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A b s t r a c t ~ S c h e m e s  for the  solution of linear init ial  or boundary  value problenm on a hypercube 
were developed by Kat t i  and  Neta  [1] and  tested and  improved by Lustman,  Neta  and  Kat t i  [2]. 
Amov.g other  procedures for parallel computers,  fully implicit Runge-Kut ta  methods  were discussed 
by Jackson and  Norsett  [3] and  Lie [4]. 

Here, we develop a me thod  based on extrapolat ion to the limit, which is useful even for nonlinear  
problesms. Numerical experiments show excellent accuracy when low order schemes are combined 
wi th  polynomial extrapolation.  

1. I N T R O D U C T I O N  

In this paper, we discuss the numerical solution, on a parallel computer, of a system of first 
order ordinary differential equations with initial data. Fully implicit Runge-Kutta methods were 
discussed by Jackson and Norsett [3] and Lie [4]. Lie assumes that each processor of the parallel 
computer has vector capabilities. Katti and Neta [1] have developed schemes for the solution of 
linear initial value and boundary problems. These schemes were tested and improved by Lustman 
et al. [1]. 

Here, we consider the solution of Initial Value Problems (linear or not), based on extrapolation 
to the limit. The system is solved independently by each processor, using different step sizes, 
then the results are combined by extrapolation to obtain higher accuracy. 

In the next section, we describe the ordinary differential equation solution schemes and the 
extrapolation procedure. Section 3 will detail the parallel algorithm. Numerical experiments are 
summarized in the last section. 

2. O D E - I N T E G R A T I O N  AND E X T R A P O L A T I O N  

There are numerous schemes for the solution of first order IVPs: 

y'(z)  = f ( z , y ( z ) ) ,  
y ( a ) = y a ,  (1) 

where y and f are vector valued functions and ya is a vector of initial values. See Fatunla [5], 
Lambert [6], Gear [7], Shampine and Gordon [8] and others for numerical methods for ordinary 
differential equations. See also Deuflhard [9] for review of extrapolation methods. 

We demonstrate our idea with two schemes of low order, one of which possesses an asymptotic 
local error expansion in even powers of h (the mesh size). The following are used: 

1. Euler's method: 
y.+l = y. + y.). (2) 
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2. The modified midpoint rule, due to Gragg [10,11], in the form: 

h 
z½ = y0 + ~f(x0,  y0), 

yl = yo + h f ( z½,  z½), 

zn+½ = zn_ ½ + h f ( z n , y n ) ,  

Yn+l  --  Yn " 4 - h f ( z n + ½ , z n + ½ ) .  

n =  1 , 2 , . . . ,  
(3) 

Euler's scheme is explicit, first order, and its local truncation error is given by: 

Yn - y(nh)  = A l h  + A2h 2 + A3h s + . . . .  (4) 

It can be shown that  each stage of extrapolation will lead to one order of h increase in accuracy. 
Gragg's scheme is explicit, second order, and its local truncation error is given by: 

Yn - y(nh)  = B2h 2 + B4h 4 + . . . .  (5) 

Thus, each extrapolation stage leads to a gain in accuracy of 2 orders in h. There  are also implicit 
schemes with local truncation error containing only even powers, but their use with extrapolation 
is discouraged (Fatunla [5]), as these expansions are valid only if fully converged solutions are 
obtained at each integration step. Thus, Gragg's method, which has the advantage of being 
explicit, is the scheme we have decided to employ. 

Polynomial and rational extrapolation will be used. Suppose p processors have generated the 
values y(z i )  using various steps hr. We consider the set of points: 

{h~ , y ( z i , h~ ) [ r=O,  1 , . . . , p - 1 ;  i = 1 , 2 , . . . , M } ,  (6) 

where zl  is the mesh point at which all the processors have obtained a numerical solution to our 
problem. At each point zi, it is possible to define a polynomial IIp_l(h) of degree p - 1 or a 
rational function R . , . ( h )  (where # is the degree of the numerator, and v is the degree of the 
denominator), which satisfy: 

I Ip- l (hr)  = R,,v(h~) = y(z i ,  hr). (7) 

Aitken [12] and Neville [13] each independently proposed a scheme whereby the polynomial is 
generated recursively. A table is constructed having as first column 

Tro = y(zi ,  hr). 

The sth column, consisting of entries T~, is computed by: 

Trs Tr+l,s-1 + Tr+l,,-1 - Tr ,-1 = ' , s = 1 ,2 , . . .  , p -  1; 
( h-h~ ' r  - 1 

h r + ,  ] 

r = o,  I , . . .  , p -  s .  (8 )  

Here, 7 = 2 if Tr0 has an asymptotic error expansion in powers of h 2, and 7 = 1 otherwise. 
"Experience has shown that  extrapolation based on rational functions is superior to polynomial 

extrapolation particularly in the neighborhood of a singularity" (Fatunla [5]). Bulirsch and 
Stoer [14] adopted the rational function 

# 
crj h 7j 

R . , ~ ( h )  = ./=0 
M 

E ~./h,./ 
./---0 

(9) 

where 



and 
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(10) 
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Figure 1. 

Note that  in order to minimize communication, we let processor i be the i th processor as given 
by Gray code. 

Ts0 

Tso 
T51 

T61 
T52 

TTo 

v = p - I - ~. (ii) 

The formula used to construct the table is then 

Tr-1 = O, (12) 

Tro = y(zi, hr) ,  r = O, i , . . .  ,p  - I ,  (13) 

T r + l , . - 1  - T r , . - 1  (14) 
Tr, = T~+I,,-1 + { h h ~ ]  ~ [ 1 -  T,+,,._,-T,,._, l - 1' 

%~ h,+, ] T,+,.,-,-T.+,.,-2 j 

s = 1,2,...,p-- i, r=O,l,...,p--s--l. 

Wuytack [15,16] constructed Tr, in a more efficient way (fewer arithmetic operations). 

3. P A R A L L E L  P R O C E D U R E  

In this section, we describe the implementation of our idea to solve the system of initial value 
problems (1) on an INTEL hypercube. Let the r th processor, out of p, solve the same problem (1) 
using step size hr, where 

h r = P - H ,  r = l , 2 , . . . , p ,  (15) 
r 

and any numerical scheme (same one for all processors). Then,  clearly, all processors have a 
solution to some accuracy (depending on the processor) at all points 

zj  = a + (j  - 1)pH. (16) 

This choice of hr is taken to have an almost balanced load. These values are extrapolated (by 
either a polynomial or a rational function) to obtain the solution at those points to much higher 
accuracy. For example, if Euler's scheme is used, one can get a solution at these points zj  to 
O(hP). Gragg's method will yield a solution accurate to O(h2n). 

Note that  the first processor is using the largest step size and therefore, it will finish first. The  
second one will finish soon after. As soon as the second is done, the first can star t  computing 
the elements in the first column of the extrapolation table. The second processor works on the 
next  column as soon as the first two entries in the previous column are ready. In Figure 1, we 
indicate which processor works on which column. 
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4. NUMERICAL E X P E R I M E N T S  

In this section, we list some of the systems solved and compare the accuracy obtained by 
Euler's and Gragg's methods when combined with either polynomial or rational extrapolation. 
In each case, we used p processors, p = 2, 3,..., 8. 

The first example is 

y'-y sinz, 0<z<5, (17) 
y(0)----e -I • (18) 

The exact solution is 

ye(x)=e -c°6~. (19) 

In Table 1, we summarize the results of our experiment with Euler's method and extrapolation 
using p processors. It is clear that the results using polynomial extrapolation are much better. 
The accuracy ([JYh--Ye [J0, where Yh is the result after extrapolation) is increasing with the number 
of processors. The results using rational extrapolation are not as good and not improving after 
using 5 processors. 

To measure the order of the method, we have computed the solution Yh and Yh/2 (the solution 
after extrapolation with step h/2 instead of h). The columns entitled 'error reduction' in each 
table report the error quotients 'coarse/fine.' In Table 1, this quantity was always below the 
theoretical value of 2 P. With rational extrapolation, the results are disappointing. 

Table  1. Eu le r ' s  scheme.  

POLYNOMIAL RATIONAL 

Processor coarse (1/4) fine (1 /8 )  error coarse (1 /4 )  fine (1 /8 )  e r ror  

reduction reduction 

1.55-02 

1.17-03 

6.71-05 

3.05-06 

1.19-07 

3.92-09 

1.14-10 

4.54-03 

1.78-04 

5.23-06 

1.22-07 

2.42-09 

4.06-11 

5.01-13 

3 

7 

13 

25 

49 

97 

228 

5.15-03 

3.52-04 

9.04-04 

1.11-04 

6.38-06 

1.26-05 

2.11-04 

1.26-03 

4.03-05 

4.23-05 

2.11-06 

1.05-06 

5.67-05 

5.29-05 

4 

9 

21 

53 

6 

0 

4 

The results using Gragg's method are given in Table 2. 

Table 2. Gr~g's method. 

P O L Y N O M I A L  R A T I O N A L  

Proces so r  coarse  (1 /4)  fine (1 /8)  er ror  coarse  (1 /4 )  fine (1 /8 )  e r ror  

r educ t ion  r educ t ion  

3.06-06 

7.72-09 

1.66-11 

3.01-14 

4.73-15 

4.81-15 

3.36-14 

1.88-07 

1.17-10 

6.20-14 

3.99-15 

2.92-15 

1.20-14 

2.98-14 

16 

66 

268 

8 

2 

0 

0 

6.72-06 

9.99-09 

2.06-10 

1.59-10 

6.04-12 

4.37-13 

1.22-08 

4.16-07 

1.54-10 

2.87-12 

2.18-13 

1.08-13 

1.44-14 

7.60-10 

16 

65 

72 

729 

56 

30 

16 

Note that the accuracy using Gragg's method is higher. Machine accuracy (double precision 
used) has been reached with five processors if polynomial extrapolation is used, but seven pro- 
cessors are required when rational extrapolation is employed. The error quotient is close to 
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the theoretical one (4 p) until machine accuracy is reached. 
disappointing. 

The second example is a system of N equations 

- zj+---------y-, j = 1 , 2 , . . . , N -  1 

yl N = N yN Yl  
X2 ' 

subject to the initial condition: 

y j ( 6 ) = 6 / ,  j = I , 2 , . . . , N .  

The exact solution is 

Again, rational extrapolation was 

6 < z < 10, 

(20)  

(21) 

y j = ~  j = 1 ,2 , . . . ,N .  

The results are summarized in Tables 3 (Euler) and 4 (Gragg) for N : 4. 

(22) 

Table  3. E u h r ' s  scheme.  

Processo r  

P O L Y N O M I A L  

coarse (2) 

1.33-01 

3.89-02 

1.06-02 

2.78-03 

6.82-04 

1.55-04 

3.24-05 

fine (1) 

5.70-02 

1.07-02 

1.88-03 

3.02-04 

4.40-05 

5.79-06 

6.94-07 

error  

r educ t i on  

2 

4 

6 

9 

16 

27 

47 

c o ~  (2) 

6.95-02 

1.03-01 

2.69-03 

1.39-03 

3.99-03 

8.73-05 

5.35-03 

Table  4. Gragg's  m e t h o d .  

R A T I O N A L  

~ e  (1) 

2.56-02 

2.97-03 

3.54-04 

4.61-04 

1.69-05 

1.34-05 

1.54-03 

error  

r e d u c t i o n  

3 

35 

8 

3 

236 

7 

3 

P roces so r  

P O L Y N O M I A L  

coarse (2) 

7.51-03 

4.56-04 

2.06-05 

6.89-07 

1.80-08 

3.85-10 

7.10-12 

~ e  (1) 

7.18-04 

1.27-05 

1.59-07 

1.45-09 

1.03-11 

5.38-14 

2.55-14 

error  

r educ t ion  

10 

36 

130 

475 

1748 

7156 

278 

The same conclusions can be reached for this system. 
The next example is from orbital mechanics. 

Y~ = Y2, 

= _y__l 
r 3  J 

Y3 : Y4, 

= _y_3 
7,3 ' 

y ( o )  = , 

co~,e (2) 

5.00-03 

1.39-04 

8.22-06 

7.29-07 

3.61-06 

8.62-09 

1.15-05 

R A T I O N A L  

~e (1) 

4.79-04 

1.12-06 

1.40-07 

1.25-08 

1.25-08 

1 .60-10 

7.35-07 

error  

reduct ion  

10 

124 

59 

58 

289  

54 

16 

O < z < 4 ,  

where r 2 = y~ + y~. 

(23)  

(24)  
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The exact solution is 

L. LUSTMAN et aL 

COSX 1 [-  sinz 
y. (z )  = | sin z " (25) 

L COSZ 

The results are given in Tables 5 (Euler) and 6 (Gragg). The accuracy of Euler's method is much 
lower, and extrapolation didn't improve the results much. 

Table  5. Eu le r ' s  scheme.  

P O L Y N O M I A L  R A T I O N A L  

Proces so r  c o ~ e  (.4) nne (.2) 

5.48-01 3.31-01 

3,0f~01 1.42-01 

1.64-01 5.68-02 

8.45-02 2.09-02 

4.13-02 7.12-03 

1,91-02 2.23-03 

8.38-03 6.50-04 

error  

r educ t ion  

2 

2 

3 

4 

6 

9 

13 

coarse  (.4) 

8.96-01 
2.56+00 
4.13+00 
2.67+00 
5.30-01 
5.17-01 
4.00-01 

~ne (.2) 

7.80-01 

5.58-01 

5.80-01 

1.15+01 

3.72-01 

7.75-01 

2.72+00 

error  

reduction 

Table 6. Gragg's method. 

POLYNOMIAL RATIONAL 

coarse  (.4) fine (.2) er ror  coarse  (.4) fine (.2) P roces so r  

2 4.14-03 

3 7,44-05 

4 8.52-07 

5 6.72-09 

6 3.95-11 
7 1.80-13 

8 1.59-13 

2.95-04 

1 . 3 ~ 0 6  

4.04-09 

8.12-12 

2.20-14 

8.43-14 

1.50-13 

We conclude with a linear system 

r educ t ion  

14 

54 

211 

828 

1750 

2 

1 

2.02-03 
1.57+00 
3.31-03 
2.96-04 
1.93-05 
1.79-06 
5.8%05 

2.43-02 

1.73-04 

1.67-05 

1.36-06 

8.96-08 

1.51-08 

3.40-06 

er ror  

reduction 

I 

9075 

198 

218 

215 

119 

17 

y~ - A y ,  O < x < 4, 

y ( 0 )  = , ( 2 6 )  

where .4 = (aij) is a symmetric tridiagonal matrix whose elements are 

a . = - 2 ,  i = 1 , 2 , . . . , N ,  (27) 

a i , i + l  = a i + l ,  i = 1,  i = 1, 2 , . . . ,  N - 1. 

This system results from approximating the one-dimensional heat equation 

ut = u ~ .  ( 2 8 )  

The results are summarized in Table 7. The error quotient is much better than 2 p when using 
polynomial extrapolation. The accuracy, though, is not very high, and in linear systems, it is 
cheaper and more accurate to use the idea developed by Lustman et al. [2]. 
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Table 7. Eu]er's scheme. 

71 

POLYNOMIAL RATIONAL 

Processor coarse (1/2) fine (1/4) error coarse (1/2) fine (1/4)  error 

reduction reduction 

7.88-01 

3.75-01 

1.27-01 

3.40-02 

7.82-03 

1.62-03 

3.11-04 

2.16-02 

2.98-03 

6.49-04 

1.18-04 

1.69-05 

2.01-06 

2.07-07 

36 

126 

196 

288 

463 

806 

1502 

8.21-01 

3.02-02 

5.86-02 

2.02-02 

5.36-03 

1.64-03 

5.06-03 

5.78-02 

4.98-03 

3.40-03 

3.01-04 

5.89-04 

2.27-05 

1.10-03 

14 
6 

17 

67 

9 

72 

5 

To show the benefit of this parallel algorithm, we have measured the speedup defined by 

Tp(1) (29) S = Tp(p)' 

where Tp(i) is the execution time required when using i processors. This is the most common 
formulation of speedup. 

As defined, the speedup should ideally be directly 
used. The efficiency, defined as 

S 

P 

provides a quantitative measure of how closely the observed speedup approaches the ideal result. 
We have measured the execution time required for Gragg's method with polynomial extrapolation 
to solve (20)-(22) on an eight processor hypercube versus the time required by one processor to 
execute the same task, using h -- .1. We found that  

proportional to p, the number of processors 

(30) 

thus, 

Tp(1) - 759, 

Tp(8) = 152; (31) 

S = 4.96, 

Z : .62. (32) 

When the amount of work is increased (by taking h = .05), the speedup and efficiency are 

1509 
S - - -  - 6.08, 

247 

E = .76. (33) 

It is clear that  our previous algorithm for linear systems (Lustman d aL, [2]) is more efficient 
and should be used when solving linear problems. 
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