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1 Analytic

PPT2 (Position and Partials as functions of Time)
Brouwer [4, 5, 6], Lyddane [39]

SGP (Simplified General Perturbations)
Kozai [29, 28].

SGP4 (Simplified General Perturbations)
Lane [32] and Lane and Crawford [33]. Based on an early work of Brouwer
and Hori [5, 6] to include drag effects.

SDP4 (Simplified Deep-space Perturbations)
Hujsak [25]. Includes some deep-space perturbations.

SGP8 (Simplified General Perturbations)
SDP8 (Simplified Deep-space Perturbations)

ANODE (ANalytic Orbit DEtermination)
Sridharan and Seniw [49] MIT, Lincoln laboratory.

HANDE

Hoots [22] and Hoots and France [24, 23]. Hoots applied the method of
averaging to Brouwer’s theory. Hande computes atmospheric density from
the Jacchia 1970 model.

ASOP (Analytic Satellite Orbit Predictor)
Mueller, et al [42]. Poincaré-similar elements in conjunction with Von Zeipel’s
[41] solution method.

AOPP (Analytic Orbit Prediction Program)
Russian
Danielson et al [14]

Coffey et al [11, 12]



2 Semi - Analytic

SALT (Semi - Analytic Liu Theory)
Liu and Alford [35, 36] and Liu [37].

DSST

Direct descendent of the Goddard trajectory determination system (GTDS)
averaged orbit generator [21].

Early [17]. Equinoctial elements Cefola et al [8, 9]. The mean equations are
integrated using a Runge - Kutta method. Three point Hermite (5" order)
interpolator.

Fourier series for the short periodic Cefola and McClain [10]. See also Daniel-
son et al [15, 16] and Neta et al [44].

Kaufman

Kaufman [26]. Includes secular, long and medium periodic terms due to
third body perturbations. The resulting equations of motion are numerically
integrated to obtain a “mean” ephemeris of the satellite. Perturbation theory
is used to recover the short period terms due to the Sun, Moon and zonals
of the Earth.

STOAG for LEO Long-term evolution of satellites in low earth orbits. see
http : //sirrah.troja.mf f.cuni.cz/ ales/density,herm/pohtd/index.php
Online calculation of long-term changes in the orbital elements of LEO satel-
lites over extended time periods using the STOAG theory of motion based
on atmospheric drag with the TD88 model density, the zonal geopotential
coefficients up to J9 and lunisolar perturbations. The code is free to down-
load.
The STOAG theory of motion for LEO satellites
The detailed information about the theory and examples of its application
to the real world satellites can be found in [1, 2].



3 Numerical (Special Perturbations)

SPEPH (Special Perturbation EPHemeris)
Code used by NAVSPACECOM and AFSPACECOM.

POD (Precision Orbit Determination)
Klosko [27]. Developed for geodetic applications and uses 10 order Cowell
integrator.

TRAJ1 & TRAJ2
Lear [34] use Nystrom - Lear integrators of orders four and five.

Pt. Mugu
Crawford [13]. Adams - Moulton 8 order predictor corrector with Runge
Kutta to start the integration.

TMPEST (The Millston Precision Orbit ESTimator)
MIT Lincoln Lab.

GEODYN II
McCarthy et al [40]. Evolved from GEODYN; originally written for NASA /Goddard
space Flight Center by EG&G Washington Analytical Services Center, Inc.

TRACEG6

Buechler and Walker [7]. Cowell’s method (eighth - order predictor - corrector
Gauss - Jackson scheme) with a fourth order Runge Kutta method for the
integrator starting and for halving.

ASAP (Artificial Satellite Analysis Program)
Kwok [30]. JPL. Cowell’s method (Runge Kutta 8 order and compares to
7" order to estimate the truncation error).

LOP (Long-term Orbit Propagator)
Kwok [31]. Analysis tool for life - time studies of orbiting spacecrafts.

Picard-Chebyshev
Fukushima [18, 19, 20].



4 Web resources

1. SSCWeb Graphics Are Operational

From: Bob McGuire jRobert.E.McGuire.1@Qgsfc.nasa.govy,

Just in time for your last minute 1997 Fall AGU or other meeting prepa-
rations, and although we're still tidying things up just a bit, online orbital
graphics from the Satellite Situation Center (SSCWeb) are now fully up and
running. With a database of some 45 geocentric missions with extensive and
the latest predictive as well as definitive orbit information, please select the
“Locator Graphics” option under http : //sscweb.gs fc.nasa.gov/ and take a
look at what SSCWeb can now do to plot

- Spacecraft orbits, including multiple spacecraft in a number of different
coordinate systems and with your choice of automatic or user-specified scales;

- Spacecraft orbits tracked on the Earth’s surface, either radially or field-
line traced, including the ability to show multiple spacecraft, a choice of
projection perspectives, ground station location overlays and the ability to
“zoom” for detailed views of specific geographic regions.

The SSCWeb interface operates in two modes (standard and advanced)
to support both new or occasional users along with users needing to tap more
complex capabilities of the codes. The Web interface features an innovative
use of “hidden fields” to allow users to save and restore query specifications on
their local machines without the need for the server to track their individual
“sessions.” Missions supported include both older operating missions (e.g.
IMP8, SAMPEX, Yohkoh), the current missions of ISTP (e.g. Wind, Geotail,
Polar, SOHO), the Interball program and ACE, plus upcoming missions such
as Equator-S.

And if you’ve forgotten, also please note that SSCWeb remains a publicly-
available tool at your disposal to produce list (ASCII) output of

- Spacecraft locations in many different coordinate systems with various
field parameters and geophysical regions available to output as desired, and

- A sophisticated query engine to identify conjunction times and con-
junction conditions, including region co-occupancy and radial or magnetic
alignments of spacecraft or spacecraft with ground stations.

The SSC and SSCWeb are a joint effort of NASA’s GSFC Space Physics
Data Facility (system definition, development and direction), the National



Space Science Data Center (SSC operations staff) and the ISTP Science
Planning and Operations Facility. Your ongoing comments (good or bad)
and suggestions to this service are welcomed.



5 Parallel Versions

PPT2 (Position and Partials as functions of Time)
Phipps [47], and Phipps et al [48] parallelized the code on a hypercube.
Stone [50] used PVM.

SGP (Simplified General Perturbations)
Ostrom [46] parallelized the code on a hypercube.
Brewer [3] used PVM.

SGP4 (Simplified General Perturbations)
Ostrom [46] parallelized the code on a hypercube.
Brewer [3] used PVM.

SDP4 (Simplified Deep-space Perturbations)
Ostrom [46] parallelized the code on a hypercube.
Brewer [3] used PVM.

DSST
Wallace [51]

SP
Lustman, Neta and Gragg [38], Neal and Coffey [45] and Fukushima [19, 20].
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