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This paper deals with the conflict between simplicity and optimality in searching for a stationary target whose location is
distributed in two dimensions, thus continuing an analysis that was begun in World War II. The search is assumed to be
of the “piled-slab” type, where each slab consists of a uniform search of some simple region. The measure of simplicity
is the number of regions (smaller is simpler). If each of a fixed number of elliptical regions is searched randomly, we find
the optimal region size and the optimal division of effort between regions. Rectangular regions are also considered, as are
problems where the regional searches are according to the inverse-cube law, instead of random search. There is a strong
tendency for optimal inverse-cube law searches to consist of a single slab. We also consider problems where the amount
of effort for each region is optimized myopically, with no consideration for the search of future regions.
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1. Introduction
There is sometimes a conflict between efficiency and sim-
plicity when searching for a stationary lost object. Sim-
plicity demands a search pattern that treats all parts of
the searched area equally, whereas efficiency may require
an uneven distribution of effort. In cases where the prior
probability distribution of the target’s location is unimodal
about some “fix” or “datum,” and where the environment
is homogeneous, both goals can be approximately achieved
by searching uniformly over an increasing sequence of sim-
ple regions R1�R2� � � � �Rn, where the datum is in R1 and
each region contains its predecessor. In this way, points
near the datum are searched more intensely than points far-
ther away, even though all searches are uniform. Koopman
(1946), for example, records the details of such a “piled-
slab” scheme for finding a target that is lost according to a
bivariate normal distribution. Our intention here is to opti-
mize and generalize that analysis.
Another approach to simplicity is to require that all

searches be in rectangles that do not overlap. Such an ap-
proach makes sense for prior distributions of target loca-
tion that are more or less uniform over mutually exclusive
regions. Dicenza (1980) describes an integer programming
method for determining a collection of such rectangles that
maximizes detection probability. Because our focus here is
on priors that are unimodal, we will concentrate on nested
regions, rather than nonoverlapping regions.
Random search is a special case with an important prop-

erty that is not shared by the general search problem. Ran-
dom search is covered in §2, while the general case is
covered in §3. It sometimes happens that a search is com-
pleted without finding the target, but then extended in time
for reasons that have emerged since the search began. The

implied mode of optimization is myopic, where each slab
is optimized without regard to the possibility of others in
the future. A myopic plan will not in general be glob-
ally optimal, although the defect from optimality is usually
slight. Myopic optimality may require “inversions” where
a given search covers a smaller region than one completed
earlier. This subject is taken up in §4. Section 5 contains
the summary.
Computations are illustrated in the Excel workbook

PiledSlab.xls, which can be downloaded from http://diana.
cs.nps.navy.mil/∼arwashburn/.

2. The Special Case of Random Search
Search of any region will be most efficient when the exam-
ined parts cover the entire region without overlap, but this
kind of “exhaustive” search is seldom achieved in prac-
tice on account of unintended overlap among the examined
parts. Random search is a limiting case where the examined
parts are assumed to overlap at random more or less as they
do in the fall of confetti. If an amount of covered area z
(the amount of “effort”) is cut into confetti and strewn uni-
formly at random over an area A, the fraction of A cov-
ered by confetti will be 1− exp�−z/A	 (Koopman 1956,
pp. 519–521). The same random search formula holds even
if the confetti is not uniformly distributed, as long as the
ratio z/A is interpreted as the effort density in the vicinity
of the target. The effort z is often assumed to be WL, where
L is track length and W is sweep width, but this assump-
tion is not required. Random search is often assumed to be
a skeptical and practical approximation to what happens in
reality, given the difficulties of navigation, the tendency of
target locations to drift slightly as search proceeds, and the
often indefinite nature of detection ranges. The important
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characteristic that distinguishes random search from the
general case is that two independent random searches with
effort amounts z1 and z2 are exactly equivalent to a single
random search with total effort z1+ z2. In other words, the
total amount of effort can be partitioned arbitrarily without
changing the overall result.
Even though search is conceptually reduced to confetti

casting, there is still the strategic question of how the den-
sity of confetti should be distributed over space. The opti-
mal distribution is obvious if the prior distribution of the
target’s location (hereafter the “prior”) is uniform within
some area A, but it is not obvious under the more practi-
cal assumption that the prior is elliptical normal. Koopman
(1980, pp. 91–137) describes circumstances where this
should be the case. The optimal distribution of effort for
an elliptical normal prior was worked out in World War II
by Koopman and others “too numerous to list” (Koopman
1946, p. 1 or Koopman 1980, pp. 157–160). The result-
ing search density has the shape of an inverted cup, being
constant on equiprobability ellipses and decreasing con-
tinuously as one moves away from the origin (Figure 1).
Because such a search is both strategically optimal and
locally random, we will refer to it as SOLR. In this sec-
tion, we will maintain the same constraint on total search
effort, but insist that n nested regions of constant density be
employed, thus approximating the inverted cup with a solid
composed of n piled slabs. The resulting detection proba-
bility will, of course, be smaller than the SOLR probability.
Let A0 = 0, and for i > 0, let Ai be the area of region Ri.

We assume in this section that there is a one-to-one map
between regions and areas, so that specification of Ai deter-
mines Ri, as well as vice versa. Let y1 be the total effort
density in R1, and for i > 1, let yi be the total effort density
in the annulus between Ri−1 and Ri (Figure 2). The total

Figure 1. The inverted SOLR cup has the greatest search effort density at the origin (datum), decreasing smoothly to
zero at some radius that depends on the total amount of effort available.
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Figure 2. A plot of search effort density vs. distance
from the datum in a radially symmetric
problem.
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Notes. The continuous ideal density is approximated by three piled slabs.
Density y2 in the second annulus is partly from the second slab and partly
from the third (widest) slab.

effort density yi is partially applied in searches subsequent
to the ith, but because the search is random and the tar-
get is assumed to be stationary, the conditional nondetec-
tion probability if the target is in the annulus is simply
exp�−yi	. Let �i =Ai −Ai−1 be the area of the ith annulus.
The total effort applied to the annulus (in all n searches) is
yi�i. The total effort applied in all searches to all regions
is therefore T �A�y	 ≡∑n

i=1 yi�i, where the boldface type
indicates vectors of areas and amounts of effort, respec-
tively.
Let Q�A0	 ≡ 1, and for i > 0, let Q�Ai	 be the exclu-

sion probability that the target is outside of region Ri, so
that Q�Ai−1	−Q�Ai	 is the probability that the target is in
the ith annulus. Then, because the target must either be in
one of the annuli or outside of Rn, the probability of not
detecting the target is N�A�y	≡Q�An	+

∑n
i=1�Q�Ai−1	−

Q�Ai		 exp�−yi	. This is to be minimized subject to the
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constraint T �A�y	 � z, where z is the total amount of
effort available. Let the resulting minimal miss probability
be Hn�z	.
If the prior distribution of target location is uniform, then

Q�A	 is linear in A, and there is nothing to be gained by a
multislab search. The following lemma states the converse.

Lemma 1. Assume that Q�A	 is not a linear function of A
over any interval of positive length. Then, for z > 0, Hn�z	
is a strictly decreasing function of n, and every optimal
solution is such that �i and yi are strictly positive for i =
1� � � � � n.

Proof. There must be some A > 0 for which Q�A	 is
smaller than one, because otherwise Q�A	 would be linear
(constant at one, in fact) on �0��	. Therefore, it cannot be
optimal to make �i = yi = 0 for all i because the alternative
of making �1 =A and y1 = z/A results in a miss probabil-
ity of �1−Q�A		 exp�−z	+Q�A	, which is smaller than
one. If either �i or yi is zero, there is an equivalent solu-
tion where n is decremented by one. As long as Hn�z	 is a
strictly decreasing function of n, it follows that �i > 0 and
yi > 0 for all i in every optimal solution. It remains only to
show that Hn�z	 is strictly decreasing in n.
Let yn > 0 be the amount of effort in the outermost

region of an arbitrary search plan, and consider an alter-
native solution where the allocation of effort is changed in
the outermost annulus, which is divided into two parts by
an intermediate region with area A∗. The effort density is
increased by �1 in the inner annulus with area A∗ − An−1,
and decreased by �2 in the outer annulus with area An −A∗

(see Figure 3). Because yn > 0, this is possible for small per-
turbations. There is no change in the total amount of effort
required as long as �1�A

∗ −An−1	 = �2�An −A∗	. The net
increase in the miss probability is exp�−yn	�a exp�−�1	+
b exp��2	�, where a≡Q�An−1	−Q�A∗	 and b ≡Q�A∗	−
Q�An	. If a/�A∗ − An−1	 > b/�An − A∗	, the increase can
be made negative by choosing �1 > 0, or it can be made
negative by choosing �1 < 0 if the opposite inequality
holds. That is, except in the case where a/�A∗ − An−1	 =
b/�An − A∗	 for all A∗ between An−1 and An, any solu-
tion can be improved by introducing an additional region.
Because the exception is eliminated by the hypothesis, this
establishes the lemma. �

Figure 3. Revision of effort density from solid to dashed
in the outermost annulus.
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2.1. Bivariate Normal Prior, Elliptical Regions

Consider first the circular bivariate normal distribution
where the standard deviation in each direction is � .
This case has also been investigated by Stone (1975, pp.
179–188), who found necessary and sufficient conditions
for a search to be optimal under the restriction that the
search density in each region must be an integral multi-
ple of some arbitrary quantum (whereas here the arbitrary
parameter is the number of regions).
Because the equiprobability contours are circles, the nat-

ural class of regions is concentric circles with increasing
radii ri. The exclusion probability that the target is located
outside of the ith circle is Q�Ai	= exp�−0�5�ri/�	2	 (e.g.,
Washburn 2002, pp. 1–9), and the area of the circle is of
course Ai = �r2i . Let xi ≡ 0�5�ri/�	2, in which case Ai =
xi�2��2	 and

N�A�y	=
n∑

i=1

{
�exp�−xi−1	− exp�−xi		 exp�−yi	

}
+ exp�−xn	� (1)

T �A�y	= �2��2	
n∑

i=1
yi�xi − xi−1	� (2)

It is convenient to incorporate the constraint into the ob-
jective function by appending a Lagrangian term, in which
case the function to be minimized is

f �x�y !	

=
n∑

i=1

{
�exp�−xi−1	−exp�−xi		exp�−yi	+!yi�xi−xi−1	

}
+exp�−xn	� (3)

where 0= x0 � x1 � · · ·� xn and yi � 0. The factor 2��2

has been incorporated into ! in this dimensionless version
of the problem. If ! � 1, it is optimal not to search, and
the minimal value is one. There is no minimum if ! = 0,
so we assume that 0< ! < 1. The Slab Theorem gives the
optimal solution, but first we need another lemma, which
we state without proof:

Lemma 2. Let g�x	 ≡ ln��exp�x	 − 1	/x	 for x > 0, with
g�0	 ≡ 0. Then, g�x	 is a continuous, monotonically
increasing, unbounded function on �0��	. Furthermore,
g�x	 − x is monotonically decreasing and unbounded
(below) on the same range.

Slab Theorem. For some positive parameter #, the only
optimal solution of (3) is when xi = i# and yi = �n− i+1	#.

Proof. Let �i = xi − xi−1 for i = 1� � � � � n. According to
Lemma 1, the globally optimal solution must be in the
interior, where �i > 0 and yi > 0 for all i. It is therefore
necessary that the derivatives with respect to yi all be zero.
Those derivatives are

d/dyif �x�y !	=− exp�−yi	
(
exp�−xi−1	− exp�−xi	

)
+!�i� i= 1� � � � � n� (4)



Washburn: Piled-Slab Searches
1196 Operations Research 54(6), pp. 1193–1200, © 2006 INFORMS

Equating the derivatives to zero and solving for xi + yi

(this involves dividing by �i, but doing so is permissible),
we obtain

xi + yi = g��i	− ln�!	� i= 1� � � � � n� (5)

where g� 	 is the function introduced in Lemma 2. Equating
the derivatives with respect to xi to zero results in the same
set of equations, except that �i in (5) is replaced by the
forward difference yi − yi+1, with yn+1 = 0. Because g� 	 is
monotonic increasing, the backward differences of x must
therefore equal the forward differences of y. It follows that
xi = yn−i+1, i= 1� � � � � n. We can therefore eliminate y from
consideration, and rewrite (5) as

xi + xn−i+1 = g��i	− ln�!	� i= 1� � � � � n� (6)

Because g� 	 is monotone increasing, it follows from (6)
and the commutativity of addition that �i = �n−i+1, i =
1� � � � � n. Using this, and subtracting the ith equation of (6)
from the i+ 1st equation, we obtain

�i+1− �n+i−1 = �i+1− �i = g��i+1	− g��i	�

i= 1� � � � � n− 1� (7)

It follows from (7) that g��i+1	 − �i+1 = g��i	 − �i, and
therefore from the monotonicity of g�x	−x that �i = �i+1,
i = 1� � � � � n − 1. Because the successive differences of x
must all be equal, the only alternative is that xi = i# and
yi = �n− i+1	# for some parameter #. From (6), it follows
that �n+ 1	#= g�#	− ln�!	, which always has a unique,
positive solution for # as long as 0< ! < 1. �

Corollary. Suppose that the distribution of the target
location is bivariate normal with standard deviations �X

and �Y in the two coordinates, that an n-slab search of
expanding isoprobability ellipses is to be made, the search
of each slab being uniformly random over the entire ellipse,
and that the total area searchable for all ellipses (total
search effort) is A. Let z≡A/�2��X�Y 	 be the total nor-
malized search effort, let # =√

2z/n�n+ 1	, and let ' ≡
exp�−#	. Then, the ith search should be made in an ellipse
whose true area is i#�2��X�Y 	, and the total amount of
search effort used in the search of that ellipse should be
i#2�2��X�Y 	. The detection probability resulting from this
search is Hn�z	= 1−'n�1+ n�1−'		.

Proof. In the elliptical case, the containment variable xi

is ai/�2��X�Y 	, where ai is the area of the isoprobabil-
ity ellipse Ri. If the parameter # is as in the Slab The-
orem, then the total normalized effort applied is

∑n
i=1 yi ·

�xi − xi−1	 = #2n�n+ 1	/2. This must equal the similarly
normalized area available, namely, A/�2��X�Y 	, which
implies that # must be as stated. The effort density in the
search of the ith ellipse must be yi − yi+1, which is also #,
so the total true effort spent in searching that ellipse is the

area of the ellipse times #, or i#2�2��X�Y 	, as claimed.
The resulting miss probability is

1−Hn�z	

=exp�−xn	+
n∑

i=1

{
�exp�−xi−1	−exp�−xi		exp�−yi	

}
='n+

n∑
i=1

�'i−1−'i	'n−i+1�

As was to be shown, the latter sum is 'n�1+ n�1−'		. �

Note that the optimized effort density (the ratio of effort
to area) in every slab is #, an operationally simplifying
feature. Figure 2 shows the SOLR cup and the optimal
three-slab approximation to it for a problem where �X =
�Y = z= 1, in which case #= 0�408.
Although the n slabs can actually be searched in any

order, there is something to be said for searching them in
order of size, the smallest region being searched first. If
that is done, it is easy to check that the detection proba-
bility at the end of searching slab i is as large as possible,
subject to only searching i slabs with whatever amount of
effort has been expended at that time. This is a kind of lim-
ited uniform optimality. It is possible to perform an SOLR
search in such a manner that the detection probability is
maximized at every time, from which it follows that SOLR
search also minimizes the mean time to detection (Stone
1975, pp. 51–52). There is no comparable result for slab
searches. Indeed, there is likely to be a conflict between the
goals of simplicity and minimizing the conditional mean
time to detection because the former requires a raster search
of each slab that will not minimize the latter. Nonetheless,
in the above limited sense, it is best to search the slabs in
increasing order.
It can be shown that

lim
n→�1−Hn�z	= 1− �1+√

2z	 exp�−√
2z	�

the detection probability for the SOLR case. Washburn
(2002, pp. 5–6, 5–11) also defines the strategically uniform
locally random (SULR) case corresponding to n = 1, for
which 1−H1�z	= �1−exp�−√

z		2. We have thus bridged
the two extremes, showing how efficiency increases as the
search is allowed to become more complicated. It turns
out to increase very little (Figure 4). Even very simple
searches with n = 1 or 2 achieve a detection probability
that is remarkably close to the SOLR limit.
Although the global minimum must be interior, there

are also local minima where either �i or yi is zero. The
reader may wish to investigate the tendency of a numerical
optimization procedure to converge to one of these edge
minima using page “Circles” of PiledSlab.xls.

2.2. Bivariate Normal Prior, Rectangular Regions

Next, we consider a sequence of regions that are squares
if the bivariate normal is circular or, more generally, rect-
angles for which the width/length ratio is �X/�Y . The
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Figure 4. Detection probability increases with n, but
SOLR �n=�	 is not much larger than SULR
�n= 1	.
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problem is to determine an optimal sequence of n such rect-
angles, together with an amount of effort for each, subject
to the constraint that the total amount of effort for all of
them is A. Rectangles are simpler regions to search than
ellipses, hence our interest.
If Ai is the area of the ith such rectangle, then the

inclusion probability is the square of the probability that
a normal random variable is contained within an interval,
specifically,

1−Q�Ai	=
[
2(

(
0�5

√
Ai

�X�Y

)
− 1

]2
�

Lemma 1 still applies because this function is not linear
over any interval, so we can conclude that only interior
minima of the miss probability can be global. As in the
case of circular regions, there are numerous inferior local
optima where either �i or yi is zero for at least one value
of i, any of which may prove attractive to a numerical opti-
mization procedure, depending on the starting point. As a
practical matter, the solution to the circular problem is a
good starting point for the square problem, generally result-
ing in fast convergence to a nearby interior minimum. See
the “Squares” sheet of PiledSlab.xls, which uses Excel’s
Solver to seek a minimum from a starting point entered by
the user.
Rectangles can be efficiently searched using a lawn-

mower pattern that utilizes parallel tracks of equal length.
This cannot be said for ellipses, so there is a good argument
for searching squares if the sacrifice in detection proba-
bility is small. Table 1 compares the circular and square
solutions of a problem where n = 4. The miss probabil-
ity is 0.469551 when circles are optimized, or 0.476504
when squares are optimized. If the optimal circular areas
are simply converted to squares with the same area, the
miss probability rises slightly to 0.476509. There is little
to be lost by searching squares instead of circles, and still
less to be lost by forcing the analytic circular solution onto
the square problem.

Table 1. The circular solution when � = 1, n= 4, and
A = 10, with the offset for the square case
shown in parentheses.

Index i Ai 1−Q�Ai	 yi

1 2.51 (−0�04	 0.33 1.60 �+0�011	
2 5.01 �−0�05	 0.55 1.20 �+0�005	
3 7.52 �−0�03	 0.70 0.80 �+0�001	
4 10.03 �+0�03	 0.80 0.40 �−0�001	
Note. Early square areas are slightly smaller, with slightly higher
effort densities.

Reber (1957) discusses an infinitely divisible search plan
where the search density is in the shape of a smooth pyra-
mid that approximates the inverted SOLR cup. Reber’s plan
by design has rectangular contours of constant search den-
sity. The associated miss probability is, of course, larger
than the SOLR miss probability. It can even be larger than
the miss probability in an optimized square search, in spite
of the fact that the square search might be thought of
as an attempt to approximate Reber’s plan. The example
given above is a case in point—Reber’s miss probabil-
ity is 0.476814, which is larger than 0.476504 (see page
“Squares” of PiledSlab.xls).

3. General Independent Search of
Expanding Regions

In this section, we consider a sequence of uniform, inde-
pendent searches of a sequence of regions, each of which
includes all of its predecessors. Although the individual
searches are uniform, they are not necessarily random. It is
not necessarily true that the total search effort in an annulus
is a sufficient statistic for computing the miss probability,
so we proceed differently. Let
Ni ≡ event target not located in region i;
Di ≡ event target detected during the search of region i;
Ei ≡ event target detected during the search of region i, or

before.
Also let Pi be the probability of Ei. Then, because Ei =
Di ∪ Ei−1 ∩D′

i, where D′
i is the negation of Di, it follows

from the theorem of total probability that

Pi ≡ P�Ei	= P�Di	+Pi−1P�D′
i �Ei−1	� (8)

Let Qi = P�Ni	 and Fi ≡ P�Di �Ei−1	. Because the search
of the ith region is uniform, and because Ei−1 implies N ′

i ,
Fi = P�Di � N ′

i 	, the probability of detection given that the
target is in the region searched. Because

P�Di	= P�Di �N ′
i 	�1−Qi	�

(8) is equivalent to

Pi = Fi�1−Qi	+Pi−1�1− Fi	� i� 1� (9)

This holds even when i= 1 if we define P0 = 0 for con-
venience. If we have a way to compute the exclusion prob-
abilities Qi and the conditional detection probabilities Fi,
Equation (9) can be used to determine P1, P2, etc. by recur-
sion. Equation (9) is derived and employed for that purpose
by Engel (1981) in the special case of rectangular regions.
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3.1. Bivariate Normal Prior, Inverse-Cube Law

The inverse-cube law was developed in World War II as
a model of detection of a ship’s wake. It has convenient
analytic properties (Koopman 1956, pp. 521–524; Wash-
burn 2002, pp. 2–9 to 2–12), and still enjoys modern
use as a detection model that lies between random search
and exhaustive search in terms of effectiveness. IAMSAR
(2003), for example, includes search-planning procedures
for ideal search conditions (inverse-cube law) and “poor”
search conditions (random search).
The inverse-cube law assumes that the area in question

is covered by parallel tracks spaced S apart. The detec-
tion probability depends on the coverage ratio c ≡ W/S,
where W is the sweep width. Specifically, if the coverage
ratio in the ith search is ci, then the detection probability,
given that the target is actually in the ith area, is

Fi = 2(
(√

�

2
ci

)
− 1� (10)

Equivalently, c is the ratio of the area covered by the
search (track length multiplied by W ) to the area of the
region searched (track length multiplied by S), an effort
density. Because the area covered and track length are pro-
portional, track length itself can be taken to be the measure
of effort.
Consider the problem of optimally allocating a total

amount of track length to a sequence of expanding squares.
If the ith square has area Ai, then it contains the target with
a probability that depends on the ratio of the square’s side√

Ai to the standard deviation � :

1−Qi =
[
2(
(√

Ai/�2�	
)− 1]2� (11)

Using (9), we can now calculate Pi by recursion, as long
as the squares and the coverage ratios are known. There
remains the question of determining these optimally, sub-
ject to a constraint on total effort.
This optimization problem was approximately solved by

Koopman (1956) and his colleagues (hereafter the Koop-
man plan) in World War II. The Koopman plan involves
maintaining a constant track spacing in all searches, that
spacing being given by the formula S = 0�723

√
�W . For

that spacing, the number of regions n is determined so that
the overall distribution of searching effort closely approx-
imates the optimal distribution in the SOLR search (see
Koopman 1980, pp. 214–221, or Frost and Stone 2001 for
details). In the Koopman plan, the number of regions n is
determined by the sweep spacing.
When the Koopman plan falls short of being optimum,

as it sometimes does, the reason is usually not that it does a
poor job of approximating an SOLR search, but rather that
the SOLR search is not a good thing to approximate when
detections are according to the inverse-cube law. Recall
that the optimal number of regions in the case of random
search is theoretically infinite. That is not true in the case

Table 2. The optimal (alternatively Koopman) number
of regions and the optimal (alternatively Koop-
man) detection probability in six problems,
where track length L and sweepwidth W are
as shown, and the standard deviation is � = 1.

L W Regions, n Det. Prob., Pn

96.2 0�01 1 (4) 0.123 (0.112)
96.2 0�1 1 (4) 0.617 (0.565)
96.2 1�0 2 (4) 0.994 (0.985)
54.09 0�1 1 (3) 0.451 (0.417)
54.09 1�0 2 (3) 0.970 (0.950)
24.04 0�1 1 (2) 0.259 (0.246)
24.04 1�0 1 (2) 0.857 (0.829)

Note. An independent search according to the inverse-cube law is
made in each region.

of the inverse-cube law. Employing many regions is still
wise in the sense that it permits the overall search to be
shaped so that the heaviest effort is put where the target is
most likely to be. However, the successive searches are all
(we assume) independent of each other, whereas any given
inverse-cube law search represents an attempt to cover its
region in an organized manner. Thus, each additional region
introduces an element of disorganization into a search that
might otherwise have been more organized. As a result, the
optimal number of regions is surprisingly small. Table 2
shows some comparisons of the best-known solution with
the Koopman plan. Except in problems where very high
detection probabilities are possible, the optimal number of
regions is one. The interested reader can do further test-
ing of this claim using page “InvCube” of PiledSlab.xls.
The penalty for using too many regions can be signifi-
cant, particularly if one takes into account the wasted effort
that occurs, as a practical matter, when switching from one
region to another.
The fact that a single region is typically the optimal num-

ber of regions means that optimal searches (within the class
being considered) are simple ones, a useful property. How-
ever, the same fact also means that the amount of searching
effort needs to be known before the search begins. Sup-
pose that the initial search of an optimal square region A1

does not result in finding the target, and that the decision
is subsequently made to continue searching for a second
amount of track length. The optimal square A2 is unlikely
to be coincident with A1, even though the optimal number
of regions would still be one if the total amount of track
length could be allocated optimally. In other words, there
may be cause to regret having searched A1 in the first place.
Such problems are the subject of the next section.

4. Myopic Optimization and Inversion
So far, we have assumed that a given amount of search ef-
fort must be optimally distributed over a number of stages,
each of which consists of the search of a region that
includes its predecessors. It is sometimes the case that the
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amount of effort for each stage is not known beforehand.
Unexpected search resources may arrive, or the importance
of finding the target may increase to the point where a
search is extended in time. At each stage of planning, a
known amount of search effort is available, but even the
existence of subsequent stages may be in doubt. We con-
sider, then, the “myopic” search-planning problem where
the objective is always to maximize the detection proba-
bility for the current search. Equation (9) is central, with
Pi−1 summarizing past decisions, and with current decisions
affecting Qi and Fi. NAVSAR (Navy 1990), a search and
rescue tool sometimes used by the U.S. Navy in looking for
downed aircraft, is organized in this manner. The myopic
optimization problem is also considered in IAMSAR (2003,
pp. 4–21 to 4–33).
There is a penalty for not knowing the future. Consider

the second data line of Table 2, for example. If the total
track length of 96.2 is split into four equal parts, each of
which is myopically optimized, the detection probability is
only 0.558, smaller than both the Koopman plan and the
optimal search, each of which is nonmyopic in the sense
that each knows the total effort available when the first
search is undertaken. Search for a stationary target can be
arranged so that myopic search is always globally optimal,
provided the class of search strategies is sufficiently large
(Washburn 2002, pp. 5–16). However, the class of piled-
slab searches is not sufficiently large to permit this, partic-
ularly in searches where the optimal number of slabs tends
to be one.
Casual use of (9) can lead to incorrect answers in myopic

optimization. For example, suppose that the prior distribu-
tion is circular normal with � = 1, and that an amount
of effort A1 = 2� is available for a single random search.
According to the corollary, the optimal search region R1
has area a1 = 2�, # = z = 1, and the optimal detec-
tion probability is P1 =H1�1	= �1− exp�−1		2 = 0�3996.
Now suppose that a second search with amount of effort
A2 = 1 becomes possible, while the first search is fixed
as above. As long as the second search is in a region R2
that includes R1, F2 is given by the random search for-
mula 1− exp�−A2/a2	. The exclusion probability is Q2 =
exp�−a2/�2��2		. Using (9), the optimal value of a2
is 9.0, and the resulting detection probability after both
searches is P2 = 0�4376. However, this is only a local min-
imum, because the formula for F2 is incorrect when R2 is
contained in R1, rather than vice versa. Casual use would
take the fact that the locally optimal a2 is larger than a1 as
verifying that the globally optimal a2 has the same prop-
erty, but in fact the possibility that a2 should be smaller
than a1 has never been accurately investigated. The cor-
rect value of a2 is actually 2.5 in this example, and the
best detection probability is 0.4395. This can be verified
using (9), but with the chronologically second search being
logically first. If the total amount of search effort could
have been optimized between the two searches, the detec-
tion probability would be 0.4445, again illustrating that
myopic search is not globally optimal.

The error produced by casual use in this example is
small, as it usually is, but nonetheless real. The possibil-
ity that optimal search areas should be “inverted” in the
sense that a late search should be made over a smaller
region than an earlier one must be reckoned with when ef-
fort magnitudes are determined arbitrarily, especially if the
chronologically late magnitudes are relatively small.
The computational cost for dealing with potential inver-

sions is significant. If the planned regions are R1� � � � �Rn in
increasing (not chronological) order, then, because the next
region might lie anywhere in the sequence, they must all be
remembered, along with associated data, if (9) is to be used
to compute the maximized Pn+1. A possible maximizing
procedure is outlined below.
Let Qi and Fi be as defined earlier, and suppose that it

is desired to add a new search of a new region. If the areas
of the current regions are x1� � � � � xn, and if the new region
to be searched has area x, introduce x0 ≡ 0 and xn+1 ≡�,
and say that the new region is inserted in the ith interval
if xi � x < xi+1 for 0 � i � n. Let Q�x	 and F �x	 be the
exclusion probability and conditional detection probability
for the new region. F �x	 will also depend on the amount
of effort available for the new search, although this is not
reflected in the notation. Then, using (9) and induction, it
can be shown that the detection probability after all n+ 1
searches are complete is

Pd�x	=AiF �x	�1−Q�x		+Bi�1− F �x		+Ci (12)

for x in interval i, where

Ai =
n∏

j=i+1
�1− Fj	� Bi =

i∑
j=1

QjFj�1− Fj	�

Ci =
n∑

j=i+1
QjFj�1− Fj	�

(13)

with the usual conventions for empty sums and products.
In terms of these quantities, the detection probability Pi as
defined by (9) is Bi/Ai. Equation (12) defines Pd�x	 for
all x � 0 because the intervals partition the nonnegative
real line.
The maximum of Pd�x	 could occur anywhere, but ana-

lytic methods may somewhat reduce the labor of finding
it if F �x	 and Q�x	 are each differentiable functions of x.
In that case, Pd�x	 is continuous everywhere, and dif-
ferentiable except possibly at interval endpoints. Letting
the symbol ′ (prime) denote derivative with respect to x,
from (12) we have, in interval i,

Pd′�x	=−AiQ
′�x	F �x	+F ′�x	�Ai�1−Q�x		−Bi	� (14)

Assume that F ′�x	 < 0 for all x > 0, and let P ∗�x	≡ 1−
Q�x	−F �x	�Q′�x	/F ′�x		. Then, Pd′�x	 > 0 if and only if
P ∗�x	 < Bi/Ai, or equivalently, P

∗�x	 < Pi. If P ∗�x	 is an
increasing function of x, there can be a local maximum in
the interior of interval i if and only if both P ∗�xi	 < Pi and
P ∗�xi+1	 > Pi+1. In that case, say that the interval passes the
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possibility test. Intervals that pass the possibility test must
be more closely investigated, but most intervals will fail the
test, and are therefore easily disposed of as alternatives for
containing the optimal value of x.
Page “Myopic” of PiledSlab.xls is set up to calculate the

correct insertion interval in the case of the circular random
search of a normal prior, in which case F ′�x	 < 0 and P ∗�x	
is indeed an increasing function of x for all x > 0. If an
interval passes the possibility test, then the position of the
local maximum is calculated using Newton’s method to find
the place where Pd′�x	= 0.
There seems to be little else to exploit in the process of

finding a global maximum. There may be multiple local
maxima, and any local maximum might be global.
The inversion considerations of this section are of no

concern when search effort and search area are both deci-
sion variables, as they are when the only constraint is
on total search effort. Because the chronological order in
which searches are made is irrelevant when the target is sta-
tionary, no additional generality ensues when one permits
inversions.

5. Summary
We have considered the use of uniform searches over an
expanding sequence of regions in a variety of circum-
stances. We have found an analytic optimal solution in the
case of random search of a normal prior using expanding
circles, thus generalizing a solution found in World War II.
This solution can serve as a good approximation to random
search using expanding squares, or a slightly better solu-
tion can be achieved by using it as the starting point for a
local optimization.
Although circles turn out to be a good approximation to

squares, it is not true that an optimal random search is a

good approximation to an optimal inverse-cube law search.
In the latter, there is a strong tendency for optimal searches
to consist of searching a single, carefully chosen slab.
We have also considered problems where the optimiza-

tion must be done myopically. Reliable use of Equation (9)
must account for the possibility of “inversions” where
chronologically late searches should be over regions lying
within those already searched. Although the improvements
are generally small, myopic search that permits inversions
is generally better than myopic search that does not.
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