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a b s t r a c t

In this paper we present a new efficient sixth-order scheme for nonlinear equations. The
method is compared to severalmembers of the family ofmethods developedbyNeta (1979)
[B. Neta, A sixth-order family of methods for nonlinear equations, Int. J. Comput. Math. 7
(1979) 157–161]. It is shown that the newmethod is an improvement over this well known
scheme.

Published by Elsevier Ltd

1. Introduction

Solving nonlinear equations is one of the most important problems in numerical analysis. To solve nonlinear equations,
iterative methods such as Newton’s method are usually used. Throughout this paper we consider iterative methods to find
a simple root ξ , i.e., f (ξ) = 0 and f ′(ξ) ≠ 0, of a nonlinear equation f (x) = 0, where f : I ⊂ R → R for an open interval I .

Newton’s method for the calculation of ξ is probably the most widely used iterative scheme defined by

xn+1 = xn −
f (xn)
f ′(xn)

. (1)

It is well known (see e.g. [1]) that this method is quadratically convergent.
Somemodifications of Newton’s method to achieve higher order and better efficiency have been suggested and analyzed

in the literature. See e.g. the books by Ostrowski [2], Traub [1] and Neta [3]. See also more recent results by Kim [4] who
discussed a wide collection of sixth-order methods, Soleymani [5] and Khattri and Argyros [6]. This last paper gives a family
of three step methods free from derivatives.

Most of the methods improve the order of convergence and computational efficiency of Newton’s method with an
additional evaluation of the function or its derivatives. To be more precise, we define informational efficiency E by

E =
p
d

where p is the order of the method and d is the number of function- (and derivative-) evaluations per step. We also mention
another measure, the efficiency index I

I = p1/d.
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Here we compare the sixth-order family of methods [7] given by

wn = xn −
f (xn)
f ′(xn)

,

zn = wn −
f (wn)

f ′(xn)
f (xn) + βf (wn)

f (xn) + (β − 2)f (wn)
,

xn+1 = zn −
f (wn)

f ′(xn)
f (xn) − f (wn) + γ f (zn)
f (xn) − 3f (wn) + γ f (zn)

,

(2)

to our new sixth-order scheme. Both of these methods have the same efficiency index 61/4
≈ 1.565 which is better than

that of Newton’s method. This method has an error term

ϵn+1 = c2c3

c3 − (2β + 1)c22


ϵ6
n + O(ϵ7

n), (3)

where ϵn = xn − ξ and

ci =
f (i)(ξ)

i!f ′(ξ)
, i ≥ 1. (4)

Note that γ does not appear in the error constant and therefore we can take γ = 0. The first two substeps constitute
King’s fourth-order scheme [8]. For the parameter β , we note that if β = 0 then the first two steps are Ostrowski’s fourth-
order method [2]. If we choose β = −1 then the factor in the second and third substeps is identical, and thus we can save
on computation. The choice β = −1/2 minimizes the error term,

ϵn+1 = c23c2ϵ
6
n + O(ϵ7

n).

In the numerical experiments section we will use these three parameters for comparison.

2. Development of method and convergence analysis

We suggest replacing the first two substeps in (2) by the fourth-order method due to Kung and Traub [9]

wn = xn −
f (xn)
f ′(xn)

,

xn+1 = wn −
f (wn)

f ′(xn)
1

1 −
f (wn)
f (xn)

2 ,
(5)

and then consider the method

wn = xn −
f (xn)
f ′(xn)

,

zn = wn −
f (wn)

f ′(xn)
1

1 −
f (wn)
f (xn)

2 ,

xn+1 = zn −
f (zn)
f ′(xn)

1
1 −

f (wn)
f (xn)

−
f (zn)
f (xn)

2 .

(6)

For the method defined by (6), we have the following analysis of convergence.

Theorem 2.1. Let ξ ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I. Let ϵn = xn −ξ .
Then the new method defined by (6) is of sixth-order. The error at the (n + 1) st step, ϵn+1, satisfies the relation

ϵn+1 =

−5c3c32 + 6c52 + c2c23


ϵ6
n + O(ϵ7

n), (7)

where ci i = 1, 2, 3 are given by (4).

Proof. Let ϵn = xn − ξ, un = wn − ξ and vn = zn − ξ . Using the Taylor expansion of f (x) around x = ξ and taking f (ξ) = 0
into account, we get

f (xn) = f ′(ξ)

ϵn + c2ϵ2

n + c3ϵ3
n + c4ϵ4

n + O(ϵ5
n)


, (8)

f ′(xn) = f ′(ξ)

1 + 2c2ϵn + 3c3ϵ2

n + 4c4ϵ3
n + O(ϵ4

n)

. (9)
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Dividing (8) by (9) gives

un = ϵn −
f (xn)
f ′(xn)

= c2ϵ2
n − (−2c3 + 2c22 )ϵ

3
n − (−3c4 + 7c2c3 − 4c32 )ϵ

4
n

− (10c2c4 + 6c23 − 20c3c22 + 8c42 )ϵ
5
n + O(ϵ6

n), (10)

so that, after elementary calculation,

f (wn) = f ′(ξ)[un + c2u2
n + c3u3

n + c4u4
n + O(u5

n)]

= f ′(ξ)[c2ϵ2
n + (2c3 − 2c22 )ϵ

3
n + (3c4 − 7c2c3 + 5c32 )ϵ

4
n + (−12c42 − 6c23 − 10c2c4 + 24c3c22 )ϵ

5
n + O(ϵ6

n)]. (11)

Using (8)–(11), we find

vn = un −
f (wn)

f ′(xn)
1

[1 − f (wn)/f (xn)]2

= (2c32 − c2c3)ϵ4
n + (−2c23 − 10c42 − 2c2c4 + 14c3c22 )ϵ

5
n + (21c4c22 − 7c4c3 + 30c2c23 + 31c52 − 72c3c32 )ϵ

6
n

+ (−100c4c32 + 88c4c2c3 − 188c23c
2
2 + 246c3c42 − 6c24 + 20c33 − 74c62 )ϵ

7
n + O(ϵ8

n), (12)

so that, after elementary calculation,

f (zn) = f ′(ξ)[vn + c2v2
n + c3v3

n + O(v4
n)]

= f ′(ξ)

(−c2c3 + 2c32 )ϵ

4
n + (−10c42 − 2c2c4 − 2c23 + 14c3c22 )ϵ

5
n

+ (31c52 + 30c2c23 + 21c4c22 − 7c4c3 − 72c3c32 )ϵ
6
n + O(ϵ7

n)

. (13)

By doing simple calculations with (11)–(13) we obtain

ϵn+1 = vn −
f (zn)
f ′(xn)

1
[1 − f (wn)/f (xn) − f (zn)/f (xn)]2

= (−5c3c32 + 6c52 + c2c23 )ϵ
6
n + O(ϵ7

n), (14)

which means that the method defined by (6) is at least sixth-order. This completes the proof. �

Remark. Kung and Traub [9] have conjectured that one can get an optimal eighth-order scheme using the same information
as our scheme. That is for three function- and one derivative-evaluation one can get an eighth-order method. Therefore our
scheme is not optimal, but the computational cost of our additional step is not as high as the optimal eighth-order obtained
by interpolation.

3. Numerical examples

In this section we present some numerical experiments using our new method and compare these results to the three
members of Neta’s family of schemes. All computations were done using MAPLE using 128 digit floating point arithmetics
(Digits := 128). We accept an approximate solution rather than the exact root, depending on the precision (ϵ) of the
computer.We use the following stopping criteria for computer programs: (i) |xn+1−xn| < ϵ, (ii) |f (xn+1)| < ϵ, and so, when
the stopping criterion is satisfied, xn+1 is taken as the exact root ξ computed. For numerical illustrations in this section we
used the fixed stopping criterion ϵ = 10−25. We used the following 23 test functions, some are taken from [10] and some
from [11].

Test function x0 x∗

f1(x) = x3 + 4x2 − 10 1.5 1.3652300134140968457608068290
f2(x) = sin2(x) − x2 + 1 1.371 1.4044916482153412260350868178
f3(x) = (x − 1)3 − 1 2.5 2.0
f4(x) = x3 − 10 4.0 2.1544346900318837217592935665
f5(x) = xex

2
− sin2(x) + 3 cos(x) + 5 −1.5 −1.2076478271309189270094167584

f6(x) = ex
2
+7x−30

− 1 4.0 3.0

f7(x) = sin(x) −
x
2

2.0 1.8954942670339809471440357381

f8(x) = x5 + x − 10000 4.0 6.3087771299726890947675717718
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f9(x) =
√
x −

1
x

− 3 1.0 9.6335955628326951924063127092
f10(x) = ex + x − 20 0.0 2.8424389537844470678165859402
f11(x) = ln(x) +

√
x − 5 1.0 8.3094326942315717953469556827

f12(x) = x3 − x2 − 1 0.5 1.4655712318767680266567312252
f13(x) = x2 − ex − 3x + 2 0.5 0.2575302854398607604553673049
f14(x) = arctan(x) 0.15 0
f15(x) = ex sin(x) + ln(1 + x2) 1.0 0
f16(x) = ln(x2 + x + 2) − x + 1 4.0 4.152590736757158274996989005
f17(x) = e−x2+x+2

− 1 −0.85 −1
f18(x) = x5 + x4 + 4x2 − 15 1.2 1.347428098968304981506715381
f19(x) = x3 + 1 −1.5 −1
f20(x) = 11x11 − 1 1.0 0.8041330975036643237414634984

f21(x) =


2 + x2 sin

 π

x2


+

1
1 + x4

−
17

√
3 + 1
17

1.6 2

f22(x) = cos
π

2
x


+
ln(x2 + 2x + 2)

1 + x2
1.6 1.435888438664446664647913828

f23(x) = x4 + sin
 π

x2


− 5 1.2 1.414213562373095048801688724.

Table 1
Comparison of sixth-order iterative schemes.

f N0 N1 Nh New

f1 IT 3 3 3 3
f (x∗) −6e−127 −6e−127 −6e−127 −6e−127

f2 IT 3 3 3 3
f (x∗) −1e−127 −1e−127 −1e−127 −1e−127

f3 IT 3 4 3 4
f (x∗) 0 0 0 0

f4 IT 4 4 4 4
f (x∗) 0 0 0 0

f5 IT 4 4 4 4
f (x∗) −1e−126 −1.1e−126 −1.2e−126 −1.1e−126

f6 IT 11 div 6 9
f (x∗) 0 0 0

f7 IT 3 3 3 3
f (x∗) −2e−128 −2e−128 −2e−128 −2e−128

f8 IT div div 7 5
f (x∗) 0 0

f9 IT div div div 4
f (x∗) 0

f10 IT div div div 7
f (x∗) 0

f11 IT 5 div div 4
f (x∗) −1e−127 −1e−127

f12 IT 13 18 15 11
f (x∗) −1e−127 −1e−127 −1e−127 −1e−127

f13 IT 3 3 3 3
f (x∗) −1e−127 −1e−127 1e−127 −1e−127

f14 IT 3 3 3 3
f (x∗) 0 0 0 0

f15 IT 4 4 4 4
f (x∗) 0 0 0 0

f16 IT 3 3 3 3
f (x∗) 0 0 0 0
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Table 1 (continued)

f N0 N1 Nh New

f17 IT 3 3 3 3
f (x∗) 0 0 0 0

f18 IT 3 3 3 div
f (x∗) −1e−126 −1e−126 −1e−126

f19 IT 3 4 3 4
f (x∗) 0 0 0 0

f20 IT 6 div 4 4
f (x∗) −5e−128 −5e−128 1e−127

f21 IT 4 4 4 4
f (x∗) 0 0 0 0

f22 IT 3 3 3 3
f (x∗) −7e−128 −7e−128 −7e−128 −7e−128

f23 IT 3 4 3 3
f (x∗) 5e−127 5e−127 5e−127 5e−127

In Table 1we presented the results forN0 (the case for β = 0),N1 (the case for β = −1),Nh (the case for β = −1/2) and
our new scheme. The number of iterations IT is given along with the value of the function at the last iteration f (x∗). Notice
that out of 23 cases our method diverged only in one case but for the three members of Neta’s family we found divergence
in 3–5 cases. In 11 cases the methods gave the same answer with the same number of iterations. The β = −1/2 and the
new method were superior in 5 cases whereas the other methods were superior in 3 or 4 cases. Therefore we can conclude
that the new method is competitive with Neta’s family of sixth-order schemes.
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