB — 5a+ 4+ 1)U =0

% I3 I3
p=—5/4 a =1/4 —4(1/4)(=5/4) — 5(1/4) + (=5/4) + 1 =—1/4
AUy — iU =0
1 .
Ueyy = — 16 U required form
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2b. gy + Tugy + 2uyy, + uy +u =0

A=3 B =17 C =2 AN =49 — 24 = 25 hyperbolic

2
ay _ 7251
dx 6 3

Uy = —2Ug — gun

Uy = Ug + Uy

1 1 1
Upy = —2 (_QUEE - gufn) 3 (_QUEU - §UU77>
4 1
Uy = duge + 5“577 + §u7m
1

Uy = —2 (uge + Ugy) — g(“&n + Uyp)

7 1
Ugy = —2Uge — guﬁn - g“nn

Uyy = Uge + 2Ugy + Uyy

49
due, — gu&] + dug, + ug + uy +u =0

—2ugy + ug + uy +u =0

Use last page:

—25

T(Ugn—FﬁUg‘f‘C&Un—i—&ﬂU)+U§+C(U+Un+BU+U:O

—25 —25 —25 —25

5 U+ (5 A4 1)Ut (Grat 1) U+ (Frad+as g e 1)U =0

3 3 3 28

3 =3/25 a = 3/25 s T or T Tl =0

—25 28

et U =0 = Uy =5 50U
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2

3. um:aut—i—bux—zu—i—d

A=1 B=C=0 = A =0 parabolic

dx
i 0 already in canonical form since u,, is the only 2"¢ order term
u = vez”

2
b b b
Ugy = Ugg€2® + bvye2® + Zve2x

by

Uy = V€2
b? b b? b
= Um—i—bvx—l—zvzavt—kb Ux—|—§v —Zv—l—de 27

Since v, and v terms cancel out we have:

_b
Upe = aU; + de 27
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7 Method of Characteristics

7.1 Advection Equation (first order wave equation)

Problems
1. Solve 5 5
w w
— —3—=0
ot ox
subject to

w(z,0) =sinz

2. Solve using the method of characteristics

a. % + c% =e* subject to u(z,0) = f(x)
b. % + x% =1 subject to u(x,0) = f(x)
c. ((;—1: + St% =u subject to u(x,0) = f(x)
d. % - 2% = e subject to u(z,0) = cosx
e. % — tQ% =—u subject to u(x,0) = 3e°

3. Show that the characteristics of
ou ou

— +2u— =0
at T "D
u(z,0) = f(z)
are straight lines.
4. Consider the problem
ou L9 ou 0
L ou— =
ot ox
1 x <0
u(x,0) = f(x)=¢ 1+ 0<z<L
2 L<x

a. Determine equations for the characteristics
Determine the solution u(x,t)
c. Sketch the characteristic curves.
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d. Sketch the solution u(x,t) for fixed ¢.

Solve the initial value problem for the damped unidirectional wave equation

v+ vy, + v =0 w0 = F()
where A > 0 and F(x) is given.

(a) Solve the initial value problem for the inhomogeneous equation
v+ v, = f(x,t) v(z,0) = F(x)

where f(x,t) and F(x) are specified functions.
(b) Solve this problem when f(z,t) = 2t and F'(z) = sinz.

Solve the “signaling” problem

v+ cvy, =0 v(0,t) = G(t) —oco<t< oo
in the region x > 0.
Solve the initial value problem

vy + e, =0 v(z,0) = x

Show that the initial value problem
U + Uy = u(z,z) =1

has no solution. Give a reason for the problem.
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1. The PDE can be rewrriten as a system of two ODEs

dx
— = -3
dt
dt

The solution of the first gives the characteristic curve
T + 3t = xg
and the second gives
w(z(t),t) = w(x(0),0) = sinzg = sin(z + 3t)

w(z,t) = sin(z + 3t)

2.a. The ODEs in this case are

dt
du 9
aw €

Solve the characteristic equation
T = ct + x
Now solve the second ODE. To do that we have to plug in for x

du
dt

2(zo + ct) 2z ,2ct

= € = € €

1
t — QLU() 2ct
u(z,t) = e 20 € + K

The constant of integration can be found from the initial condition

1
f(zo) = u(x,0) = 2—629”0 + K

c
Therefore 1
K = f(.ﬁlj‘o) — %6210
Plug this K in the solution
u(z,t) = i€2xo+2ct + f(xo) — i62950
’ 2c 0 2c

1 1
Now substitute for 2 from the characteristic curve |u(z,t) = — e** + f(z — ct) — % 2@ —et)
c
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2.b. The ODEs in this case are

dr
E =T
dt
Solve the characteristic equation
Inx =1t + Inxzg or r = xo€

The solution of the second ODE is
u=t+ K and the constant is f(zo)

u(z,t) =t + f(xo)

Substitute g from the characteristic curve |u(x,t) =t + f (x e_t)

2.c¢. The ODEs in this case are

dx
— =3t
dt
du
— = Uu
dt
Solve the characteristic equation
3 o
= 2t
x 5 + X
The second ODE can be written as
du
— =dt
u

Thus the solution of the second ODE is
Inu =t + InK and the constant is f(zo)

u(x,t) = f(zo) €

Substitute =y from the characteristic curve |u(z,t) = f (x - = t2> e’
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2.d. The ODEs in this case are

dx
= — _9
dt
du
R 62:v
dt
Solve the characteristic equation
r = —2t + xg

Now solve the second ODE. To do that we have to plug in for z

2xg —4t

d_u — 62(:E0—2t) e

dt

= €

1
u(z,t) = e* (—16_4t> + K

The constant of integration can be found from the initial condition

1
cos(zg) = u(x,0) = — Zeho + K

Therefore ]
K = cos(zg) + Ze%o

Plug this K in the solution and substitute for xy from the characteristic curve

1 1
u(z,t) = — ZeQ(HQt) e 4+ cos(x + 2t) + : 2w +2)

1
u(z,t) = 162‘” (e4t - 1) + cos(z + 2t)

To check the answer, we differentiate

1
Uy = 562‘” (e4t - 1) — sin(z + 2t)

1
up = Zem (4 e4t) — 2sin(z + 2t)

Substitute in the PDE
1
uy — 2u, = e* e — 2sin(x 4 2t) — 2 {5 e (e‘“ — 1) — sin(z + Qt)}

= ¥t — 2sin(x 4 2t) — e 4+ €2 4 2sin(x + 2t)
= ¥ which is the right hand side of the PDE
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2.e. The ODEs in this case are

d_x = _¢2
dt
du
— = —U
dt
Solve the characteristic equation
t3
r=—-——+u
3 0
Now solve the second ODE. To do that we rewrite it as
du
— = —dt
U
Therefore the solution as in 2c¢
Inuy = —t + InK and the constant is 3e"0

Plug this K in the solution and substitute for xy from the characteristic curve

Inu(z,t) = In {3 e“éts} —t

u(z,t) = 3 tat gt

To check the answer, we differentiate
uy = 3e* (t2 — 1) 3t —t

143 _
Uy, = 3e*est 7t

Substitute in the PDE
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3. The ODEs in this case are p
T

9
a Y
dt

Since the first ODE contains x, t and u, we solve the second ODE first

u(z,t) = u(z(0),0) = f((0))
Plug this u in the first ODE, we get

dx
X 20

The solution is
r = x0 + 2tf(70)

These are characteristics lines all with slope

1
2f(x0)

Note that the characteristic through z(0) will have a different slope than the one through
x9(0). That is the straight line are NOT parallel.
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4. The ODEs in this case are

dx
E—Qu
du_
E O
with
1 z <0
u(x,())f(x){ 1+7 0<z<L
2 L<zx

a. Since the first ODE contains z, t and u, we solve the second ODE first
u(z,t) = u(x(0),0) = f(x(0))
Plug this u in the first ODE, we get

dx
= 2f(a(0))

The solution is
x =z + 2tf(x0)

25

Figure 46: Characteristics for problem 4
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b. For zy < 0 then f(xy) = 1 and the solution is

u(z,t) =1 onxr = xg + 2t

or
u(z,t) =1 onx < 2t
For zyp > L then f(zo) = 2 and the solution is
u(z,t) = 2 onx >4t + L
For 0 < zy < L then f(xy) = 1 4+ x¢/L and the solution is
u(x,t):1+% onx:2t(1+%>+xo
That is

x — 2t
= L
SV

Thus the solution on this interval is

(2.1) 1+x—2t 204+ L +x — 2t r+ L
ux g _— g
’ 2t + L 2t + L 2t + L

Notice that v is continuous.

19r

181

171

1.6

15 u=(x+L)/(2t+L)

1.4r

131

1.2

11pu=1

I I I I I
-5 0 5 10 15 20 25

x=2t X=4t+L

Figure 47: Solution for problem 4
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5. v+ cvp + Av =0 v(x,0) = F(x)
where A > 0 and F'(x) is given.

The ODEs are
dx dv

The initial condition for each:

Solve the characteristic equation to get
x=ct+E¢.
Now solve the other ODE to get
v(x(t),t) = Ke™
Use the initial condition to get
v(z(0),0) = K = F(x(0))

and so
v(a(t),t) = F(g)e™

Now get & from the characteristics and substitute here to get
E=x—ct

and
v(x,t) = F(z — ct)e™
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6. a. Solve the initial value problem for the inhomogeneous equation
vy + vy = f(x,t) v(z,0) = F(x)

where f(x,t) and F(x) are specified functions.

The ODEs are
dx dv

E:C: at = f(z(t),t)

The initial condition for each:
2(0)=¢ (£ 0)=F(§)
Solve the characteristic equation to get
x=ct+E¢.

Now solve the other ODE to get

Substitute the value of z(7) to get

o(@(0),1) = [ fler +&m)dr + F(E)
Now get £ from the characteristics and substitute here to get
E=x—ct
v(x,t) = /Ot flz —ct+cr,7)dT + F(x — ct)
To check the answer, we can differentiate the solution.

t Of(x —ct+cr,7) O(x — ct+ c7)
O(x — ct+c7) ot

—C

dr

v = (— )F’(x—ct)+fxt+/

(o — ct +/t Of(x —ct+ecr,7) O(x —ct + cT)
O(x — ct + c7) oz
1

dr

Substitute these two derivatives into the left side of the equation and find that the only term
left is f(x,t) which is on the right. We can also check the initial condition by substituting
t = 0 in the solution. In this case the integral is zero and we get F'(x).
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6. b. Solve this problem when f(x,t) = xt and F(z) = sinx.
In this case the integral becomes

t p tQ tQ t3
/O(x ct + cr)Tdr 3 02—1—03
1 1
—gt? — —ct®
2 6

Thus the solution is )
t

v(x,t) = (3: — %ct) 3 + sin(z — ct)
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7. Solve the “signaling” problem
v+ cvy, =0 v(0,t) = G(t) —oco<t<oo

in the region x > 0.
The easiest way is to reverse the role of x and ¢. So the problem is now

vy + cvp = 0 v(x,0) = G(r) —oco<z <0
1
w+-v, =0 o0 =Gz —oco<r<oo
c
The ODEs are
de 1 dv_o
¢ dt

and the initial condition for each

The solution of the other ODE

Solve for £ and substitute in v to get

v(z,t) =G (3: - lt)

Now change the variables back

v(z,t) =G (t - lx) :
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8. Solve the initial value problem

v + €e"v, = 0 v(z,0) =z
The ODEs are
de dv 0
— =g _— =
dt ’ dt

and the initial condition for each

Solve the characteristic equation

e dx = dt
—e P =t4+C
Now use the initial condition
—et=0+C
or
e =—t+e ¢

The solution of the other ODE
v(z(t),t) = K = v(z(0),0) = ¢

Solve the characteristic equation for &

E=—In(t+e™)

and substitute in v to get
v(z,t) = —In(t+e ")
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9. Show that the initial value problem
Up + Uy = T u(z,x) =1

has no solution. Give a reason for the problem.
Note that the initial line in this case is NOT the z axis (¢ = 0) but the line t = z.
The ODEs are

de o du
dt dt

X

and the initial condition for each

Solve the characteristic equation

r=t+ K
and use the initial condition
E=E¢E+ K
so K = 0 and the characteristic is
r=t

This is the only line, there is no family as in other problems.

Substitute in the u equation. But wait, if x = t is a characteristic curve how do we get
to the initial line? There is NO way. Therefore there is NO solution.

If we try to solve the u equation

du t (sinc t)
— = ince x =
dt ’

we get

1
=_t*4+C
U 5 +

Now use the initial condition
1
l=u(z(t=2),t=2x)= 5952—1—0

We can’t find C' constant to satisfy this. Therefore, there is NO solution.
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7.2 Quasilinear Equations
7.2.1 The Case S =0, c = c(u)

Problems

1. Solve the following

0
a. 8—2; =0 subject to u(x,0) = g(x)
ou .
b. 5 = —3zu subject to u(x,0) = g(x)
2. Solve
ou
— =Uu
ot
subject to
u(z,t) =14 cosx along z+2t=0
3. Let
Ou + Ou 0 constant
—+c—= ¢ = constan
ot Ox

a. Solve the equation subject to u(z,0) =sinz
b. If ¢ > 0, determine u(x,t) for z > 0 and ¢ > 0 where

u(z,0) = f(x) forx >0
u(0,t) = g(t) fort >0

4. Solve the following linear equations subject to u(z,0) = f(x)

a. %jtc%:e’“b. %—Fta—uzlﬁ
ot ox ot ox
¢ %—ﬂ% —u
ot oxr
d. @—l—x%:t
ot ox
ou ou

5. Determine the parametric representation of the solution satisfying u(z,0) = f(z),

ou  ,0u

5 u%:ZSu
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ou ou B

2
b. 5 +1 u% = —u
6. Solve
% + tQU@ =5
ot ox
subject to
u(z,0) = .

7. Using implicit differentiation, verify that u(x,t) = f(z — tu) is a solution of

ug + uu, = 0

8. Consider the damped quasilinear wave equation

U + uty + cu = 0

where c is a positive constant.

(a) Using the method of characteristics, construct a solution of the initial value problem
with u(x,0) = f(z), in implicit form. Discuss the wave motion and the effect of the damping.

(b) Determine the breaking time of the solution by finding the envelope of the charac-
teristic curves and by using implicit differentiation. With 7 as the parameter on the initial
line, show that unless f’(7) < —c¢, no breaking occurs.

9. Consider the one-dimensional form of Euler’s equations for isentropic flow and assume
that the pressure p is a constant. The equations reduce to

Let u(z,0) = f(z) and p(z,0) = g(x). By first solving the equation for u and then the
equation for p, obtain the implicit solution

g(x — ut)
1+ tf'(x — ut)

uw=flx—ut) p=
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1.
a. Integrate the PDE assuming z fixed, we get

u(z,t) = K(x)

Since dz/dt = 0 we have © = x( and thus

u(z,t) = u(w,0) = K(x0) = g(w0) = g()
u(z,t) = g(x)

b. For a fixed x, we can integrate the PDE with respect to ¢

d
o gat K(x)
u

Inu — Inc(z) = —3at

u(z,t) = ce

Using the initial condition
u(w,t) = f(z) e
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2. The set of ODEs are

dx du
— =0 d — =
dt wmey T
The characteristics are x = constant and the ODE for u can be written
d
M
U
Thus
u(x,t) = k(z)e
Onzx = —2tor xz + 2t = 0 we have

1+ cosz = k(x)e|pmo = k(z)e 2
Thus the constant of integration is
k(z) = e? (1 + cosx)
Plug this in the solution u we get
u(r,t) = (1 + cosx) ez
Another way of getting the solution is by a rotation so that the line x 4+ 2t = 0 becomes
horizontal. Call that axis &, the line perpendicular to it is given by ¢t — 2x = 0, which we

call 7.
So here is the transformation

E=x+2t

n =1t-—2x.

The PDE becomes: | |
Ug + iun = iu

and the intial condition is:

5

2 2
nlgzo = 1+cos=n

u(n,sz)zl%—cosé E

Rewrite this as a system of two first order ODEs,

dn 1
s~ 2
n(0) = «a
du(n(€),§) _ 1
de¢ 2
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2
u(n(0),0) = 1+ cos 0
The solution of the first ODE, gives the characteristics in the transformed domain:
1
n = 55 ta

The solution of the second ODE:

Le
u(n(€),€) = Ke?

Using the initial condition

2
1+COSgOz =K

Thus
1

u(n(§),§) = (1+cos %a)eQ

1
But a =n— 55 thus
1
2 1. 3¢
u(n(€),§) = (L+cos = (n — 5€))e?
Now substitute back:
Le_ Ly
— = —x
2 2
1 1 5
7]—55 = (t—2x)—(§x—|—t) =57
Thus
1
-+t
u(x,t) = (14 cosx)e2 :
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3. a. The set of ODEs to solve is
dx du

= C —:0

dt dt

The characteristics are:
r = x9 + ct

The solution of the second ODE is
u(z,t) = constant = u(zy,0) = sinz
Substitute for zy, we get

u(z,t) = sin(z — ct)

b. For x > ct the solution is u(z,t) = f(z — ct)

But f(z) is defined only for positive values of the independent variable z, therefore
f(z — ct) cannot be used for z < ct.

In this case (r < ct) we must use the condition

u(0,1) = g(t)
The characteristics for which zy < 0 is given by x = xy + ¢t and it passes through the
point (0,%) (see figure). Thus x = c(t — o) and u(0,tg) = g(to) = g (t - 5)

C

t

x-ct<0 x-ct=0

2F u(0,t)=g(t)

~ct>0

u(x,0)=f(x)

-1t

) I I I I
-4 -2 0 2 4 6 8

Figure 48: Domain and characteristics for problem 3b

The solution is therefore given by

flz —ct) forx—ct > 0

u(z,t) = g(t—%) forz—ct <0
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4.a. The set of ODEs is
dx du _ay
dt dt
The solution of the first is
T = x5 + ct
Substituting x in the second ODE
% — o~ 3(@otet)

Now integrate
1
u(z,t) = K + e 30— g3

—3c
At t =0 we get
f(z0) = u(z0,0) = K + e 3% —
—3c
Therefore the constant of integration K is
K = flao) + e -
0 3¢
Substitute this K in the solution
1 1
t) = —3z0 — _ ,—3xz0 — ,—3ct
u(z,t) = f(zo) + e 2 T ¢ gt

Recall that xg = x — ct thus

1 1
u(z,t) = f(r—ct) + §6_3($_Ct) - §€_3$

b. The set of ODEs is

do _ du
dt dt
The solution of the first is
T =z + %tQ

Now integrate the second ODE
u(z,t) = 5t + K

At t = 0 the solution is
u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for x in the solution

u(z,t) = 5t + f (x — %t2>
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c. The set of ODEs is

d_x = —¢t? d_u =u
dt dt
The solution of the first is
T = Ty — 1153
3

Now integrate the second ODE
Inu(z,t) = =t + In K
or
u(r,t) = Ke™*
At t = 0 the solution is

u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for zy in the solution

u(x,t) = e ' f <x + %t3>

d. The set of ODEs is
dx du y
— = I =

dt dt
The solution of the first is
Inz = Inxy + ¢

or
r = xo¢€
Now integrate the second ODE
1
u(z,t) = 5152 + K

At t = 0 the solution is
u(zo,0) = f(zg) = K plug t = 0 in the solution u

Thus when substituting for zy in the solution

u(z,t) = %t2 + f(xe_t)
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e. The set of ODEs is
dr du
at a7
The solution of the first is
Inz = Inxy + ¢

or
T = xp€
Now substitute z in the second ODE
du '
— = xg8€
dt 0

and integrate it
u(x,t) = e'xg + K

At t = 0 the solution is
u(zo,0) = f(xg) = K + plug ¢ = 0 in the solution u
Thus when substituting K in u
u(z,t) = xoe' + f(xg) — o
Now substitute for zy in the solution

u(x,t) =z + f(a:e*t) —ze
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5.a. The set of ODEs is

dz 9 du
ar _ T _ 3
a at ~

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE

d
M _ 3

u
Now integrate this
Inu(z,t) = 3t + K or u(z,t) = Ce*
At t = 0 the solution is
u(zo,0) = f(xg) = C

Thus
u(z,t) = f(zo)e™

Now substitute this solution in the characteristic equation (first ODE)

dx

= @) = — ()

Integrating
For t = 0 we get

Thus

and the characteristics are

1

2 6t 1 2
x:—é(f(xo)) e +$0+6(f(1’0))

“Solve” this for xy and subsitute for u. The quote is because one can only solve this for
special cases of the function f(x).

The implicit solution is given by
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b. The set of ODEs is
dr_ oo du_
dt dt

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE

du
u

= —dt

Now integrate this
nu(z,t) = -t + K or u(z,t) = Ce™*
At t = 0 the solution is
u(w,0) = f(w) = C

Thus
U(.CE,t) = f(xO) eit

Now substitute this solution in the characteristic equation (first ODE)

dx

7 t* f(xo) e

/dx = f(xo) /t2 et dt

Integrate and continue as in part a of this problem

or

r = f(xo) [—t2e_t —2te™" —2e7" + C’}
For t = 0 we get

Thus
Cf(.il?o) = Xy + Qf(.ilfo)

and the characteristics are
r = f(x) [—tQ — 2t — 2} et + zg + 2 f(wo)

“Solve” this for xy and subsitute for u. The quote is because one can only solve this for
special cases of the function f(x).

U(.T,t) = f(x0> e_t
The implicit solution is given by
x = — fxo) [t? + 2t + 2] e + xg + 2 f(x0)
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6. The set of ODEs is
d_x = t?u % =5
dt dt

The solution of the first ODE requires the yet unknown w thus we tackle the second ODE
du = 5dt

Now integrate this
u(z,t) = 5t + K

At t = 0 the solution is
u(ro,0) = f(xg) = xp = K

Thus
u(z,t) = xg + 5t

Now substitute this solution in the characteristic equation (first ODE)

dx

— =5 t?
dt + Zo
Integrate
> t*+ L t3ry + C
r = - ~t°x
4 377"

For t = 0 we get

Thus

and the characteristics are

Solve this for zq

x —
The solution is then given by |u(z,t) = 5t + ?4
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7. To show that u(z,t) = f(x — tu) is a solution of

ug + uu, = 0

we differentiate.

of Oz — tu)
Uy =
Oz — tu) ot
of Oz — tu)
Uy =
Oz — tu) Oz
=1
Substitute in the equation:
U + UU, = —U of of

Oz — tu) i u@(x — tu)
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8. a. Use the method of characteristics to solve
U + vty + cu = 0

with u(z,0) = f(x) where ¢ is a positive constant.
Let’s rewrite the equation as

Uy + UU; = —CU
Now the characteristic equation is
dx
— =Uu
dt
z(0) =¢
In order to solve this, we have to first find u from the second ODE, which is
du
— = —cu
dt
u(&,0) = f(¢)
This equation is separable
du
— = —cdt
U

Inu=—ct+1nf(&)

or |u(x(t),t) = f(§)e™

Taking this to the right hand side of the characteristic equation we have

dx

P (&)e™

Integrate

Use the initial condition

£=a(0) = — () + K
SO 1
K=¢+ Ef(g)

Use this K to get

o) =~ £(6) (7 = 1) +¢

The two boxes give the implicit form of the solution.
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Now from the solution u we have

f(&) = ue”
) (1) = —2ue (e — 1) + ¢
2(t) = ——ue (e — 1) +
c
w(t) = _% (1—e) +¢
E=ux(t) + % (1 - eCt>
so we get

ulet) = f (o4 2 (1-e) ) e

The factor e~ in the solution causes damping since c is positive.
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8. b. Breaking time can be found by looking at the time that u; or u, tend to oo

u = —cu+ f {ﬂ(l —e?) — ueCt} e
c

Uy = f {1 + u—cx(l — eCt)} et

Solve for u;

 —cu—uf’
T L= e
and for u,
“ f/efct

1t L(1—e)
The smallest ¢ for which the denominator is zero (u, and u; — 00) is
/
1—|—£(1—ed):0
c
Since ¢, t are positive, the factor (1 —e®) > 0 and so
f'(§) < —c

Another way is by looking at the family of characteristics

1
t) = —= 1
x(t) = ——f(©) (7 1) +¢
or
1 —ct
Fla,t,6) = a(t) + —f(€) (7 ~1) — ¢
To find the envelope means to find a solution for

F =0, and((;—?:(]

(i.e. the equation of characteristics is satisfied for all £. Now

OF  f1(&) /
0_62%(6 ~1)-1=0

Since t > 0, this last condition gives the same result as before f'(£) < —c
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with u(x,0) = f(z) and p(z,0) = g(x).
The set of ODEs is

dx
— =
dt
du
— =0
dt

Solve the second ODE to get u(x(t),t) = K = f(£).
Now susbstitute this in the first ODE and solve

= f(§)t+¢
——

=u

So
E=x—tu

and |u(x,t) = f(z — tu)

Now use this « in the first PDE

pr + puy + up, = 0

The ODEs for this are
dx

priald u is known!
and
dp
a —PlUg
Solve the first to get
x(t) =ut+¢§

To solve the second we write (recall u, can be found from the solution u)

d
v _ —u dt
p
Differentiate u to get
Uy = (1 —tug) f’
or )
Uy = /
1L+tf
d !/
do___ Iy
p 1+tf
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Integrate and use the known u and wu,

lnp=—ln(l+tf(€)+K

Or
B K

PTIEE
Use the initial condition

p(€,0) = g(§)
and the value of &, we get

_ g(x —ut)

=7 +tf'(x — ut)
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7.2.2 Graphical Solution
7.2.3 Numerical Solution
7.2.4 Fan-like Characteristics
7.2.5 Shock Waves

Problems

1. Consider Burgers’ equation

op [1_ 2p1@_ 9?p

- t Umazx =V
ox ox?

ot

pmaac

Suppose that a solution exists as a density wave moving without change of shape at a velocity
V, plz,t) = f(z = Vi).

a. What ordinary differential equation is satisfied by f

b. Show that the velocity of wave propagation, V', is the same as the shock velocity
separating p = p; from p = ps (occuring if v = 0).

2. Solve 5 5
14 20p
“r F_0
ot e ox
subject to
4 <0
p(l’,O)—{ 3 .CE>0
3. Solve 5 5
U U
— +4u— =0
at T
subject to
3 z<1
M%m_{2x>1
4. Solve the above equation subject to
2 r<-—1
u(x,O)—{ 3 x> —1
5. Solve the quasilinear equation
ou N ou 0
J— u— =
ot ox
subject to
2 x<?2
u(x,O)—{ 3 x>2
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6. Solve the quasilinear equation

ou au_o
ot +u8x N
subject to
0 <0
u(z,0)=¢ =z 0<z<1
1 1<z«

7. Solve the inviscid Burgers’ equation
ug + uu, = 0
2 for <0
u(z,0) =< 1 for 0 <z <1

0 for z > 1

Note that two shocks start at ¢ = 0, and eventually intersect to create a third shock.

Find the solution for all time (analytically), and graphically display your solution, labeling
all appropriate bounding curves.

264



1. a. Since

plz,t) = flz = Vi)

we have (using the chain rule)

pr = fl(z = Vt) - (=V)

pe = flla =Vt) -1

pae = f'(x = V1)

Substituting these derivatives in the PDE we have
2f(x — Vi)

pmax

—V f'(x — Vt) + Unas (1 — )f'(a: — Vi) =vf'(z — Vi)
This is a second order ODE for f.
b. For the case v = 0 the ODE becomes

—Vf/(.T - Vt) T Umaa <1 - Qf(x — Vt)

pmax

) fl(x —Vt) =0
Integrate (recall that the integral of 2f f' is f?)
—V f(x — Vt) + tnas (f(x - Vt) —

To find the constant, we use the following
As x — 00, p — py and as x — —o0, p — p1, then

2
_Vp2+umax <P2— 2 ) =C

pmax

2
_Vpl + Umaz <p1 - L ) =C

pmaa)
Subtract ) )
_ P o M _
V (pl P2) + Umaz | P2 Umaz | P1 - O
Pmaz Pmaz
Solve for V , ,
V - Umaz (pQ - p::jw) — Umaz (pl - pz;r)
P2 — P1
This can be written as u
V = Umaz — L (Pl + P2)
Note that (1) is
y_

o]

2
p
qd = Umaz (P - )
Pmaz

Thus V' given in (1) is exactly the shock speed.

since
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2. The set of ODEs is

dx 9 dp
@r Sl
it ~ 7 dt
The solution of the first ODE requires the yet unknown p thus we tackle the second ODE
dp =0
Now integrate this
plx,t) = K

At t = 0 the solution is

4 <0
p(xo’o)_K_{?) x>0

Thus
p(r,t) = p(xo,0)

Now substitute this solution in the characteristic equation (first ODE)

dx
- p*(20,0)

Integrate
r = p*(z0,0)t + C

For t = 0 we get
Zo :O+C
Thus
C:.CITO

and the characteristics are
T = pQ(xo,O)t + g

For zy < 0 then p(xp,0) = 4 and the characteristic is then given by © = xy + 16t
Therefore for o = = — 16t < 0 the solution is p = 4.

For xy > 0 then p(xy,0) = 3 and the characteristic is then given by z = xy + 9¢
Therefore for zp = © — 9t < 0 the solution is p = 3.

Notice that there is a shock (since the value of p is decreasing with increasing x). The
shock characteristc is given by

dr, _3-4°—35-3°  3(64—27) 37
dt 4-3 1 3

The solution of this ODE is

37
Ty = ?t + z4(0)

x5(0) is where the shock starts, i.e. the discontinuity at time ¢ = 0.
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0.8

0.6

p=4 X, =(37/3)t

0.4

0.2

-0.2 I I I I I I I I I
-2 -1 0 1 2 3 4 5 6 7 8

Figure 49: Characteristics for problem 2

Thus z,(0) = 0 and the shock characteristic is

x—3—7t
S 3

See figure for the characteristic curves including the shock’s. The solution in region I above
the shock chracteristic is p = 4 and below (region II) is p = 3.
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up + 4duu, = 0

3 r <1
2 z>1

Shock again

The shock characteristic is obtained by solving:

dt 3—2

dv, 2-32-2.22
i S T

zs = 10t + x4(0)
=1

z, = 10t + 1

Now we solve the ODE for u:

du

pri 0 = wu(z, t) = u(x, 0)

The ODE for z is:

r = 4u(zg, 0))t + o

— = 4u = 4u(zy, 0)

or uy + (2u?), = 0

away from shock

If To < 1 ro = x — 12t = r <1+ 12t

To < 1 To = ¢ — 8t = z > 14+ 8t
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4.

Solve
us + duu, = 0
2 < —1
u(z, 0) =
3 x> —1
d
d—q;: =0 u(z, t) = u(xg, 0)
d
d—jf = 4u = 4u(xo, 0)
dxr = 4u (zo, 0)dt
x = 4u(zg, 0)t + xo
For zy < —1 r = 8t + xg = r — 8 < —1
g > —1 r = 12t + xg = r — 12t > —1

2 r <8 -1
u(z, t) =¢ 7 8t —1<x< 12t — 1

3 x> 12t -1

r = 4dut + o

=—1 discontinuity
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fan

For
For

xr =

3

291

2.8

271

2.6

25F u=(x+1)/(4t)

2.4

231

2.2

2.1ru=2

2

I I I I I I I I I
-5 0 5 10 15 20 25 30 35 40

x=t-1 x=12t-1

Figure 50: Solution for 4
ug + uu, = 0

2 x <2

3 = > 2

T
To < 2 T = 2t + xo = T — 2t < 2
Tg > 2 z = 3t + x¢ = r — 3t > 2
tu(zg, 0) + zo at discontinuity zq = 2

we get v = tu + 2
T —2
t

u =
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2.8

271

2.6

251

2.4

231

2.2

21r

u=(x-2)/t

0.9

0.8F

0.7

0.6

0.4-

0.3

0.2

0.1

. . . .
0 5 10 15 20 25
X=2t42 x=3t+2

Figure 51: Solution for 5

I I I
-2 -1 0 1 2 3
X

Figure 52: Sketch of initial solution

0 <0
u(z,0) =¢ z 0<z <1
1 z>1



0.9r

0.8

0.7

0.6

0.5F

0.4r

0.3F

0.2r

0.1r

u=x/(1+t)

.
0 5 10
X=t+1

Figure 53: Solution for 6

d
d—f u = u(zg, 0) = x = tu(z, 0) + xo
For xy < 0 r=1t-04 x = T = Xy
0 <z <1 x = txg + x9 = r = x9(1 + 1)
1 <z r =1+ xg = =1+ x

Basically the interval [0, 1] is stretched in time to [0, 1+ t].
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ug + uu, = 0

2 for x <0
u(z,0) =< 1 for 0 <z <1

0 for z > 1

First find the shock characteristic for those with speed u =2 and u =1

1,2 1.5 5 3
d = 5 = 5@ -1 =3
ul =2-1=1
Thus
dr, §
a2
and the characteristic through x = 0 is then
Ty = §t
)

Similarly for the shock characteristic for those with speed ©v =1 and u =0

o = 5| = 507-0%) = 3

o 2 2
u =1-0=1
Thus
dry 1
a2
and the characteristic through x = 1 is then
1t + 1
Ty = =
2

Now these two shock charateristic going to intersect. The point of intersection is found
by equating z in both, i.e.

1t+1—3t
2 92

3
The solution is t = 1 and z, = 7 Now the speeds are u = 2 and u =0
2 Lo 2
o = 5| = 5@ -0 =2
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2.5

15F

0.5F

Thus

dx,

dt
and the characteristic is then
r, =t + C.

3
To find C', we substitute the point of intersection t = 1 and z, = 3 Thus

3
- =14+C
5 +
or .
C = -
2
The third shock characteristic is then
t -+ L
Ty = —.
2

The shock characteristics and the solutions in each domain are given in the figure above.
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7.3 Second Order Wave Equation
7.3.1 Infinite Domain

Problems

1. Suppose that
u(z,t) = F(x — ct).

Evaluate
ou
a. a(w, 0)
ou
b. %(0, t)

2. The general solution of the one dimensional wave equation
Upp — 4y =0

is given by
u(z,t) = F(x —2t) + G(x + 2t).

Find the solution subject to the initial conditions
u(z,0) = cosz —00 < x < 00,

ut(z,0) =0 — 00 < x < 00.

3. In section 3.1, we suggest that the wave equation can be written as a system of two first
order PDEs. Show how to solve
Uy — Cligy = 0

using that idea.
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la.
u(z, t) = F(x — ct)

Use the chain rule:

du  dF(z — ct)
ot Cd(x—ct)
att = 0
ou  dF(z)
ot dx
1b.
Ou  dF(x — ct)
ox  d(x — ct)
atx =0

du _ dF(=ct)  1dF(=a)

=" — F'(—
oz d(—ct) c dt (=)

T

differentiation with respect to argument
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2. wu(z,t)=F(x —2t) + G(x + 2t)
u(z, 0) = cos x
ug(x, t) =0
u(z,0) = F(z) + G(xz) = cos x (*)
ur (x, t) = —2F (x — 2t) + 2G" (v + 2t)
= u (r,0) = —2F' (z) + 2G" () = 0
Integrate = — F () + G (z) = constant = k (#)

solve the 2 equations (*) and (#)

2G(z) = cosz + k

G(z) = 5 cosz + 1k

2F(z) = cosz — k

F(z) = § cosz — 1k
We need F(z — 2t) = F(z — 2t) = $cos(x — 2t) — 3k
G(z + 2t) = cos(z + 2t) + 3k

= u(z, t) = 3 cos(z — 2t) + 3 cos(z + 2t) — 3k + 3k

u(z, t) = % {cos (x — 2t) + cos(z + 2t)}
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3. The wave equation

2
Uy — CUgy = 0

can be written as a system of two first order PDEs

ov ov

E—C%ZO

and
ou ou

o " o
Solving the first for v, by rewriting it as a system of ODEs

= .

dv
dt

dx

dt

=0

= —c
The characteristic equation is solved

r = —ct + xg

and then
v(z,t) = v(xg,0) = V(x+ ct)

where V is the initial solution for v. Now use this solution in the second PDE rewritten as

a system of ODEs
d
d—?: = V(z + ct)
dx
— = C
dt
The characteristic equation is solved

T = ct + x

and then J
d—?: = V(z +ct) = V(xg+ 2ct)

Integrating
t
u(zo, t) = / V(zo + 2¢r)dT + K(20)
0

Change variables
z = X+ 2cT

then
dz = 2cdr
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The limits of integration become xy and xy + 2c¢t. Thus the solution
zo+2ct ]
m%w:/ S V(2)dzr + K (o)
ts) 20
But zg = z — ¢t

ztct ]
u(z,t) = /x Q_CV(Z)dZ + K(z —ct)

—ct

Now break the integral using the point zero.

x—ct ]_ x+ct ]_
u@ﬂ:K@%ﬁ—A %V@m+4 o Viz)dz

The first two terms give a function of x — ¢t and the last term is a function of x + ct, exactly
as we expect from D’Alembert solution.
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7.3.2 Semi-infinite String

7.3.3 Semi-infinite String with a Free End

Problems

1. Solve by the method of characteristics

— = = >0
o~ Copr T ’
subject to
u(z,0) =0,
ou
—(2,0)=0
ot (00 =0,
u(0,t) = h(t).
2. Solve 5 o
u 50U
@—C@ZO, z <0
subject to
u(z,0) = sinz, x <0
0
a—?(z,(}):o, z<0
u(0,t) = e, t>0.
3. a. Solve 52 o
u  ,0%u
ﬁ—Cw:O, O<r<o
subject to
0 0<z<?2
u(z,0)=4¢ 1 2<x<3
0 3<zx
ou
—(2,0)=0
o (00 =0,
ou
—(0,t) = 0.
20,1

b. Suppose u is continuous at x =t = 0, sketch the solution at various times.

4. Solve
Pu 0%

— =0,
8z~ © o2
subject to

u(z,0) =0,
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ou
E(l’, O) = 0,

ou
a—x(o,t) = h(t).

5. Give the domain of influence in the case of semi-infinite string.
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1.

x—Ct<0

- 2r u(0,H=h(t)

P(x,t)
x—ct>0
D(0,t - x /c)

u(x,0)=0 and u, (x,0)=0
. . .

C(x—ct,0) B(ct-x,0) A(x+ct,0)

I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4
X

Figure 55: Domain for problem 1

Uy — Uy = 0
u(z, 0) = 0
u(z, 0) = 0
u(0, t) = h(t)

Solution u(z, t) = Flx — ct) + Gz + ct)

)
F@) = 5 /@) = o [ gtryr
#) 1

Gl&) = 5 (&) + 5

5 /O Cg(r)dr
since both f(z), g(z) are zero.
Thus for z — ¢t > 0 the solution is zero
(No influence of boundary at x = 0)
Forz —ct <0 u(0, t) = h(t)
Y
F(—ct) + G(ct) = h(t)

u(z, t) = Flx — ct) + Gz + ct)
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but argument of F is negative and thus we cannot use (*), instead
F(—ct) = h(t) — G(ct)
or F'(z) = h(=£) — G(—z) forz < 0
Fla — ct) = h(~55%) — G(~(z ~ o)
= h(t = %) = G(ct — z)
u(z, t) = Flx — ct) + Gz + ct)

= h(t —%) = G(ct — ) + G(z + ct)

Zero Zero

since the arguments are positive and (#) is valid
= wu(z,t) =h(t—-2) for 0<az<ct
C

u(z,t) =0 for xz —ct >0
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2.

x+ct>0
- 2f u(0,t)=en(-t)

x+Ct<0

u(x,0)=sin x and u, (x,0)=0

-1 I I I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4
X

Figure 56: Domain for problem 2

Uy — Uy = 0 x <0
u(z, 0) = sin x r <0
u(z, 0) = 0 r <0

u(0,t) = et t>0
u(z, t) = Flx — ct) + Gz + ct)
s sin

since f =sinz, g =0
sin x

%
From boundary condition

uw(0,t) = F(—ct) + G(ct) = e*

If x + ¢t < 0 no influence of boundary at z = 0

= u(z, t) = $sin(z — ct) + 5 sin(z + t)

= sin x cos ct

after. some trigonometric manipulation
If x + ¢t > 0 then the argument of G is positive and thus
G(ct) = et — F(—ct)
or G(z) = e#° — F(—2)

_xztct

= Gx+ct)=e"< — F(—(z+ ct))
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Therefore:

u(z, t) = F(z — ct) + G(x + ct)

_xztct

=F(x —ct)+ e < — F(—x — ct)

= S sin(z — ct) + e — s sin(—xz — ct)
(S —
— sin (z + ct)
1 1 st
=3 sin (z — ct) — 5 sin (z 4 ct) +e "
cos ct sin x
sin x cos ct

= u(x, t) =

. _ztct
sinx cosct + e
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3a. Uy = €Uy 0 <z < o0

uz(0,t) =0
0 0<o <2
u(z,0) =¢ 1 2<2x<3
0 z>3
ug(z, 0) = 0

u(z, t) = Flx — ct) + Gz + ct)

F) = 5 ) = 5 [ o©de =51 ¢=0 23>0
G@) = 5 @) + 5 [ 9€de=5f@)  g=0 23>0
u(, 1) = flx + ct) + f(z — ct) v ot

2 )
uz (0, t) = F'(—ct) + G'(ct) = 0
=  F'(—ct) = —G'(ct)
F'(=2) = =G'(2)

Integrate
—F(—2) = -G(>) + K

F(-2) = G(z2) — K

= Flx—c)=—-G(t—2) - K r —ct <0

=sf(dt—2) — K x —ct <0

= u(z,t) =Lif(x+ct)+ 5flct—2)— K
To find K we look at = =0,t =0 u(0,0) = 0 from initial condition
but u(0,0) = 5 f(0) + 3 f(0) — K =  f(0) — K
|
=0 from above
= K=0

flz + ct) + f(et — x)
2

= u(zr, t) =
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x-ct<Q

x-ct>0

Figure 57: Domain of influence for problem 3

3b.
t —ct
foxd) tfaet)
u(z, t) =
flx + ct) + f(ct — x) e ot
2
where

1 Region I

u(z,t) =49 =  Region II

0 otherwise

In order to find the regions I and II mentioned above, we use the idea of domain of
influence. Sketch both characteristics from the end points of the interval (2,3) and remember
that when the characteristic curve (line in this case) reaches the t axis, it will be reflected.

As can be seen in the figure, the only region where the solution is 1 is the two triangular
regions. Within the three strips (not including the above mentioned triangles), the solution

1
is 3 and for the rest, the solution is zero.
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Xx—Ct<0

u, (0,)=h(t) x—ct>0

u(x,0)=0 and u, (x,0)=0

Figure 58: Domain for problem 4

4. Ut — 02 Uypye = 0
general solution

u(z, t) = Flx — ct) + Gz + ct)
=0

For x — ¢t >0 u(z, t) since u = u; = 0 on the boundary.

For x — ¢t < 0 we get the influence of the boundary condition

g (0, 1) = h(t)

Differentiate the general solution:

dF(z —c dG(x+c
up (2, 1) = Fl(x — ct) - 1+ G'w + cof) - 1 = S=d) 4 €0

chain rule
prime means derivative with respect to argument

Asxz = 0:

dF(—c dG(c
h(t) = up(0, t) = G 4 ) — _LIECA) o

288



Integrate

Pl + LG+ L FO =2 60) = [Latryan

since f = g =0

=0 =0

289

=0



5. For the infinite string the domain of influence is a wedge with vertex at the point of
interest (x,0). For the semi infinite string, the left characteristic is reflected by the vertical
t axis and one obtains a strip, with one along a characteristic (x + ¢t = C') reaching the ¢
axis and the other two sides are from the other family of characteristcs (x — ¢t = K).

7.3.4 Finite String
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8 Finite Differences

8.1 Taylor Series
8.2 Finite Differences

Problems

1. Verify that
Pu Adu,
— | = =% 4 O(Ax).
o = (agy T OB

2. Consider the function f(x) = €®. Using a mesh increment Az = 0.1, determine f’'(z) at
r = 2 with forward-difference formula, the central-difference formula, and the second order
three-point formula. Compare the results with the exact value. Repeat the comparison for
Ax = 0.2. Have the order estimates for truncation errors been a reliable guide? Discuss this
point.

3. Develop a finite difference approximation with T.E. of O(Ay) for §?u/dy? at point (i, 5)
using u; j, Wi j+1, Wi j—1 when the grid spacing is not uniform. Use the Taylor series method.
Can you devise a three point scheme with second-order accuracy with unequal spacing?
Before you draw your final conclusions, consider the use of compact implicit representations.

4. Establish the T.E. for the following finite difference approximation to du/dy at the point
(1, 7) for a uniform mesh:

ou _ —3ui,j + 4ui,j+1 — uz‘,j+2

oy 2Ay '

What is the order?
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Abu,
1. Verify ugppij = otliy + O(Ax)

(A)°
Recall

Adui; = Ay (A2uij) = Ap (A (wip1j — i)
= A, (ui+2j — U1 — Uig1j T “ij)
= Ay (Uig2j — 2uip1 + uij)

= Uitgj — Uip2j — 2Uit2j + 215 + Uip15 — Wi

= Uiy3; — Uiy + 3Uip1j — Ui

Now use Taylor series for each term

(3Ar)? (3Ar)3 (3Az)?
Uiy3j = Uij + SATUL ;5 + Tu:t:tij Tu:t:tmij Tummij +oee
(2Ax)? (2Ax)3 (2Ax)*
Ui = Uij + 200Uy, ; + 5 Ugzij 6 Ugzzij 24 azazij T
(Az)? (Az)® (Az)!
Uit1j = Uij + ATugij + Ty Uawij T T Uaawij + oy Uezzwij +
Combine these series we get
Abui; = Uiz — BUivoj + 3Uit1; — Ui
= (1-34+3-1)u;; + (3Azr — 6Ax + 3Ax) uy,;
=0 =0
9 12 3 27 24 3
+ (§A$2 — ?A$2 + 5A3§'2> umxij + (EAJZ'?) — EAJ;P’ + EAJZ'?)) Umx;“'j

=0 =Azx3

81 48 3
— Azt — — Azt 4+ = Azt P
+ (24 7t = 5 AT + T ) Uzaaij +

- At
24"

3
Aiuij = (Ax)gummj + Q(Ax)4u$$$$ij 4.

Now divide by A? to get the answer.
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fx) =e*
A, =1

Approximate f'(x) at © = 2 using forward difference

Foy - LD 1)

+0(.1)

o2l _ o2

£(2) ~ = 7.7711381

Approximate f'(x) at x = 2 using centered difference

f2+.1) - f2-.1)
.2

() ~ +0(.12)

F(2) ~ S = 7.40137735

Approximate f'(x) at © = 2 using second order three point

—f(2+.2)+4f(2+.1) = 3f(2)

7'@) ~ : +0(1?)
_ 2.2 4 2.1 3 2
F2)~ C o — 736248027
Exact answer
f'(2) = € = 7.3890560989 . . .

O(.1) 0(.1?) O(.1)

Forward Centered 3-point
approximate 7.7711381 7.40137735 7.36248927
exact 7.3890560989  7.3890560989  7.3890560989
difference .382082037 01232125 -.0265668

~ .1 ~ .12 ~ .12

Now use Az = .2 Approximate f'(z) at x = 2 using forward difference

f2+.2) - f(2)

f) ~ B

+0(.2)

62'2 _ 62

= 8.179787

f1(2) ~
Approximate f'(x) at © = 2 using centered difference

f2+.2)—f(2-.2)
4

f1(2) ~ +0(.2%)
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/ 022 _ 18
f(2) ~ = = T438415087

Approximate f’(x) at x = 2 using second order three point

—f(24.4)+4f(2+.2) —3f(2)

—e24 1 4622 _ 32
Fl2)~ Z 3¢ 9749733

0(.2) 0(.22) 0(.2)?

Forward Centered 3-point
approximate 8.179787 7.438415087  7.2742733
exact 7.3890560989  7.3890560989  7.3890560989
difference 7907309 .0493589 -.01147827

~ .2 ~ .22 ~ .22

The ratio of errors in forward difference was cut by a factor of 2 when the Az is halved,
for the second order approximation, the error was cut by 4 (= 2?) when Az is halved. So
this is a relatively reliable guide.
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3. Develop first order approximation for u,,, ; using the points u; ;, u; j4+1, ; j+2 nonuniformly
spaced.
Let hy = yj41 — y; and hy = y; — y;_1, then

Uyyij = Auij + Bugjpr + Cugja

with A, B, C' to be determined. Now take Taylor series expansions

2 3
1j+1 — Wiy 1%yig 92 yyrj 6 yyyry
h3 h3

Uij1 = Uij = hatlyij+ Uy — Sty

So
Auij—i—Buin%—C’uu_l = (A—f-B—l-C)U”—f-(Bhl—Chg)uy”

h? h?
B 2
+ 5 +02

I S N
)uyy13+( 6 6)uyyym

Compare coefficients with w,,;; to get

A+B+C=0
Bhl - Chg - 0
h? h3
BL4+C0c2=1
2 + 2
This system of 3 equations can be solved for A, B, C to get from the second
ha
B=C—=
hy
Plugging in the third and solve for C
B 2
ha(hy + hs)
Thus
2 hs 2

B = = —
ho(hy + ho) by hi(hy + hs)
Now use these two in the first

2 2
A=-B-C=- -
hi(hy + hs)  ho(hy + ha)

A 2 (1_%1>_ 2
" hi4+hy \hy  hy)  hihy
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The error term can be found when computing the next term in Taylor series

LS S YO S T
6 67 Y T3\ hithy hithy) MY

(B

The denominator is of order h and numerator of order h? so the method is of order h

2 2 2
T a  h) " g+ )

Let’s check the special case of uniformly spaced points, i.e. h; = hy = h. The above
equation becomes the well known

2 1
Uyyij = —75ti) + 72 i + i1

The error term listed above is

1(h* h?
3\on " 9n Uyyyij =0

and so we have to go to the next term in Taylor and thus we get a second order (as expected
for uniformly spaced points).
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Find the truncation error and order for

—3Uij A i1 — Uijgo

Yyij ™ 2Ay
The Taylor series are
(2Ay)? (2Ay)?
Uijro = Uij + 28yuy;; + Uyyij 6 lwwii T
(Ay)? (Ay)?

Uit = Uij + AYUyij+ Uy ij+ Uy ij

—3uij + A — Uijre = (144 =3)u; + (-28y + 4Ay) uy;
—_—
=0 =2Ay

4Ay%  AAy?
+<_ y+—y>uyyij

2 2

Therefore
—3Uij + 4uij+1 — uij+2

uylj = 2Ay

1
N g(Ay)Quyyyij +o

truncation error

Therefore the approximation is of second order.
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8.3 Irregular Mesh

Problems

1. Develop a finite difference approximation with T.E. of O(Ay)? for 9T /9y at point (i, 5)
using 75 j, T; j+1, 15, j42 when the grid spacing is not uniform.

2. Determine the T.E. of the following finite difference approximation for du/0dx at point
(i, 7) when the grid space is not uniform:

du,wiry — Ay Az )uij — [1 = (Axy Az ) uy
dx ' Ar_(Azy/Az_)? 4+ Az,
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1. Let hl =Yj+2 — Yj+1 and hg = Yj+1 — Yy, then
Tyij = ATi; + BTij1 4 CTijpa + O(Ay?)

with A, B, C' to be determined. Now take Taylor series expansions

h3 h3
Lijm =T+ holyij+ 5 Tyyis + g Tywis +
(h1 + ho)? (h1 + ho)?

Tijrz=Toj+ (et ho)Tyig + ———Tyyij + ——— Tyyis +
So
AT+ BT j 1 + CTijpe = (A+B+C)1ij+ (Bhy 4 C(hy + hy)) Ty

h3 (hy + hy)? h3 (h1 + ho)?
(BEQ + C#)Tyyij + (BKQ + CT)Tyyyij -
Compare coefficients with 7},;; to get
A+B+C=0

Bhy + C(hy + hy) =1

h2 (hy + hs)?
B2 ASAC LIS 7AN
2 +e 2

This system of 3 equations can be solved for A, B, C' to get from the third

=0

e ()

o ()

e ()

Thus

Now use these two in the first

() |

bt = () e = ()

A=-B-C=
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The error term can be found when computing the next term in Taylor series

2
. 1= (522) b3 + (hy + ho)?

h% (hl + h2>3
—=4+C yyyiji = & 2
6 hl + hg — (_h1;r2h2)

(B +C—F—)

yyyij

The denominator is of order h and numerator of order h® so the method is of order h?
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2. Let h. =2; — ;1 and hy = 2,41 — x;, then

Uig1j — (%)2“1‘3'—1 - <1 B (%)2>

uij

Ugij =

2
he () +
Now take Taylor series expansions
h? h3
Wit1j = Uij + hytgij + %Umij + FJFU
h? h?
Ujj—1 = Ujj — hugj+ T Uawij T U

hy

TXT ] +

TXT L] +

he)’ he)’
numerator = (1 — <h—+> -1+ <h—+> ) Uy j

4

_+u

24

h4
ﬂu

BB (h )\

2
_ hi(hgp+h)
- 6

Divide by the coefficient of u,,; we get

R he +he (B2

The error term can be manipulated

~ hi(hy+h) _ _hA(hy + D) _ hohy
6(hy +h_ (1)) 6Lt 6
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8.4 Thomas Algorithm

Problems

8.5 Methods for Approximating PDEs
8.5.1 Undetermined coefficients

8.5.2 Polynomial Fitting

8.5.3 Integral Method

Problems

8.6 Eigenpairs of a Certain Tridiagonal Matrix

Problems
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9 Finite Differences

9.1 Introduction

9.2 Difference Representations of PDEs

Problems

1
1. Utilize Taylor series expansions about the point (n + 2> j) to determine the T.E. of the

Crank Nicolson representation of the heat equation. Compare these results with the T.E.
obtained from Taylor series expansion about the point (7, j).

2. The DuFort Frankel method for solving the heat equation requires solution of the differ-
ence equation

U a
J J _ n _ ,n+l _ _n-—1 n
= (“j+1 U U; ~ + u; )

2AL (Ax)2 J J j—1

Develop the stability requirements necessary for the solution of this equation.

303



1
1. Utilize Taylor series expansions about the point (n + > j) to determine the T.E. of the

Crank Nicolson representation of the heat equation.

n+1 n

uj — " _ o n+1 n+1 n+1
At "= 2(Ax)? [ Uiy U — 2(uj +uj) Ui }
Expand about (n + 1/2, j)
At 1 At 1 At 1 At
n+l __
3 = et S L P Lt O+

All terms on the right are at (n + 1/2, )

" At 1 At 1 At
W = e 5 (G) ue — G(
At)?
term from PDE
t 1 At At
u?jfll = u-+ - U + Azu, + 2( 5 Vg + Axutx

1 1 At At , Ax At (Azx)?
+ §(A$)2um + 6( 5 ) Uy +3(7) Tutt:c 37%%”

Az)? 1 At At , Az At (Ax)?
+ %Umx + 24( 5 )4Utttt + 4(7) ﬁutttaj + 6(7)2%%1&11

At (Az)? (Ax)*
Tty gy M T Yeeee

At 1 At At
u?fll = u+ — Ut — Azu, + 2( 5 Yy — 7Axum

1 1 At At ,Ax At (Ax)?
+ i(Ax)Qum + 6(7)3%&& - 3(7)27%%1 + 37( 6 ) Utz

Az)? 1 At At Az At (Ax)?
— %uacxac + 24( 5 ) gt — 4(7) 24 Uttt T 6(7)2%7%%:5:5

At (Az)? (Ax)*
o=t i= = 4.
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Now collect terms to compute the terms on the right at time n + 1

u?j[ll—Qu?H—i-u?ff = 0-u+0-u+0-uy+0-uy+0-uy
2 At 2
+ (A7) Ugy + 0wy + 0 - Uy + 7(A$) Utz
At (Ax)? Az)?
Divide by 2(Ax)* we get
n+1 n+1 n+1 2 2
Now to terms at time n
At 1 At At
U;-l+1 = Uu-— 7Ut + Axux + 5(7)21}4& - 7Al‘uta:
1 1 At At , Az At (Az)?
+ §(A$)2um — 6(7)3%&& + 3(7)2?%%9: — T%Utaﬂ:
Azx)? 1 At At . Az At (Ax)?
+ %u:vx:v ﬂ(7)4utttt - 4(7)3§Utm + 6(7)2%%1&:@
At (Az)? (Ax)*
g Tgq Utess T gy Memee
At 1 At At
U;-Ll = u-— 7”'5 AZL’U@; + 5(7)21}4& + 7A$utac
1 1 At At , Az At (Az)?
+ i(Ax)Qum - 6(7)3%& - 3( 5 )Q?Uttaﬁ 7%”759:9:
Az)? 1 At At . Az At (Ax)?
— ( 6 ) Ugze T ﬂ(7)4utttt + 4(7)3§Uttm + 6(7)2%%1&:@
At (Ax)? (Ax)?
oty Ty et
Now collect terms to compute the terms on the right at time n + 1
uig —2ui+ui g = 0 u+0-u+0-u +0-uy+0-uy,
2 At 2
+ (AZ) Ugy + 0wy + 0 - Uy — 7(A$) Utz
At (Ax)? Az)?
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Divide by 2(Ax)? we get

ufy —2uf +ul g1 At (At)? (Ax)?

Now the right hand side become

At)? 1
&(uxx + %utmx + E(Ax)quxxx + - )
Combine LHS and RHS
At)? At)? 1
Uy + 24) Ut +---= a(uxx + %utmx + E(Ax)2uxxxx + - )

Thus the truncation error is O ((At)?, (Az)?)

Compare these results with the T.E. obtained from Taylor series expansion about the
point (n,j). To do that we need to exapnd about n, j
2

u?+1:u+Atut+( 5

utt—i_"'

All terms on the right are now at n, j.
At
LHS:ut+7utt+

For the right hand side

At)? Az)2
u?j:ll = u-+ Atut + Axux + %Utt + AtAI‘Um + ( ;) Ugx
(At)? (At)? (Ax)?

Ax)?
6 Ut + BTAl'Uttx + 3TAtutm + ( 6 )
(At)* (At)®

U+~ Uggp + -+

2 6
(At)? (Az)*
2 2

u?“ = u+ Atu; +

Ut — AtA:I:utx -+

u' = w4 Atuy — Azu, + Uy

At)3 At)? Ax)? Azx)3
( 6> uttt_S( 6) AxUttx‘i‘g( gj) Atutm—%umxi

u?jfll - Qu;-‘“ + u?fll = (A2)*Uyy + At(AT) Uy + - -

So
n+1 n+1 n+1
2(Ax)? 2 2
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(Az)* (Az)* (Az)*

Az)? Az)3 Ax)t
u?fl =u— Axu:t + ( I) Ugy — % TXT %UIIII t
50 2 1 (A
Ujpq —2ujFuj, 1 z
2(Ax)? g tee T g Hanas ¥
The RHS now becomes
At 1

2 24
Combine LHS and RHS

At At 1
U + 7utt +-= &(uxx + 7”7&11 + ﬂ(Ax)2uxxxx + - )

Thus the truncation error is O (At, (Ax)?) Notice that it is only first order in time.
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2. The DuFort Frankel method for solving the heat equation requires solution of the differ-
ence equation

j u o« +1 -1
A (e e T T )

Develop the stability requirements necessary for the solution of this equation.

at
Let r = W then DuFort Frankel method can be written as
T
1 -1 1 -1
u}” — u? = 2r (U?H — u}” — u;‘ + u?_l)

or
(1+2r)u*t = 2r (u;-‘+1 + u?_l) + (1 —2r)ul!

Use A"ikmibe

N1 42r) = 27 | @hmd7 — e7hmAT xn — (1 —2r) A" = 0
2cos 3

where 8 = k,,Ax. This leads to a quadratic equation for A
(14 2r)A* —4rcos A — (1 —2r) =0

and the solutions are

A cos 3+ VA
o 2(1+2)
where
A = (4rcosB)*+4(1—2r)(1+2r)
= 16r%cos®’ B+ 4 — 161>
= 16r%*(cos’ B —1) +4
= 4 {1 — 47r%(1 — cos? ﬁ)}
Thus
2rcos 3+ /1 — 4r?(1 — cos?
| 2reos B/l - ar( 9)
14 2r
Consider the 2 cases:
case 1 1 —4r*(1 —cos?3) >0
Then 472 (1 — cos® 8) < 1
. 25
Taking square roots
1
<
"< 553
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In this case the discriminant is nonnegative and we have two real \

\ 2rcos 3 4 /1 — 4r?sin? 3

1+ 2r

Note that the terms under radical are less than or equal 1 and therefore the numerator is
less than or equal the denominator

2rcos B +1

Al <
14 2r

‘Slforallr

Thus the method is unconditionally stable in this case.

case 2 1 —4r*(1 —cos?3) < 0
Then 472 (1 — cos® 8) > 1
——_— ———

sin? 3
In this case the discriminant is negative and we have two complex conjugate A

o 2rcos 3 £ iy/4r2sin? B — 1

1+ 2r

A7 = (Re(A)* + (Im(A))*
2r cos 3 2 N Ar?sin? 3 — 1
1+2r (14 2r)?
472 cos? 3 + 4r?sin? 5 — 1
(14 2r)?
A2 = 4r? —1
A2 4 4r+1
Again the numerator is smaller than denominator for all r,

Al

A=

AP <1

Thus the method is unconditionally stable in this case.
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9.3 Heat Equation in One Dimension

Problems

1. Use the simple explicit method to solve the 1-D heat equation on the computational grid
(figure 59) with the boundary conditions

and initial conditions

Show that if r = i, the steady state value of u along j = 2 becomes

steadystate

"1
Uz = lim > ok—1
k=1
Note that this infinite series is geometric that has a known sum.

t

Figure 59: domain for problem 1 section 9.3
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1. Use the simple explicit method to solve the 1-D heat equation on the computational grid
(figure 59) with the boundary conditions

and initial conditions

wit =l (g — 20 4l y) = (1= 2r)ul +r(u),, +uj )

uy, uy, us are known - initial condition

uj, ui are known - boundary conditions

Therefore
uy = (1 —2r)uy + r(ul + uj) j=2,n=1
uz=1-2r+r(2+2)=1+2r
So
u% =142r
u%’:(l—QT)iﬁi—H(ugjLuf) j=2,n=2
1+2r
uy = (1—2r)(1+2r)+r(2+2)
So
us =1+ 4r — 41
uy = (1 —2r) iﬁi +r(uj + ul) j=2,n=3
14+4r—4r2
uy = (1 —2r)(1 +4r — 4r%) + (2 + 2)
So

uy = 14 6r — 12r% 4 8r°

and in general,
u) = (1 —2r)u)™ +4r

Show that if r = i, the steady state value of u along j = 2 becomes

n
1
steadystate 7.
s =
k=1
In this case
9 1 3 . .
u; =1+ 3= 3 compare this to n = 2 in the sum
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17
compare this to n = 3 in the sum

u§:1+1—Z:—,
3 3 1 15
u§:1+§—1+§:—, compare this to n = 4 in the sum
In general for r = 77 have
n 1n—1
= —u, +1

Uy o2

This is a nonhomogeneous difference equation. The general solution of the homogeneous is

n 1 "
5=(5)

A particular solution for the nonhomogeneous is a constant, which when substituted in the

equation turn out to be 2, so
1 n
uy = =] +2
? (2)

Upon letting n — oo we get the steady state
Ug = 2

If we look at the limit for the infinite series, note that this infinite series is geometric

1
with first term 1 and quotient 3 Thus the sum is

the same as before.
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9.3.1 Implicit method

9.3.2 DuFort Frankel method

9.3.3 Crank-Nicolson method

9.3.4 Theta () method

9.3.5 An example

9.3.6 Unbounded Region - Coordinate Transformation

9.4 Two Dimensional Heat Equation
9.4.1 Explicit

9.4.2 Crank Nicolson

9.4.3 Alternating Direction Implicit

Problems

1. Apply the ADI scheme to the 2-D heat equation and find ©"*! at the internal grid points
in the mesh shown in figure 60 for r, = r, = 2. The initial conditions are

u"zl—:mix along y =0
u"zl—ﬁ along x =0
u" =0 everywhere else

and the boundary conditions remain fixed at their initial values.

y

=1

i=1 2 3 4

Figure 60: domain for problem 1 section 9.4.2
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1. Apply the ADI scheme to the 2-D heat equation and find ©"*! at the internal grid points
in the mesh shown in figure 60 for r, = r, = 2. The initial conditions are

u”zl—:mix along y =0
u”zl—ﬁ along = = 0
u" =0 everywhere else

and the boundary conditions remain fixed at their initial values.

Step 1:
n+1/2 n _ Tz n+1/2 n+1/2 n+1/2
ij — Uy = ) (Ui+1j — 2u, + U1
~—
=1
9 Uy 41 Uiy T Ui
~—
=1
Step 2:
n+1 n+1/2 T n+1/2 n+1/2 n+1/2
Uy~ = Uy = 5 Uit — 25 T F Uy
~—
=1
i Ty ( nt1 _ gyl g gt
9 Uij4+1 Uy 5 Ujj—1
~—
=1

For y = 0, bottom boundary, the index j = 1,

T
no_1_ "
Hi 3Az
" 2
Ugy = 3
" 1
Uz = 3

uy, and wuy, are not needed

For x = 0, left boundary ¢ = 1

1J 2Ay
" 1
U12_§

uY4 is not needed
n _ .n __ :
uy; = u;5 =0, given

0o _ .0 _
Ugy = Ugy =0
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Write the system of equations resulting from step 1 withi=7=2andi=3, 7 =2

n+1/2 _  n+4+1/2 n+1/2 1 2
Ug 2 = U39 — 2uy, +§+§
n+1/2 n+1/2 n+1/2 1
Ug 2 = —2ug, + Ugo +§

1/2
3 -1 Uy / %
. n+1/2 1
1 3 Uz 2 3
The solution is
n+1/2 23
Ug o 18
n+1/2 13
Uz 2 48

For step 2 with ¢ =5 =2

23 13 23\ 1 2
n+1 n+1
/2P i ~Z_9 -
Y22 7R TR (48) tg TSt Ty
i 23
n+1 N
U2 =05

For @ =3, j = 2 step 2 gives

13 13 23 1
nil —2( )+——2u§§rl+—

sz T T To\4g) T a8 3
SO 13
uzy' = (o)
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9.4.4 Alternating Direction Implicit for Three Dimensional Problems

9.5 Laplace’s Equation

9.5.1 Iterative solution

9.6 Vector and Matrix Norms

Problems

1. Find the one-, two-, and infinity norms of the following vectors and matrices:

1 2 3 3 16
(a)| 2 5 6 (b) | 4 (c) < )
3 6 9 5 [
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a. The l-norm (column sum) for the matrix

1 2 3
A=1]12 5 6
36 9

The sum of elements in each column:
1+42+3=6
24+5+6=13
3+6+9=18

The maximum is 18, so

|A[]; = 18

The oo-norm (row sum): The sum of elements in each row is the same since the matrix is
symmetric, so

1Al =18
The 2-norm is the same as the spectral norm since the matrix is symmetric. We need to find

the eigenvalues of A

1—-X 2 3
2 5—X 6 |=-A)\+151+10)
3 6 9-2A\

To get the eigenvalues we have the make the determinant zero, so
A=0

and
M 4+1504+10=0

which gives
15 1
)\ - _E Il: 5 V 185

The spectral radius is the largest eigenvalue in absolute value

15 1
A) = |- — ZV/185| ~ 14.3
p(A) 5 T3
I|A]|> ~ 14.3
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b. Given the vector

3
b=1 4
5
The sum of elements in the column:
3+4+5=12
SO
|[B]]1 = 12

The oo-norm (row sum): The sum of elements in each row is 3,4,5, so
Hb| |oo =9
The 2-norm is given by

[b]]2 = V9 + 16 + 25 = V50 = 5v/2

c. here the matrix is not symmetric

(1)

The sum of elements in each column:

1+7=8

6+3=9
The maximum is 9, so

|Al[: =9

The oo-norm (row sum): The sum of elements in each row is

1+46=7

7T+3=10
The maximum is 10, so

|A]|oo = 10

For the 2-norm, since the matrix is not symmetric, we need

1Al =/ p(ATA)

Now the matrix AT A is

ra (1 7T\(1 6\ _ (50 27
AA_<6 3)(7 3)‘(27 45)
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Now find the eigenvalues

‘50—/\ 27

_\2 _
o7 45_)\‘—)\ 95\ + 1521 = 0

So
\ = % (95 + \/2941)

The spectral radius is

p(ATA) = (95 + v/2041)

DN | —

and the spectral norm is
[|Al]2 ~ 8.638
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9.7 Matrix Method for Stability
9.8 Derivative Boundary Conditions

9.9 Hyperbolic Equations
9.9.1 Stability

Problems

1. Use a von Neumann stability analysis to show for the wave equation that a simple explicit
Euler predictor using central differencing in space is unstable. The difference equation is

At (uf —uf_y
u'tt = Ul —c ax 5 /

J 7 Aazx

Now show that the same difference method is stable when written as the implicit formula

n+l _ , n+l
n+l n At <uj+1 Uj—1
2

2. Prove that the CFL condition is the stability requirement when the Lax Wendroff method
is applied to solve the simple 1-D wave equation. The difference equation is of the form:

u

n+1 __ n CAt n n 02 (At)2

j+1 W1 2(Ax)? (U?H — 2uj + U;'Ll)

3. Determine the stability requirement to solve the 1-D heat equation with a source term

ot Ox?
Use the central-space, forward-time difference method. Does the von Neumann necessary
condition make physical sense for this type of computational problem?

4. In attempting to solve a simple PDE, a system of finite-difference equations of the form

1+v 1+4+v 0
u;-‘“ = 0 1+v v uj.
-V 0 14+v

Investigate the stability of the scheme.
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1. Use a von Neumann stability analysis to show for the wave equation that a simple explicit
Euler predictor using central differencing in space is unstable. The difference equation is

Substitute a Fourier mode

/\neikm]Ax
where I
mm
km:T, Al‘zﬁ,m:o,l,. ,N
we get
N\l gikmidz _ \n ikmjAz A" <€ikzm(j+1)Aac e—ikm(j—l)Aac)
or
Vi ikmAz —ikm Az
A=1-— 5 R I
2isin kyy Az

Taking absolute value

|A| = \/Re()\)2 + Im(\)? = \/1 + v2sin? k,,Axr > 1

This is always greater than 1 since the second term under the radical is positive. Therefore
the method is unstable.

Now show that the same difference method is stable when written as the implicit formula

n+l __  ntl
n+1 n At (uj-l—l Uj—1
2

As before
A=1—1ivAsink, Az
or
1 1 —idvsink,,Ax

A pu— p—
1 +ivsink,Ar 1+ 12sin?k,,Ax

Taking absolute value

1 v2sin? k,, Ax

A = /Re(N\)2 + Im(\)? =
R \/ e+ Im(A) $(1+V28in2/€mA$)2+(1+V25m2kmAx)2

SO

A = ! <1
V14 u2sin’k,Ar

This is always less than or equal 1 since the denominator is larger than numerator. Therefore
the method is always stable.
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2. Prove that the CFL condition is the stability requirement when the Lax Wendroff method
is applied to solve the simple 1-D wave equation. The difference equation is of the form:

2 2
n+l _ n cAt n _.n c (At) n n n
0= = g (e ) 2(Ax)? (0 = 20} 0)
Substitute a Fourier mode as before we get
1% . . y2 . .
A=1—— [P —e |+ | —24¢%
2 —_——— 2 | S ——
2isin 3 2 cos 3—2
Take the absolute value
2 2
IN? = |1+2v%(cosB—1)| + [—vsinpB
—_———
=Re()) =Im(}\)

A2 =1+ 20%(cos § — 1) + v*(cos § — 1)? + v2sin® §
————— —

=—2sin? 4 =—2sin? 4

IA? =1+ 4%sin? g(l/2 -1)
In order to get stability, we must have
¥ —1<0

or
<1

which is the CFL condition.
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3. Determine the stability requirement to solve the 1-D heat equation with a source term

%— @+k
ot~ Yoz T

Use the central-space, forward-time difference method. Does the von Neumann necessary
condition make physical sense for this type of computational problem?

The method is

witt = (14 kAt = 2r)uf + 7 (U?H + U?A)

Substitute a Fourier mode and we get the following equation for A

A=1+kAt —2r+2rcosf=1+2r(cos— 1)+ kAt
————

=—2sin? 2

)\:1—4rsin2§+kAt

Ifr< % then
A <1+ O(A?)

The At term makes sense since ku term allows the solution to grow in time and thus A (and
the numerical solution) must be allowed to grow.
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4. In attempting to solve a simple PDE, a system of finite-difference equations of the form

14+v v 0
u;-‘“ = 0 1+v v uj.
-V 0 1+v

Investigate the stability of the scheme.

For the stability, we need ||A|| <1 or that |eig(A)| < 1. To compute the eigenvalues we
need to solve

1+v—A v 0
0 1+v—A v =0
—v 0 1+v—A
or
14+v—-XN>=v"=0
So
v
1+v—\={ vermi/3
V€47ri/3
1
AN={ 1+4+uv(1—e2mi/3
1+v(1—etmi/s

Note that the last two eigenvalues are complex conjugate of each other. Now clearly the
absolute value of the first is 1. The absolute value of the other two is the same and it is

(oo (o) (o)

or

2 2 2
14+2v+1v2 - 2v(l+v) cos?W—i—l/2 (:052?7T —|—sin2?7T

=1

=

So
Al = V14 3v+ 302

In order for this to be less than or equal 1, we have
1+3v+32 <1
3v+ 37 <0
v(14+v) <0
Therefore

-1 <v<0
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9.9.2 Euler Explicit Method
9.9.3 Upstream Differencing
9.9.4 Lax Wendroff method

Problems

1. Derive the modified equation for the Lax Wendroff method.
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1. Derive the modified equation for the Lax Wendroff method.

n+1 n n n 2
J Y Uit — Ujq _ ¢ At n n n

A7 +c N = oA (ujJrl 2u; +uj_1) (1)
Expand each fraction in Taylor series (all terms on the right side of the following equations
are evaluated at the point (j,n)

u

u?tt —un At At?
2 J - — — O(A#
At Ut + 9 Ut + 6 Uttt + ( )
ut, —u Ax?
c% = cu, + chum;E + O(Ax?)
A out, —2ut+ut 2 c?
—At-* LI — — Aty + — AAT Uy
2 Az? g Sltlas T oy RIATU
Now substitute these expansions in the Lax Wendroff scheme (1)
At At? Ax? c? c?
Uy + 7utt + Tuttt + cu, + CTuacacac = gAtuacac + ﬂAtAx2uacacxac
Reorganize
At At? Az?
U = —ClUy + — <c2um — utt) — —— Uy — C—— Uy, + higher order terms (2)
2 6 6
Differentiate this (2) with respect to ¢
At
Upp = —Clgs + - (cQU;m — uttt) + quadratic terms (3)
Substitute in (2)
t/, At At? Az?
U = —CUy + o (C Ugpg + CUgp — 3 (C Uggt — uttt)) - Tuttt - CTumcx
Collect terms
At 2 1 Ax?
Up = —Clly + C— (Cligy + Ugt) + AL —C—umt + —uy | — c—xumx + cubic terms  (4)
2 4 12 6
Differentiate (2) with respect to x
At
Uty = —ClUyy + - (CQ’Lme — um) + quadratic terms (5)
Substitute in (4)
N At ( N At ( 5 )> N
Uy = —ClUp+ c— | Clpy — Clgy + — (C Upps — Uste
t 2 2 tt
(6)
+ A c + ! A’ + cubic t
——Uggt + — Ut | — C——Ugay + cubic terms
N D 6
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Differentiate (2) with respect to x twice
Upgy = —ClUgey + linear terms
Linear terms are enough because we have At* in front. Also get
Upy = —ClUgge + linear terms
= —c(—CUgyy) + linear terms
= PUyye + linear terms

Uy = —ClUgy + linear terms

= —AUyy, + linear terms

Substitute in (6)
At? ( )

U = —cUuy + c—— (Pgpr — Cliyyy + linear terms) +

2
, [ ¢ . 1 3
+ At <_Z (—CUggy + linear terms) + T (—C uacacac))

Az? ,
—  C——Ugyy + cubic terms

6

Collect terms:

o [ 3 Az? _
U = —cuy, + At Zumx — —Ugpa | — cTumx + cubic terms

12
or X A2
c T
U = —CUy + AtQEumx — cTumx + cubic terms
In terms of v
_ Cr 9 2 )
Up = —ClUy + 6 (y — 1) AUy, + cubic terms
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9.9.5 MacCormack Method

9.10 Inviscid Burgers’ Equation
9.10.1 Lax Method

9.10.2 Lax Wendroff Method

9.10.3 MacCormack Method

Problems

1. Determine the errors in amplitude and phase for § = 90° if the MacCormack scheme is
applied to the wave equation for 10 time steps with v = .5.
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1. Determine the errors in amplitude and phase for § = 90° if the MacCormack scheme is
applied to the wave equation for 10 time steps with v = .5.
Recall that
G| = ‘1 —1*(1 —cosf3) — iysinﬁ‘

= \/[1 —12(1 = cos B)]° + (—vsin §)2
Given that § = 90° then cos 3 = 0 and sin 3 = 1. Substitute these values and the given
v =.5in |G|, we have

Gl = V- 51— 0+ (~5-1)2

= /1— 25 +25—F \/7

10
10 13 1315
a=l5| =) ~

After 10 steps

The error in amplitude is 1 — .354 = .646
Phase error is given by 10(¢. — ¢) where ¢, = —fv = —% Now

—vsin v 1 2
tan¢ - = — — _2 —_ ——
1 —v2(1 — cos 3) 1—v2 3 3
Therefore
¢ ~ —.b88

So the phase error is
10(—% +.588) ~ 1.974 radians
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9.10.4 Implicit Method

Problems

1. Apply the two-step Lax Wendroff method to the PDE

ou OF u

o Tor Tl Y

where F' = F(u). Develop the final finite difference equations.

2. Apply the Beam-Warming scheme with Euler implicit time differencing to the linearized
Burgers’ equation on the computational grid given in Figure 61 (use ¢ =2, up =2, Az = 1)
and determine the steady state values of u at j = 2 and 7 = 3. the boundary conditions are

and the initial conditions are

Do not use a computer to solve this problem.

t

n=0

=1 2 3 4

Figure 61: Computational Grid for Problem 2
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1. Apply the two-step Lax Wendroff method to the PDE

ou OF u

ot " or T =Y

where F' = F(u). Develop the final finite difference equations.
Recall that for

U + Fx = HUgy
we had
Step 1:
n+1/2 1 ( n n n n Uy + Ugy
i 2 (“j+1/2 - “j—1/2) + Fivip — Filip _ j+1/2 i-1/2
%At Ax 2
Step 2:
n+1 n n+1/2  n+1/2 n
S A e
At Ax xm 7
In our case we have u,,, instead of pu,,, so
Step 1:
n+1/2 1 n n n n Uy gy + Ulggq
U, ) (uj+1/2 + Uj71/2) i Fj+1/2 - Fjﬂ/Q + j+1/2 j=1/2 _ 0
%At Ax 2
Step 2:
n n n+1/2 n+1/2 n
w -y Fiap — Fo
+ = UlUgza 0
At Ax j
We need utl,,, approximated to O(Axz?), one can show
no 4ul  — 8ul} + 8u?_,, —4u’_
Uppa| = g+l J+1/2 : j—1/2 j—1 i O(AxQ)
j Ax
Using this approximation shifted to j + 1/2, we get
. " Auily g — 8uf +8uf —4uj_, ),
+1/2 Ax3
TTX i1/ AZE?’

Substitute these in step 1
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Step 1:

n+1/2 1(,n n n n
Yi T3 (“j+1/2 + “j—l/?) I Fivae = Fitae
1At Az
I Auilyy o — 8uf + 8uf_y —4uj_y ),

1, 4u?+3/2 — 8u§-‘+1 + 8u? — 4u;.‘71/2 B
Ujy1)2 =0

+ 2 Ax3

1
Multiply through by §At and collect terms

Step 1:
n+1/2 1 n n 1 At n n
uj - 3 (4512 + 05 1j0) + Az (Eferp = Eapa)
At n n n n
Step 2:

At
nt1 n n+1/2 n+1/2
upt Tt A (Fra = F)

t n n n n n
+ u’ <4Uj+1 — 8ujy )y + Suj_y )y — 4uj—1) =0

Ax3
Another possibility is to include uu,,, term into F'. Let

2

1
G = Ulyy — =
uu 5z

then
oG 1

ox

So now the equation is

or
w4+ (F+G),=0

For this equation we can use Lax Wendroff method as in class.
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2. Apply the Beam-Warming scheme with Euler implicit time differencing to the linearized
Burgers’ equation on the computational grid given in Figure 61 (use ¢ =2, up =2, Az = 1)
and determine the steady state values of u at j = 2 and j = 3. the boundary conditions are

and the initial conditions are
uy =0, uy =0

Do not use a computer to solve this problem.

u}‘“ —u? n+1 n+1
—— t CUy = HUzy
At j j
Let v =c— and r = u—— then

14
n+l _ , n 7 n+l _  n+l n+l n+1 n+1
w;T = 2(uj+1 (8 1)+T(uj71 2u; —i—ujH)

or
— (— + r) wit (2 + Duf T+ (5 - 7‘) uply = uj

In our case ¢c = 2, u = 2, Ax = 1 and so if we let At = 1, then r = v = 2. Using these
values in the above equation, we get

1 1 1
=3ui )+ 5uf T — ) =
For n =1 (don’t forget to employ the boundary conditions)

—3-1+5u5—u3 = 0

—3ui+sui—4 = 0
The solution of this system of two equations is
19
2 g
27 5
29
2 —_
"= 9
Now go to the next time step n = 2
19
—3+5uy —u; = —
+ ouy — Uj 2
29
_3 3 5 3 4 -
Uy + OU3 2

The solution of this system of two equations is
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542
="~ 111
U 181 98

ujy ~ 1.7355

The next time step n = 4, we have
uy ~ 1.1970

uz ~ 1.8653

The next time step n = 5, we have
uj ~ 1.2205

uj ~ 1.9053
The next time step n = 6, we have
u§ ~ 1.2276
u§ ~ 1.9176
Analytic steady state solution:
Clgy = UUgy
u(0) =1
u(3) =4
3

=1
U +1—e3

(1—e)

S0
u(l) = uy ~ 1.2701

u(2) = uz ~ 2.0043

We are getting there, it may require few more steps. Since the method is unconditionally
stable, we can choose a larger time step.
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9.11 Viscous Burgers’ Equation
9.11.1 FTCS method

9.11.2 Lax Wendroff method

9.11.3 MacCormack method

9.11.4 Time-Split MacCormack method
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