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Abstract: We consider the construction of methods based on 
trigonometric polynomials for the initial value problems whose 
solutions are known to be periodic. It is assumed that the 
frequency w can be estimated in advance. The resulting meth- 
ods depend on a parameter v = hw, where h is the step size, and 
reduce to classical multistep methods if v--, 0. Gautschi [4] 
developed Adams and Strrmer type methods. In our paper we 
construct Nys t r rm ' s  and Milne-Simpson 's  type methods. 
Numerical  experiments show that these methods are not sensi- 
tive to changes in w, but require the Jacobian matrix to have 
purely imaginary eigenvalues. 

Keywords: Periodic initial value problems, linear multistep 
methods. 

1. Introduction 

There are few numerical methods available for 
the solution of initial value problems which take 
advantage of special properties of the solution. 
For example, Brock and Murray [2], and Dennis 
[3] developed methods for exponential type solu- 
tions. Urabe and Mise [8] designed a method for 
solutions in whose Taylor expansion the most sig- 
nificant terms are of relatively high order. Gautschi 
[4] constructed methods of the Adams and St/Srmer 
type for problems with oscillatory solutions whose 
frequency is known. 

In this paper we consider the initial value prob- 
lem 

y' = f ( x , y ) ,  y(xo)  =Y0' (1) 

whose solution is known to oscillate with a known 
frequency. We construct k-step NystrOm (explicit) 
and generalized Milne-Simpson (implicit) meth- 
ods. We numerically compare these methods to 
Adams' methods constructed by Gautschi [4]. Our 

methods are restricted to problems whose Jacobian 
matrix have purely imaginary eigenvalues. 

Let us recall some definitions and notations, see 
for example [5]. Let C*[a, b] (s > 0) denote the 
linear space of functions y(x)  having s continuous 
derivatives in the finite closed interval [a, b]. We 
assume the space is normed by 

Ilyll= ~ max ly ( ° (x ) l  . (2) 
i=0  a<~x<~b 

Definition 1. A linear functional .L a in CS[a, b] is 
said to be of algebraic order p, if 

.~x~ - O, r = O ,  1 . . . . .  p, o~xP+ 1 ~i~ O- (3) 

Detinition 2. The method 

k k 

E ajy.+j = h E flj(u)f.+j, 
j = 0  j = 0  

v = w h , a  k= +1,  (4) 

is said to be of trigonometric order q relative to the 
frequency w if the associated linear difference oper- 
ator 

k 

Zay(x) = Y'~ [ajy(x  + j h ) - h f l j ( v ) y ' ( x  +jh ) ]  
j=O  

satisfies 

f ~ - 0 ,  

.LP cos rwx -= £P sin rwx = 0, 

(5) 

r = 1, 2 . . . . .  q, (6) 

&acos((q + 1)wx) and L~'sin((q + 1)wx) not both 
identically zero. 

Definition 3. The method (4) is called explicit if 
i lk(v)--0,  otherwise it is implicit. An explicit 
method for which 

ak = +1,  ak_2 = - 1 ,  

% = 0 ,  j = 0 , 1  . . . . .  k - 3 ,  k - 1 ,  (7) 

is called a Nystrrm method. An implicit method 
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satisfying (7) is called a generalized Milne-Simp- 
son method. 

2. Construction of methods 

The methods we construct  are in the form 

1 

Y,+k--Y,+k-2  = h ]~ r i j ( v )y '+ j  (8) 
j =O  

where 1 = k for implicit methods and l = k - 1 for 
explicit ones. The operator  l is then defined by 

L#y(x)  = y ( x  + k h ) - y ( x  + ( k -  2)h )  

1 

- h  Y'~ r i j ( v ) y ' ( x  + jh ) .  (9) 
j=O 

Clearly, this satisfies the first relation of (6). The 
other  two equations in (6) imply 

cos r/)k - cos rv( k - 2) 

l 

+ rv ~, ri/( /) ) sin rvj  = 0, (9a) 
j = l  

- s i n  rvk + sin rv(  k - 2) 

1 

+r/ )  }-". g ( v )  cos rvj  = 0 (9b) 
j = 0  

for r = 1, 2 . . . . .  q. These equations can be rewritten 
in the form 

2 sin rv s i n ( r ( k  - 1)/)) 

l 

- r / )  • ri j(v) sin r/)j = 0, (10a) 
j = l  

2 sin r/) c o s ( r ( k  - 1)v)  

1 
- r / )  ~_, g ( / ) )  cos r/)j = 0. (10b) 

j = 0  

Note  that the sum in (9a) and (10a) starts f rom 
j = l .  

2.). Explicit methods 

(i) k = 2. The parameters  rio(V), ril(/)) can be 
calculated f rom (9) with r = 1 

2 sin v 
rio = 0, 13, - - -  (11) /) 

and the method 

2 sin 1, 
Y,+2 - Y ,  h£+,.  (12) p 

This is a method of tr igonometric order q = 1. The 
local truncation error is given by 

5 (w  y ( x n + l ) + y , , ,  2 , xn+ l ) ) h 3 + O ( h 4 ) .  (13) 

Thus the method is of  algebraic order p = 2. 
(ii) k = 3. In this case we have three parame- 

ters rio(/)), ill(v) and riz(v). Using (10a) and (10b) 
with r = 1, one obtains a system of two equations 

2 

2 sin 1, sin 2/) - / )  £ g ( v )  sin vj = O, 
j = l  

2 

2 sin I, cos 2 v - v £ g ( v )  cos vj = O. 
j = 0  

The solution of this system is 

r i , ( / ) )  = - 2 r i 0 ( v )  c o s / ) ,  

2 sin v 
r i 2 ( V )  = r iO(/ ) )  q - - -  (14) /) 

Thus, one has the following family of  methods:  

Y.+3 - Y . + ,  = hrio[Y" - 2(cos v ) y ' + ,  + Y'+2] 

2h sin v , 
+ - - Y , + 2 .  (15) 

V 

One can choose rio, so as to increase the algebraic 
order. It can easily be shown that the local trunca- 
tion error is 

- ( r i o - ½ ) h 3 ( y n  ''' + w 2 y ~ )  

+ ( ] - r i o ) h 4 ( y ~ 4 ) + w 2 y " ) + O ( h S ) .  (16) 

If  one chooses rio = -~, then the method (15) will be 
of  algebraic order 3. In that case (15) becomes 

Y n + 3 - - Y n + l  = h [  1 ' 3Y,; - ](COS v) y~'+, 

( + ½ + 2 sin 
g Y,,+2 - (17) 

(iii) k = 4. The 4 parameters are computed  from 
(10) with l = 3 and r = 1, 2. This was done by 
M A C S Y M A  (Project M A C ' s  SYmbolic MAnipu-  
lation system written in LISP and used for perfor- 
ming symbolic as well as numerical mathematical  
manipulat ions [1]). 

rio = - sin v /D,  (18a) 

1 3 , = - 2 s i n v ( 1 - 2 c o s v ) ( l + c o s v ) / D ,  (18b) 

13 2 = - sin v(4 cos v cos 2v + 1 ) / D ,  (18c) 

13 3 = 2 sin 2v(1 + cos v ) / D ,  (18d) 
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where 

D = v(1 + 2 cos v).  ( lSe) 

2.2. Implicit methods 

(i) k = 2. The three parameters  are computed  
f rom (10) with l = 2, r = 1. One obtains a family of  
methods with 

2 sin v 
/ 3 1 - -  2/30 c o s y ,  P 

f12 = fl0" (19) 

The family of  methods of tr igonometric order 1 is 

Y,+2 - Y ,  = hflo(Y~ - 2(cos v)y~'+l + Y ' + 2 )  

2h sin v , 
+ - - Y , , + l "  (20) /., 

One can choose/30 so as to increase the order. The 
local truncation error is 

( ½ - / 3 0 ) [ Y  '" +w2y'] h3 

+ ( ½ - - / 3 0 )  [ y (4) + w 2 y " ] h  4 

+ [(4 _ 2/30 ) y(5) + ( 112/30 _ 6Jo )w4y '  

+ ( I  - ½flo)w2y ' " ]  h5 + O(h6)  • (21) 

If  one chooses/3o = ½ the method obtained is 

Yn + 2 -- Yn = 

=½h - 2  c o s y  - y .+ l  +yn+2 . (22)  

This method is of  algebraic order 4. (Note  that the 
explicit method with the same step number  k = 2 
is only of algebraic order 2.) 

(ii) k = 3. The four parameters  are computed  
by M A C S Y M A .  

/30 = 0, (23a) 

131 = sin u/D,  (23b) 

132 = 2 sin v(1 + cos v ) / D ,  (23c) 

/33 = i l l ,  (23d) 

where 

D = v(1 + 2 cos v). (23e) 

The method is 

Yn+3 - - Y n + l  = h(/31Y~+l "{- ~2Y~+2 "q-/31Yn+3)" (24) 

It  is of  tr igonometric order 2. Note  that by shifting 
the index one has an implicit 2-step method of  
t r igonometric  order 2. 

(iii) k = 4. In this case one obtains a family of 
methods. We were not able to reduce the expres- 
sions for fli, i:~ 1 (because of  disk space). The 
expression for fll in terms of  the parameter/34 is: 

fl, = (sin v/v(½ + cos v ) -  2 / 8 4 )  

× (1 + cos v)(2 cos v - 1). (25) 

With this expression for fll one can solve a system 
of two equations for the two unknowns f12, f13 in 
terms of f14. This system is (10a) for r = 1, 2. Once 
this is done the expression for flo can be obtained 
f rom (10b) with r = 1. 

3. N u m e r i c a l  e x p e r i m e n t s  

In our numerical experiments we approximated 
the solution of the following system of initial value 
problems: 

Y ' ( t ) = F ( t ,  Y ) ,  

v(o)= i] 
where 

and 

)'2 

- - Y l / r  3 
F =  

Y4 

- - y 3 / r  3 

and 

r 2 = y2 + y2. 

The exact solution is 

sin t t 
Ye = COS 

cos t 
- sin t 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

Clearly, w = 1. We have computed  the solution at 
t = 12,~ using various values of  w and various 
methods as given here and in [4]. In Table 1 we 
have compared  the L 2 norm of the error at t = 12,~ 
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Tab le  1 

q = l  

B. Neta, C.H. Ford/Methods  of ODE's based on trigonometric polynomials 

w A d a m s  

Expl ic i t  Impl ic i t  

Nys t r6m Genera l ized  
M i l n e -  S impson  

0.90 0 . 2 8 7 -  1 0 . 2 3 1 -  2 0 . 4 6 0 -  2 0 . 2 3 0 -  5 
0.95 0 . 1 4 8 -  1 0 . 1 1 9 -  2 0 . 2 3 6 -  2 0 . 1 2 4 -  5 

1.00 0.975 - 11 0.189 - 12 0.256 - 11 0.262 - 10 
1.05 0 . 1 5 5 -  1 0 . 1 2 5 -  2 0 . 2 4 8 -  2 0 . 1 4 4 -  5 

1.10 0 . 3 1 8 -  1 0 . 2 5 6 -  2 0 . 5 0 8 -  2 0 . 3 1 0 -  5 

using h = ,~/60 and various values of w. Note  that 
the explicit Adams  method (q = 1) didn ' t  give as 
good results as Nystr/3m's (q = 1). Note  also that 
the generalized Mi lne -S impson  gave 3 digits of 
accuracy more  than Adams  implicit. As one should 
expect all methods gave the correct answer for 
W = I .  

In Table 2 we compared  Adams  implicit meth- 
ods of  tr igonometric orders 2 and 3 with gener- 
alized Mi lne-S impson  methods of  the same order. 
Note  that for Adams  methods we used the coeffi- 
cients as given in [4], i.e. the Taylor  series expan- 
sion. Our second order  method shows slightly 
better results than Adams  implicit second order. 
The insensitivity to overestimation or underestima- 
tion of w is demonstra ted in both  methods. This is 
an excellent feature since w is not  known exactly 
beforehand.  The results are summarized in Table 
2. 

In  our next experiment, we consider the follow- 
ing 'a lmost  periodic '  problem studied by Stiefel 
and Bettis [7]: 

z "  + z = 0.001 e i ' ,  i = x/ l ,  0 ~< t ~< 40v ,  (32) 

z(0)  = 1, (33) 

z ' (0)  = 0.9995i, (34) 

whose theoretical solution is 

z(t) = cos t + 0.0005t sin t 

+ i ( s in  t - 0 . 0 0 0 5 t  cos t ) .  (35) 

Tab le  2 

The solution represents mot ion on a perturbat ion 
of  a circular orbit in the complex plane; the point  
z(t) spirals slowly outwards. We write the equa- 
tions in the equivalent form 

Y~ -Y2 = 0, Y~ + Yl = 0.001 cos t, 

y~ - - y 4  = 0 ,  y,~ + y3 = 0.001 s in t ,  (36) 

Yl (0) = 1, Y2 (0) = O, 

y 3 ( 0 )  = 0 ,  y4(0) = 0.9995. (37) 

The exact solution of  this system is 

Yl ( t )  = cos t + 0.0005t sin t, 

y2(t) = - 0 . 9 9 9 5  sin t + 0.0005t cos t, (38) 
y3( t )  = sin t - 0.0005t cos t, 

y a ( t )  = 0.9995 cos t + 0.0005t sin t. 

This first order system was solved numerically tor 
0 ~< t ~< 40~r (which corresponds to 20 orbits) using 
methods of  tr igonometric orders 2 and 3. The 
results for h = "~/60 are presented in Table 3. The 
insensitivity to changes in w is manifested again in 
this example. Note  that since we haven' t  obtained 
the parameters fli(u) for a third order method we 
solve the system (10) numerically for given w and 
h using Gaussian elimination with partial pivoting). 
For  each w and h we have to solve a system of six 
equations for the six parameters fli(u). All numeri- 
cal experiments were performed in double preci- 
sion on IBM 3033 computer.  

w A d a m s  impl ic i t  Genera l ized  M i l n e - S i m p s o n  

q = 2  q = 3  q = 2  q = 3  

0.90 0 . 1 6 6 - 4  0 . 3 1 1 - 5  0 . 2 8 5 -  5 0 . 2 9 8 -  5 

0.95 0 . 1 0 0 - 4  0 . 3 6 9 - 5  0 . 1 6 9 -  5 0 . 2 0 1 -  5 
1.00 0 . 2 2 0 -  6 0.435 - 5 0.239 - 10 0.119 - 11 

1.05 0 . 1 3 2 - 4  0 . 5 1 0 - 5  0 . 2 3 2 -  5 0 . 3 4 4 -  5 
1.10 0 . 3 0 8 - 4  0 . 5 9 4 - 5  0 . 5 3 5 -  5 0 . 8 7 8 -  5 
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T a b l e  3 

w A d a m s  i m p l i c i t  G e n e r a l i z e d  M i l n e - S i m p s o n  

q = 2  q = 3  q = 2  q = 3  

0 .90  0 .842  - 3 0 .108  - 5 0 .134  - 3 0 .446  - 7 

0 .95  0.841 - 3 0 .129  - 5 0 .129  - 3 0 .295 - 7 

1 .00 0 .839  - 3 0 .153 - 5 0 .115 - 3 0 .103  - 7 

1.05 0 .837  - 3 0.181 - 5 0 .133 - 3 0 .612  - 7 

1 .10 0 .835 - 3 0.211 - 5 0 .120  - 3 0 .148  - 6 

In Table 4 we present a comparison of results 
obtained by the generalized Milne-Simpson 
method (q = 3) with a sixth order symmetric 
method developed by Lambert  and Watson [6] for 
the problem (32)-(34). 

In our next experiment we solved the following 
differential equation: 

y'" +Xy"+y'+)~y=O, 0~<t~<12v,  (39) 

whose exact solution is 

y(x) = cl cos x + c 2 sin x + c 3 e -xx. (40) 

In order to get a small perturbation to the periodic 

T a b l e  4 

h L a m b e r t  a n d  W a t s o n  G e n e r a l i z e d  M i l n e - S i m p s o n  

o r d e r  = 6 q = 3, w = 1  

' rr /5 0 . 0 0 7 3 0 0  0 .001406  

~ / 6  0 .002303  0 .000623  

~ / 1 2  0 .000033  0 .000008  

solution we choose the initial values 

y(0)  = y ' ( 0 ) =  1 + 10-10, y" (0)  = - 1  + 10-10. 

(41) 

Therefore the constants in (40) are 

c I = 1 + 10-10 _ 2.10-10/ /(1 + ~2 ) ,  

C2 = 1 + 10-~° + 2" 10-1°X/(1 + ~2), (42) 

c 3 = 2- 10-1°/ (1  + X2). 

In Table 5 we compare results obtained by 
Adams methods of trigonometric orders 1 and 2 
with the Nys t r rm method of order 1 and gener- 
alized Milne-Simpson of order 2 for various val- 
ues of h and h = ~ r / 6 0 ,  w = 1.  

Note that the explicit Adams formula integrates 
stable for sufficiently small X, whereas the (ex- 
plicit) Nys t r rm method tends to develop increas- 
ing instabilities as X increases. The reason is that 
the explicit Adams method possesses a non-empty 
stability region in the left-half plane, whereas the 
NystriSm method is only stable on a part  of the 

T a b l e  5 

h = ,rr/60, w = 1 

A A d a m s  

E x p l i c i t  I m p l i c i t  

q = 1  q = l  

N y s t r r m  G e n e r a l i z e d  

q = 1 M i i n e - S i m p s o n  

q = l  

0 0 . 1 7 - 9  

0.1 0 . 1 8 - 9  

0 .2  0 . 1 9 - 9  

0 .5  0 .20  - 9 

1 . 0  0 .20  - 9 

5.0 0 .18  - 9  

10.0  0 . 1 7 - 9  

17.5 0 . 1 7 - 9  

20 .0  u n s t a b l e  

0 . 1 7 - 9  0 . 1 7 - 9  0 . 1 7 - 9  

0 . 1 9 - 9  0 . 1 8 - 9  

0 .20  - 9 0 .20  - 9 

0 .36 - 3 0 . 1 4 -  8 

0 .20  - 9 u n s t a b l e  u n s t a b l e  

0 . 1 8 - 9  

u n c o n d i t i o n a l l y  

s t a b l e  
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Table 6 
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t Absolute error 

StOrmer explicit Generalized Milne- 
q = 2 Simpson 

q = 2  

2 0.0000030 0.0000552 
3 0.0000029 0.0002530 
4 0.0000011 0.0003808 
5 0.0000013 0.0004067 
6 0.0000038 0.0003311 
7 0.0000052 0.0001860 
8 0.0000053 0.0000248 
9 0.0000038 0.0000947 

usually recommended to use direct methods for 
y"=f(t,y) rather than apply methods to an 
equivalent first order  system [5, p. 253]. 
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imaginary axis. The behavior demonstrated in the 
table can now be explained by the fact that - ~ .  is 
an eigenvalue of the Jacobian matrix. This exam- 
ple is due to P.J. van der Houwen and B.P. Som- 
meijer. 

In our last experiment we compare the gener- 
alized Mi lne-Simpson of trigonometric order 2 
with StOrmer's method of the same order for solv- 
ing the equation 

S ( t ) +  1 0 0 + - -  y(t)=o,  1 t 9. (43) 
4t 2 

We choose the initial values so that the exact 
solution in terms of  Bessel functions is 

y(t) = ¢t-J0(10t).  (44) 

We let h = 0.02 and w = 10 as in [4]. In Table 6 we 
present the error at every 50th point  using the 
above ment ioned two methods.  

It is clear that StOrmer's method is better. It is 
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