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A b s t r a c t - - T h e  idea of super-implicit methods (requiring not just past and present but also future 
values) was suggested by Fukushima recently. Here, we construct P-stable super-impliclt methods 
for the solution of second-order initial value problems. The benefit of such methoda is realized when 
using vector or parallel computers. © 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper, we discuss the numerical solution of a special class (for which y' is missing) of the 
second-order IVPs, 

y" (x) = f (x,y (x)) ,  y (0) = y0, y' (0) = y~. (1) 

There is a vast literature for the numerical solution of these problems as well as for the general 
second-order IVPs, 

y" (x) = / (x, y (~), ~' (x)) ,  y (0) = y0, y' (0) = v~. (2) 

See, for example, the excellent book by Halter et al. [1] or Lambert [2]. 
For the multistep method to solve the second-order IVP (1), 

k k s 

Z aiy,+~ = h 2 Z bJ,~+~, 
i=O i=O 

we define the characteristic polynomials, 

k 

p(z)  = Z a~zi 
~=0 
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and 
k r 

, ,  (~) = ~ b,~ ~. (5) 
i.=O 

A method is called explicit if k' = k - 1 and implicit if k' = k. Later,  we will consider other 
possibilities for k'. The  order of the method is defined to  be p, if for an adequately smooth 
arbi t rary test function ~(x), 

k k '  

E ai¢ (x + ih) - h 2 E b,(" (x + ih) = Cp+2hP+2¢ (~+2) (x) + 0 (hp+3), 
i = 0  i=O 

where the error constant,  Cp+2, is given by 

1 k k' 
co = ~ ~ q - 2  (~% _ q ( q _  llb~) - ~ -J~--~ ~ q > 2. 

q' j=0 ~+1 (q --2)!~#' 

The method is assumed to satisfy the following, 

1. ~ = 1, I~ol + lbol # 0, 
2. p and ~r have no common factor (irreducibility), 
3 .  p(1) ---- p'(X) = 0, p"(1) = 2o(1) (consistency), 
4. the method is zero-stable. 

The  method is called symmetric  if 

ai = ak-~, for i = 0, 1 , . . . ,  k, and similarly, for bj. 

The  definition of P-stabil i ty is based on the application of the method characterized by p, a to 
the periodic IVP, 

y" + ~2 v = 0. (6) 

DEFINITION 1. (See  [3].) The method described by the characteristic polynomiaIs p, a is said to 
have interval of periodicity (0, H~) if, for all H 2 / n  the intervaJ, the roots of 

satisfy 

where O(H) is a reM function. 

P (z, H 2) = p (z) + H2¢  (z) = 0, H = wh, 

z l  = e iOCH), z2 = e -~O(H), 

Iz~l _< 1, s > 2, 

DEFINITION 2. (See [3]0 The method described by the characteristic polynomials p, a is said to 
be P-stable f f  its interval of periodicity is (0, co). 

Lamber t  and Watson proved tha t  a method described by p, a has a nonvanishing interval of 
periodicity only if it is symmetric and, for P-stability, the order cannot  exceed two. Fukushima [41 
has proved tha t  the condition is also sufficient. To be precise, we quote the result of [4]. 

THEOREM. Consider an irreducible, convergent, symmetric multistep method. Define a function 

p ( e  '°) 
g ( e )  = ,:r ( e ' " ) "  

Then, the method has a nonvanishing interval of periodicity ff  and only i f  

1. g( e) has no nonzero double roots in the interval [0, lr], or 
2. g'(O) is positive on all the nonzero double roots of g(8) in the interval [0, ~r]. 
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Quinlan and Tremaine [5] have extended the work of Lamber t  and Watson [3] to derive high- 
order symmetric methods for planetary integrations. The essential difference is tha t  without 
symmet ry  a linear growth in the error can cause a quadratic growth in position error. Higher- 
order P-stable methods were developed by introducing off-step points or higher derivatives of 

f(~,~). ( s~  [~-s] ) 
We now recall the super-implicit methods developed by Fukushima [9], 

k 1¢' 

~~ aiyn+l-i = h 2 Z bJn+l+m-i. 
i=O i=O 

(7) 

The method is explicit for m < 0, implicit for m = 0, and super-implicit for m > 0. Fukushima [9] 
has developed a StSrmer-Cowell type formulas, namely k - 2 and al = - 2 ,  a2 = ao = 1. In tha t  
case, one can get methods of order up to  k'  + 2. Clearly, the methods require additional formulas 
to treat the additional start ing and final values. Solving the nonlinear system one obtains the 
solution for a block of  points. Fukushima [10] suggested the use of Picard iteration. In any event 
the methods axe recommended for parallel or vector machines [11]. 

2. C O N S T R U C T I O N  OF P - S T A B L E  
S U P E R - I M P L I C I T  M E T H O D S  

We start  by writing the super-implicit symmetric k-step methods in the form 

~12 k'12 

~ (y.+j + ~._j) = h ~ ~ b~ (f.+j + f - -A ,  (s) 
j=o j=o 

In  our previous notation, we have a~/2 = 1, and laot + lbol ¢ 0. it is better to choose ao = 1, 
since it appears only once. Clearly, k and k'  axe even and k'  _> k for a super-implicit. Upon 

applying the method (8) to  (6), we have 

k/2  k ' /2  
(~j + h ~ % )  (y.+~ + y._j) + ~ h2~% (y.+j + y._~) : 0. (9) 

j=O j=k /2+ l 

Now, substi tute y~ = e ~ to have 

(aj+ H2bj) eos(jg)+ Z g2bjcos(Jg)=o' (10) 
j=O .~=k /2+ l 

where H : hw. We can use one of the parameters to  ensure P-stability. For example, suppose 

we take k -- 4, k '  = 8, then the method becomes 

y,+2 - 2yn+l + 2yn - 2yn-1 + Y,,-2 
(11) 

----h 2 [b4 ( fn+4 -]- fn--4) -]- b3 (fn+3 -[- fn--3) J¢- b2 ( fn+2 -]- f ~ - 2 )  q- bl ( f . + l  -b f n - z )  -b 2born] • 

Choose b0 to  satisfy the P-stabil i ty condition (10), i.e., 

l + g 2 b 0 ÷  ( - 2  + H2bl) cos ( H ) +  (1 + g262) cos (2H)+gaba cos ( 3 H ) + H a b 4  cos (4H) = 0. (12) 

Using MAPLE [12], we found the following values 

362771 47057 
bl = 45360-------0' b2 = 45360--------~' 

2707 641 
b3 = 453600' b4 - 1814400' 

(13) 
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and the method is of  order ten with an error constant  -4139/79833600.  The choice for b0 should 
be (7411/72576) + O(hl°) .  The same method is obtained even if we don ' t  restrict the coefficients 
of the first characteristic polynomial p. 

To increase the order, we have to add two terms on the right, namely bs(fn+5 + f,~-5). The 
method is now of order 12 and the coefficients as computed by MAPLE are 

31489253 1097339 662687 
bl = 39916800' b2 = 9979200' b3 - 79833600' 

1657 4139 
b4 = 1900800' bs = 79833600" 

The error constant  is -11370133/1307674368000 and b0 = (4336807/39916800) -4- O(h12). 

(14) 

2.1.  S t 6 r m e r - C o w e l l  T y p e  P - S t a b l e  M e t h o d s  

StSrmer-Cowell type  methods have left-hand side of  the form Y~+I - 2y~ q- Yn-1.  For example, 
the following method will be of order ten, 

y~+~ - 2y~ + y~_~ 
(15) 

--  h 2 [b4 (fn+4+ fn-4)+b8 (fn+aW f,~-3)+b2 (fn+2--k fn-2)+bl (fn+l+ f,-1)+2bof,~t. 

The coefficients can be found using MAPLE, 

57517 101741 8593 
b o =  b, = 90720-------6' 907200' 

149 289 
b3 -- 129600' b4 = 3628800" 

The error constant  is 317/22809600. 
If  we allow more points, we can get a 12th-order method, 

Y~+I - 2yn + Y~-I = h 2 [b5 (f~+s + fn -5)  + b4 (f~+4 + f~-4)  

+b.q (fn+3 + fn -3)  + b2 (fn+2 + fn -2)  

+bl  ( fn+l  + fn-1) + 2bofn] • 

(16) 

(17) 

The coefficients can be found using MAPLE 

b0 = 31494553 9186203 
7983360-----~+ O (h12), bl = 7983360----------~' 

222331 40489 
b 2 =  19958400' b 3 =  22809600' 

17453 317 
b4 -- 79833600' bs = 22809600" 

The error constant is -6803477/2615348736000. 

(18) 

Notice tha t  the order depends only on the number of  parameters  on the right hand side. These 
tenth and twelfth order StSrmer-Cowell type methods are identical to  the methods in Table 1 
of [9] with m = 3, n -- 4 matching the tenth-order method and m = 4, n -- 5 matching the 
twelfth-order one. We included here the error constant tha t  was not given in [9]. Thus, the 
super-implicit methods of [9] axe P-stable. 

3. I M P L E M E N T A T I O N  I S S U E S  

Consider the numerical solution of (1) for 0 < x < xf .  We first subdivide the whole interval 
into N blocks, say 0 = ~0 < ~1 < "'" < ~N = xl -  In each subinterval, [~,~i+1], i = 0, 1 . . . .  , N - l ,  
we take M equally spaced (h) points ~0 --- Xo < xl < --- < XM ---- ~i+1. Now, we create a set of 
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equations relating Yn to past, present and future values using, for example, (11), (see [9]). Thus, 
we have to solve a system of M equations, 

Yn ~ F n ( X O , X l , . . . , X M ; f O , f l , . . . , f M ) ,  n ~ -  1 , 2 , . . . , M .  (19) 

Fukushima [9] suggested to solve this nonlinear system using Picard iteration. Clearly the num- 
ber of unknowns in each equation of the system will increase when increasing the order of the 
numerical method. 

Once we get the solution of the first block of points, we have to move on to the next block 
where the first point is now the same as the last point of the previous block. 
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