
ABSTRACT 

T he Flaming Datum problem is one of 
relocating an enemy target that is 
fleeing after momentarily revealing 

its position. A diesel submarine faces this 
problem after attacking a ship, since the 
ship creates a visible marker of where the 
submarine must once have been. The tacti- 
cal problem has been studied before under 
the assumption that the submarine’s mo- 
tion is constrained only by a top speed. 
Here we add the constraint that the bat- 
tery’s capacity is also finite. The problem is 
bounded rather than solved. Techniques 
used include two-person zero-sum game 
theory and optimal control theory. 

BACKGROUND 
In World War II, it would sometimes 

happen that one ship in a convoy would be 
torpedoed by a submarine. The convoy’s 
destroyer escorts would then attempt to 
locate the submarine in the vicinity of the 
“flaming datum” where the submarine 
must once have been. Since diesel-electric 
submarines of that era actually spent most 
of their time on the surface, it was also 
frequent for a submarine to crash-dive 
right after a visual detection by an aircraft, 
thus initiating a search in similar circum- 
stances where the submarine’s location at 
some time in the past is known. Regardless 
of the mechanism that initiates the action, 
we will refer to all such searches as flaming 
datum problems (FDPs). The main charac- 
teristics of an FDP are that a mobile plat- 
form performs some action that permits its 
previously unknown location to become 
known to an enemy, that the action occurs 
at a point (rather than an interval) in time, 
and that the platform knows that its loca- 
tion has been revealed. A tvvo-person-zero- 
sum game ensues where a searcher or 
searching force attempts to relocate and at- 
tack the platform, or at least detect it by 
other means. 

FDPs can also occur on land (Shupenus 
and Barr, 2000). A modern military exam- 
ple is when a missile is launched from a 
mobile vehicle. The launch can sometimes 
be detected and located, thus providing a 
location at which the vehicle must once 
have been. However, this article is essen- 
tially restricted to FDPs involving diesel 
submarines because of constraints on target 
motion that will be outlined below. Diesel 
submarines have become much quieter and 
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generally more effective than they were in 
World War II, and are an important com- 
ponent of many modern navies (Janes 
[1999]). Flaming datum attacks may still be 
an effective countermeasure to submarine 
predation, as they were in WWII. 

Section 2 summarizes previous work, 
Section 3 discusses crucial assumptions, 
and Section 4 provides an abstract formu- 
lation of the problem as a continuous two- 
person zero-sum game that is too compli- 
cated to solve exactly. Section 5 exactly 
solves a discrete analog. Sections 6 and 7 
derive lower and upper bounds on the con- 
tinuous game, and Section 8 applies the 
bounds to specific examples. Section 9 at- 
tempts (in vain) to reduce the gap between 
bounds. Section 10 is a summary. 

SUMMARY OF PREVIOUS WORK 
Previous work on the FDP assumes 

that the submarine’s velocity vector must 
not exceed a given top speed S in absolute 
value, but is otherwise unconstrained. The 
largest distance that the submarine can 
move in time t is then St, the radius of the 
Farthest-on Circle (FOC). The earliest 
known analysis along these lines is Koop- 
man (1980), who includes a WWII analysis 
of a problem where the submarine’s direc- 
tion (course) is fixed but unknown while its 
radial speed is known to be S. In such 
circumstances the searcher’s best track is 
generally a spiral of some kind, but a spiral 
is in practice vulnerable to the possibility 
that the submarine might turn or go slower 
than its top speed. 

More recent approaches look at the 
FDP as a two-person-zero-sum game with a 
richer set of submarine strategies. Dan- 
skin’s (1968) submarine maneuvers in such 
a manner that its position is at all times 
uniform over the FOC, a tactic that will also 
be employed here. Other relevant papers 
employing game theory are Cheong (1988), 
Baston and Bostok (1989), and Thomas and 
Washburn (1991). 

Let p be the rate at which the searcher 
can cover area per unit time, and assume 
that this search effort is distributed contin- 
uously and uniformly within the FOC at all 
times. Conceptually one can think of p as 
the rate at which the searcher scatters con- 
fetti in the hope that some flake will cover 
the point target. Since r(St)’ is the area of 
the FOC at time t, a simple analysis is that 
p/(n(St)‘) is the rate of detection (probabil- 
ity of detection per unit time) at time t. The 
integral of this rate over the appropriate 
time interval is the expected number of 
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detections Z. If there is good reason to suppose 
that the actual number of detections is a Pois- 
son random variable, then the probability of (at 
least one) detection is 1-exp(-Z). Washburn 
(1996) shows that this model provides accurate 
answers in at least one experimental situation. 
The present work is a model of this kind. The 
total rate of depositing confetti over the plane 
will still be constrained to be p, consistent with 
the idea that the searcher is a mobile vehicle 
such as a helicopter or aircraft, but the confetti 
will not necessarily be uniformly distributed 
over the FOC. In other words, the present work 
is a generalization of the random search for- 
mula developed in World War II (Koopman, 
1980). 

BASIC ASSUMPTIONS ABOUT 
PROPULSION AND SEARCH 

Submarine Propulsion 
Diesel-electric submarines run on batteries 

when submerged, and a battery is better mod- 
eled as a fixed energy source than a fixed power 
source. We will therefore impose a constraint 
on energy consumption, as well as one on 
speed. This is the primary difference between 
the current work and previous studies. 

The drag on a submarine increases with the 
square of its speed, so the power required to 
drive it goes up with the cube of its speed, 
approximately. In addition, part of the battery’s 
power is wasted at high speeds because of dis- 
sipation in the battery’s internal resistance, as 
will be explained in more detail below. High 
speeds are therefore unattractive from the 
viewpoint of conserving the battery. If the tac- 
tical situation demands high speed, as it does in 
the FDP, then the submarine must make the 
tradeoff between speed and endurance care- 
fully. 

There are reasons not related to energy con- 
servation for avoiding high speeds. There are 
mechanical considerations that simply put an 
upper limit on speed. Submarines (of all types) 
also try to avoid cavitation, a noisy phenome- 
non associated with the collapse of air bubbles 
created by the propeller. Cavitation can be 
avoided by going deep, as well as by slowing 
down. We assume here that these consider- 
ations place an upper “mechanical” limit on 
speed, regardless of energy considerations. 
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Search 
Search can be either active or passive. Pas- 

sive search provides no information to the tar- 
get about the location of the searcher, whereas 
search with active sensors may provide such 
information if the target is within counter-de- 
tection range of the searcher’s emissions. Active 
sensors sometimes have long detection ranges, 
but suffer from adverse movement on the part 
of the target-the adverse effect can be signifi- 
cant (Washburn [1996]). The analysis here is of 
a passive search. This does not necessarily ex- 
clude search with active sensors, provided 
searcher tactics make it impossible for the sub- 
marine to use the information thereby pro- 
vided. 

The searcher will be assumed to arrive 
some time after the triggering event and to 
have finite endurance, as is characteristic of an 
aircraft or helicopter. While searching, the 
searcher will be assumed to cover area at some 
constant rate p (area per unit time). For contin- 
uously moving sensors, p is the product of 
speed and sweepwidth. For pulsing sensors 
such as a dipping sonar that examine an area A 
every T units of time, p is A/T. Except for the 
magnitude of p, the nature of the search mech- 
anism is unimportant in what follows. 

The search will be assumed to consist in 
detail of a distribution of confetti. This notion 
will be made more precise in the next section, 
but the essential idea is that search is locally 
disorganized in the sense that what happens in 
one spatial cell is independent of what happens 
in neighboring cells. All hope of detecting the 
submarine by somehow trapping it or con- 
structing an impermeable barrier must there- 
fore be given up. One arrives at this assumption 
by considering that both searcher and subma- 
rine are moving, that neither can navigate per- 
fectly, and that spatial coverage by real sensors 
is never perfect anyway. 

DESCRIPTION OF THE ABSTRACT 
GAME 

Consider a search game in two dimensions 
where a searcher attempts to detect a moving 
submarine. The submarine moves away from a 
position known to the searcher at time 0, the 
“flaming datum.” The searcher applies confetti 
at rate k(r, t) at time t at distance Y, constrained 
only by the requirements that k(r, t) have units 
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of inverse time, be nonnegative, integrable and 
subject to the constraint 

f-m 

the quadratic equation for I in terms of Q, we 
find that the total power taken from the battery is 

P(Q) = VoI = 2Q,(l - ,m/Q,). (3) 

2n 
J 

h(r, t)rdr I p; T I t I T. (1) 
0 

The parameters r and T are the searcher’s time 
of arrival and departure, respectively, with r I 
T. The factor 29~ in the integrand is needed 
because h(r, t) is the amount of confetti per unit 
area per unit time (not the amount of confetti 
per unit radius per unit time). 

Note that confetti density is assumed to be 
radially symmetric with respect to the origin of 
coordinates (the flaming datum), but not nec- 
essarily uniform. To make it uniform one 
would require h(r, t) to be a constant within 
some disk. Since the submarine’s motion has no 
constraints involving angles, any departure 
from radial symmetry could be easily exploited 
by the submarine. 

Our intention is to provide realistic values 
for parameters as they are introduced, and to 
employ them later in examples. We will take p 

to be 200 square nautical miles per hour. A 
continuously moving sensor might have a 
speed of 100 knots and a sweepwidth of 2 nm., 
or a dipping sensor might cover 40 (n.m.2) once 
every 12 minutes; the effect is the same. 

If the submarine’s distance from the origin 
at time t is y(t), then the detection rate at time t 
is h( y( t), t), and the game’s payoff (the expected 
number of detections) is 

A@, y> = h(y(tL Wt. (2) 

The submarine is assumed to obtain power 
from a battery with open-circuit voltage V0 (400 
volts), internal resistance X (.016 ohm), and to- 
tal energy E (4000 kilowatt-hours at full 
charge). Parenthetical values in the previous 
sentence are typical of modern submarines. If 
the electrical current through such a battery is I, 
then the voltage across the load is V,, - IR and 
the power delivered to the load is Q = I(V, - 
IR). This power is maximized when I = V,J 
(2R), at which point the power dissipated in- 
ternally in the battery is the same as that deliv- 
ered to the load; namely Q. = V$(4R). Solving 

P(Q) is maximized when Q = Qa, but half of the 
battery’s power is wasted at such high power 
settings. Since 2Q, = 5000 kilowatts, our typical 
submarine could travel for only 0.8 hours at 
this speed. 

If the submarine’s speed is s, assume that 
the power consumed is Q(s) = ksY, where y is 
certainly larger than 2 and will be assumed to 
be 3 in examples. The maximum possible sub- 
marine speed is then S = (Qo/k)l”, typically 18 
knots. It follows that k = 0.4287 kilowatts/ 
(knot)3 for the typical submarine. Let S* (15 
knots) be the mechanical limit introduced in 
Section 3. We assume that the electrical speed 
limit S exceeds 9. The submarine’s endurance 
at the mechanical speed limit is t* = E/P(Q(S*)), 
2.28 hours for the typical submarine. 

Let s(t) be the submarine’s speed at time t. 

The submarine is free to choose any integrable 
speed function that does not exceed S* or ex- 
haust the battery, so s(t) must satisfy 

i 

T 

P(Q(s(t)))dt I E 

0 

and 0 5 s(t) 5 S*; 0 I t I T. (4) 

The maximizing searcher chooses the con- 
fetti density function h to satisfy (1). The mini- 
mizing submarine chooses the distance func- 
tion y in such a manner that the associated 
speed function satisfies (4). The resulting pay- 
off is (2). 

Given (3) and the above assumptions about 
power consumption, the power P(Q(s)) re- 
quired for any given speed s is Q,$s/S), where 
the function p and its inverse p are 

p(x) = 2(1 - Jl - x’); 0 5 X 5 1 

p-‘(y) = (y - y2/4)l’Y; 0 5 y 5 2 
(5) 

These functions will prove useful later. 

ASOLVABLE DISCRETE ANALOG 
The abstract FDP game is too difficult to 

solve exactly, so in this section we construct a 
discrete, one-dimensional analog where the op- 
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timal solution can be obtained by enumerating 
all of the submarine paths and applying linear 
programming. The results are to some extent a 
guide to the analysis in the following sections, 
but still this section could be skipped. 

We consider one-dimensional discrete 
problems where the submarine moves among 
cells 1, . . ., K, starting in cell 1 at time 0. The 
submarine has a total energy E available, and 
consumes (i - i)’ units of energy in moving 
from cell i to cell j in unit time (note that the 
power is 2 in this example, not 3). The search- 
er’s first look is at time 7, his last look is at time 
T, and each look consists of distributing a unit 
of confetti over the cells. The payoff is the ex- 
pected accumulated amount of confetti in the 
same cell as the submarine. Let fl and 0: be the 
set of all feasible target paths and the set of 
paths occupying cell i at time t, respectively. 
Since only paths of length T need to be consid- 
ered, both sets are finite. For o E 0, w(t) de- 
notes the position of the submarine at time t. 
Let the probability of selecting path o be r(o), 
which is the submarine’s mixed strategy and 
has constraints r(o) 2 0. Let the distribution of 
search effort be {cp(i, t), t = T, . . . , T}, which is 
the searcher’s strategy and has constraints 
cp(i, t) 2 0, Xi cp(i, t) 5 1, I- I t I T. The objective 
functionf(cp, rr) = EU n(w) ET=‘=, cp(w(t), t) has a 
saddle point because it is concave-convex, and 

= Emax 

t i 
c 44 . 

tET i LoEn: 

Therefore, the game can be solved by solving 
the following linear program: 

minimize E v(t) 
t=7 

2 r(u) 5 v(t), 7 5 t 5 T, 1 5 i 5 K subject to wEbl! 

?-r(o) 2 0,o E R 

c 7r(w) = 1. 
0 

For the game with parameters T = 9, K = 
10, E = 9 and r = 1, there are 25312 feasible 
paths in all. The path that goes the farthest by 
time9iso1=(12345678910),whichmakes I I I I I I I I I 
9 unit transitions at a cost of 1 unit of energy 
each. The path that goes the farthest by time 1 
is w2 = (14 4 4 4 4 4 4 4 4), I I I I I I I I r which spends all 9 
units of energy in moving from cell 1 at time 0 
to cell 4 at time 1. Small probabilities are as- 
signed to about one fifth of these paths in the 
optimal submarine mixed strategy, with the 
largest being v(TT(o.,) = 0.0983. The resultant 
probability distribution of the submarine’s po- 
sition at time t is shown in Table 1. The search- 
er’s optimal confetti distribution (the dual vari- 
ables of the linear program used to solve the 
game) is shown in Table 2. The value of the 
game is 1.493 expected detections. 

The submarine has a positive probability of 
visiting every feasible cell. However, the 
boundary path o* = (14566788910) has I , I I I I I I I 
zero probability because it is not feasible-fol- 
lowing it would require 15 units of energy. It is 
not possible for the submarine to move as far as 

Table 1. Probability distribution of the submarine’s position 

10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

.069 .125 
.094 .133 .125 

.095 .167 .151 .133 .125 
.200 .181 .167 .151 .133 .125 

.098 .200 .181 .167 .151 .133 .125 
,301 .200 .181 .167 .151 .133 .125 
.301 .200 .181 .167 .151 .133 .125 
,301 .200 .181 .167 .151 .133 .125 

.030 
.056 .026 
.118 .118 
.118 .118 
.118 .118 
.118 .118 
.118 .118 
.118 .118 
.118 .118 
.118 .118 

f= 1 2 3 4 5 6 7 8 9 
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Table 2. Distribution of search effort 

10 
9 
8 .138 .lll .116 
7 .046 .094 .116 .lll 
6 A40 .184 .159 .128 .116 .lll 
5 .024 ,112 .328 .184 .159 .128 .116 .lll 
4 .244 .222 .145 .184 .159 .128 .193 .218 
3 .333 .244 .222 .029 .149 .159 .128 .116 .lll 
2 .333 .244 .222 .029 .149 .159 .128 .116 .lll 
1 .333 .244 .222 .029 .149 .159 .128 .116 .lll 

t= 1 2 3 4 5 6 7 8 9 

possible at all times. For example, occupying cell 
4 at time 1 forces the occupation of cell 4 at all 
subsequent times. Note that the searcher does 
not bother to search cell 4 at time 1, but still 
guards against w2 by putting lots of confetti in 
cell 4 at times 8 and 9 when the confetti will 
catch several other paths in addition to oz. 

Except for anomalies such as the one men- 
tioned above, the searcher has a tendency to 
search uniformly within the boundary o*. A 
simple lower bound on the game value can be 
constructed from this observation, since distrib- 
uting confetti uniformly within the boundary is 
certainly feasible for the searcher and results in 
w*(t)-l units of confetti being in whatever cell 
the target occupies at time t. The bound is LB = 
XT=, w*(t)-i, the amount of confetti that accu- 
mulates on the target by time T. This bound is 
1.387 in the present example. 

The submarine’s position is also approxi- 
mately uniform within w*, except near the 
boundary where the occupation probabilities 
are necessarily somewhat depressed because o* 
itself is not feasible. If the submarine could 
arrange to make its distribution uniform within 
some other feasible path o**, then, since the 
total amount of confetti at each time is 1, the 
expected amount of confetti on the target at 
time t cannot exceed m**(t)-‘. The correspond- 
ing upper bound on the game value would be 
LIB = cy=, o**(t)- i. For the present example, 
the feasible path that minimizes UB is w** = 
(13 4 5 6 7 8 8 8 8), ,,,,1,!11 and the associated upper 
bound is 1.593. 

Both of these bounding ideas are applied to 
the continuous FDP in subsequent sections, but 
without having an actual game solution to com- 
pare them to. It is perhaps noteworthy that the 

game value is very close to being midway be- 
tween the bounds in this discrete example. 

There are discrete cases where the bounds 
are equal. One is where T = 4, K = 5, T = 1, and 
E = 6. In this case o* and w** are both (1,3,4,5), 
and the submarine can make the distribution of 
his position be uniform beneath o** at all times. 
It is not obvious in discrete problems that the 
submarine can always do this, but the situation 
will prove simpler in the continuous case. Both 
bounds are equal to the value of the game, 
namely 0.78 expected detections. 

We now return to the continuous, two-di- 
mensional FDP. 

A LOWER BOUND 
Since (dy(t)/dtl is constrained to not exceed 

the submarine’s speed s(t), the maximum pos- 
sible value of y(t) will occur when dy(t)/dt = 
s(t) for 0 5 t 5 T; that is, when the submarine’s 
motion is entirely radial. Since P(Q(s)) is a con- 
vex function of s, the speed function that max- 
imizes y(t) for any specific time t will be s(u) = 
s*(t) for 0 I u 5 t; that is, the speed to obtain 
maximum distance should be constant at some 
level s*(t) before the referenced time t, and zero 
thereafter. If t is smaller than t”, the endurance 
at the mechanical limit S*, then the constant 
speed should be S*. Otherwise, s*(t) should sat- 
isfy tP(Q(s*(t))) = E. Using (5), we find that the 
solution of this equation is s*(t) = Sp-‘(E/ 
(tQo)b 

The maximum possible y(t) is just y*(t) = 
t,?(t). Like Soto (2000), we will refer to the 
expanding circle with this radius as the MPD 
(“maximum possible distance”) circle to distin- 
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guish it from the smaller FOG to be defined in 
the next section. The analog of y*(t) in the dis- 
crete problem considered earlier is the bound- 
ary o*. It is not in general possible for the 
submarine to make y(t) = y*(t)@ all t, just as w* 
is not a feasible path in the discrete game. The 
derivative of y*(t) is a “virtual speed” that may 
not satisfy the energy constraint in (4). None- 
theless, if the searcher distributes confetti uni- 
formly over the MPD circle at all times, then the 
rate of detection will be h(y(t), t) = p/(,rry*(t)‘) 
regardless of y(t), since y(t) 5 y*(t) for 0 5 t I 
T regardless of how the submarine moves. 

If T zz t* 5 T, then a lower bound on the 
payoff is 

+ ,,,,~‘(tsp-~(~))z~t. (6) 

Let E be the speed ratio V/S (5/6 for the typical 
submarine), and define the functions 

f x:x51 

gk 8) = 1 fip-l(m);x~l 

fx 

(7) 

and G(y; E) = 
J 

g(x; E)-%X 

Y  

Then (6) can be expressed as 

P 

I 

T/t* 

Q = &t(s*)z g( x; &)-2dx. (8) 
r/t* 

Equation (8) can be simplified to 

2 = a{G(T/t*; E) 

- G(T/t*; E)}, where (Y = 

The constant a! can be thought of as a dimen- 
sionless search capacity. It is the ratio of the 
area that can be searched in time t* to the area 
of the MPD circle at that time. The function 
G(y, a) is shown in Figure 1 for 1 5 y 5 4. 
Formula (9) is actually correct even if t* < r or 
t* > T. 

A lower bound on G(y, E) can be obtained 
by omitting the g/4 term in (5) and then ex- 
tending the linear segment in (6) to maintain 
continuity. The result is 

I 
l/y-l/Y+G(Y;a) fory<Y 

G(y; E) = y-2 
I 

Y/Y 
--(ym2” for y 2 Y 

I where Y = p(a)/aY > 1 
(10) 

Note that use of the first formula in (10) 
requires use of the second. This lower bound is 
tight for large y or small E; the worst compari- 
son in Figure 1 is to approximate G(l, 5/6) = 
2.72 by G(1,5/6) = 2.65. When E = 0, G(y, 0) is 

1 1.5 2 2.5 3 3.5 4 

Figure 1. G(y; E) versus y for E = l/6 (top), l/2 (middle) and 5/6 (bottom). 
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given exactly by (10) withy = l.Thiswillbe 
the case for an ideal battery with no internal 
resistance, since S is infinite in that case. 

For E = 0 and r 2 t*, the first argument of 
G is never smaller than 1 in (9), so 

E = 0,7 2 t*. (11) 

Since (S*)2 = (E/l~t*)~‘~ when E = 0, (11) can 

also be written: 

*‘;1 - (y-/7)-w)17}; 

&=O 7zt* I . (12) 

This formula nicely exposes how the lower 
bound on the expected number of detections 
depends on fundamental quantities such as E, 
7, and T. Note that the lower bound does not 
approach infinity with T. 

AN UPPER BOUND 
If s(t) is any speed function that is feasible 

according to (4), then the speed function Xs(t) is 
also feasible as long as 0 5 X I 1, even if X is 
random. Furthermore the distance traveled at 
time t is Xy(t), where y(t) is as before; that is, 
dy(t)/dt = s(t). Suppose that X has the triangu- 
lar density 2x over the unit interval. Multipli- 
cation by X converts s(t) into the radial distance 
of a point selected uniformly at random in two 
dimensions within the circle with radius s(t) 
(Shupenus and Barr (2000)). The expected value 
of the detection rate h(Xy(t), t) is then 

E(k(Xy(tL t>> = tWx)dx 

z = cp/r) 
I 

Ty(t)-2dt. 
7 

(13) 

In this section the submarine will be assumed 
to choose y(t) to minimize Z, with the mini- 
mized value of Z being an upper bound on the 
expected number of detections. Specifically, the 
goal is to minimize (13) subject to (4). With y(t) 
thus determined, the expanding circle with ra- 
dius y(t) will be called the FOC. The analog of 
the FOC in the discrete problem considered 
earlier is the feasible path w**. 

The upper bound obtained in this manner 
will not be a tight one. The reason for this is that 
the submarine is assumed to consume power 
according to the largest speed that might be 
used, rather than the speed actually used. A 
submarine that chooses a small value for X will 
therefore end up with excess energy at time T. 
Tactical guidance might be that Xs(t) should be 
the submarine’s radial speed (speed in the di- 
rection away from the flaming datum), as dis- 
tinct from the actual speed s(t). Permitting the 
radial speed to be smaller than the actual speed 
lets the submarine’s path be curved or zig-zag, 
which has its own tactical advantages. Small 
values of X would thus be converted to nonlin- 
ear motion, rather than excess energy. Of 
course there are also tactical advantages to hav- 
ing some “excess” energy at T. 

We establish an upper bound by minimiz- 
ing expected detections (13) subject to con- 
straints on speed and energy (4), with the dis- 
tance function y(t) being the decision variable. 
First substitute x(t) = y(tT)/(ST) into (13) and (4) 
to produce a dimensionless minimization prob- 
lem in which r is the unit of time (so t is from 
now on dimensionless): 

T/7 

minimize 2 = I(t)x(t)-2dt 

Jo 

= wym k(r, t)rdr (14) 
subject to I & 

5 P/by(t)2L and 0 5 v(t) I E 

where the last inequality is due to (1). It follows where v(t) is the derivative of x(t) and I(t) = 0 
from (2) that the expected number of detections for t < 1 or 1 for t 2 1. The step function I(t) is 
cannot exceed needed in (14) because the lower limit of the 
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first integral is 0, rather than 1. The upper ma1 v(t) as a function of x(t) for t > b, thus 
bound is then Z = pz, where /3 = p/(rrS*). The setting up an ordinary differential equation for 

constant p plays no role in (14), so the subma- x(t) over that interval. Omitting the time argu- 

rine’s behavior will not depend on the search ments of x and ‘u for clarity, we obtain 

rate p. x-’ - H(b) = h(up’(u) - p(u)); b I t I T/r 
Problem (14) is an optimal control problem 

(Intriligator (1971)). We-solve it by introducing 
a Lagrange multiplier h for the integral con- 
straint and considering instead the problem 

= ___- 2+2$-v’. 
1 

(20) 

i 

T / T  

minimize Nf) x(t)-’ 
0 

+ @(v(t))}&, subject to 0 5 v(t) 5 E. (15) 

The Hamiltonian function for this minimization 
problem is 

El(t) = 1(t)x(t)-* + @(v(t)) - u(t)v(t) 
(16) 

where u(t) is the costate variable whose time 
derivative is the partial derivative of H with 
respect to x; that is 

1 Oiftsl du(t)/dt = 
-2x(t)-3 if t > 1. 

(17) 

The optimal speed v(t) must at all times mini- 
mize H. Letting U = hp’(&), it is therefore true 
that 

I 

v(t) = 0 if u(t) I 0 

p’(v(t)) = u(t)/h if 0 5 u(t) 5 LI (18) 

v(t) = & if u(t) 2 U 

Since u(t) is nonincreasing and p(v) is 
strictly convex, it follows from (18) that v(t) is 
also nonincreasing. Negative values of u(O) cor- 
respond to uninteresting tracks where v(t) = 0, 
so assume u(O) > 0. There will be an initial 
interval [0, b] over which v(t) is constant at 
some positive speed V. The time b is at least 1 
because of (17), but may be larger than 1 be- 
cause of (18) if u(O) > LT. Since the center for- 
mula of (18) must hold for t > b, u(b) = LI and 
therefore 

H(b) = (Vb)-* + h(p(V) - VP’(~). (19) 

The optimized Hamiltonian must be con- 
stant for t 2 b because I(t) is constant over that 
interval. Since the Hamiltonian must be con- 
stantly H(b), it is possible to solve for the opti- 

For convenience, define 

6 = 1 + {x-’ - H(b)}/(2h). (21) 

Then the solution of (20) for uy can be obtained 
by solving a quadratic equation: 

VY 

2(@ - 1) 

=y-2+6*+6~(y-2)+(y-2)*+6*. 

(22) 

Since v is the rate of change of x, (21) and 
(22) establish the desired first order differential 
equation. The parameters b, V and h must be 
jointly manipulated to solve (14), subject to the 
additional constraints b L 1 and 0 I V 5 E. It is 
also necessary for optimality that V = E if b > 1 
(these are the trajectories where u(O) 2 LI), and 
b = 1 if V < 8 (these are the trajectories where 
u(O) 5 u). The pair (V, b) is operationally equiv- 
alent to u(O), but more directly meaningful. 

ACOMPARISON 
Consider the typical submarine when the 

searcher’s arrival time is r = 1 hour and the 
search completion time is T = 3 hours, in which 
case E/(Q,g) = 1.6. The upper bound has the 
submarine proceeding at the mechanical limit 
S* = 15 knots (dimensionless speed v = 5/6) 
until time 1.82 hours. Figure 2 shows how di- 
mensionless speed decreases after that time. 
Suppose p = 200 square nautical miles per 
hour. Then p = p/(mS*) = 0.196 and the opti- 
mized z is 0.978, giving an upper bound of pz = 
0.192 on the expected number of detections. 
The parameter (Y introduced in equation (9) is 
P(E- p(.z)/(E/(Q&) = (0.196)(0.632) = 0.124. 
Using (9) with a G-difference of 1.54, we have a 
lower bound of (~(1.54) = 0.191. The bounds are 
close, which is not surprising because the sub- 
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0 1 2 3 4 5 6 7 8 

Figure 2. Dimensionless speed function for the case (E/(Q&, T/T) = (1.6,3). 

marine spends much of its time at the mechan- 
ical limit. The submarine’s chances of escape 
are good, even if the searcher knows the speed 
function. 

Suppose now that T = 0.5 hour and T = 3 
hours, so that the searcher arrives half an hour 
earlier and spends an additional half hour on 
station. The submarine now holds top speed 
until dimensionless time 3.7, as can be seen in 
Figure 3. The upper bound is now 
(0.392)(1.21) = 0.474. The G-difference is now 
3.81, and, since a! is unchanged, the lower 
bound is (0.124)(3.81) = 0.473. The bounds are 
again close. The submarine will still probably 
escape, but shortening the searcher arrival time 
by 1/2 hour is significant. 

Finally, suppose that r = 0.5 hour and T = 
3 hours, but that the battery is only 25% 
charged, so that E/(Q,g) = 0.8. Figure 4 shows 
that the mechanical speed limit is never an 
active constraint, and that the optimal dimen- 

sionless speed starts decreasing from its initial 
value of 0.733 (13.2 knots) immediately when 
the searcher arrives at time 1. In this case the 
upper bound is (0.392)(2.094) = 0.821, while the 
lower bound on the expected number of detec- 
tions is (0.496)(1.34) = 0.665. The submarine’s 
best strategy is to preserve its limited battery by 
going slowly, and the chances of at least one 
detection are 1 - e-o.665 = 0.486. This assumes 
that the searcher is aware of the battery status 
and therefore searches within an appropriately 
small area. If the searcher behaved as if the 
submarine had a fully charged battery, the 
lower bound would be the same 0.312 as in the 
paragraph above. The difference between the 
bounds is comparatively large in this case. If 
both sides carried out their bounding strategies 
with the searcher believing that the battery is 
fully charged, part of the searcher’s confetti 
would be placed outside of the disc of possible 
submarine positions. 

4 

0 2 4 6 8 10 

Figure 3. Dimensionless speed function for the case (E/(Q07), T/T) = (3.2,6). 
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Figure 4. Speed function for the case (E/(Qg), T/T) = (B, 6). 

ON REDUCING THE GAP 
We speculate that the gap between upper 

and lower bound will be hard to reduce. The 
speculation is partly based on the disappoint- 
ing results of pursuing the following idea for 
increasing the lower bound. Since the subma- 
rine is unable to make y(t) as large as y*(t) at all 
times, one might argue that the searcher is be- 
ing overly conservative in searching uniformly 
over the MPD; there should be more confetti in 
the center than on the edge. The idea, then, is to 
linearly “shade” the density near the edge of 
the MPD. Linear shading turns out to be a bad 
idea, so the reader who is not surprised by this 
may wish to skip the rest of this section. To 
simplify calculations, we consider only the case 
of the ideal battery (no internal resistance) and 
y = 3. 

The A-shaded confetti density is given by 

h(r, t> = y*(t)’ L[l-A&)+; 

0 5 Y 5 y*(t); r I t 5 T, where 

y*(t) = (E/k)1’3t2’3 and D = T(l /2A,3). 

(23) 

The formula for y*(t) in (23) is the limit of 
ts*(t) as Q. becomes large and y = 3. The non- 
negative parameter A E [0, 11 causes the con- 
fetti distribution to be higher in the middle than 
on the edge, and D is whatever it has to be to 
make the total rate of applying confetti be p. 

From here on we will take k = 1, since the only 
effect of k is to normalize E. 

The objective function is 

1 
Z=D 

y(t) 

y*(t) 
2 - A yz+(t)3 dt (24) 

which the submarine desires to minimize sub- 
ject to an energy constraint. The positive-part 
symbol (+) has been omitted from (24), since 
h(y(t), t) > 0 as long as t < T for any feasible 
y(t). Since y”(t)3 is proportional to t2, Z will be 
minimized regardless of A when JT y(t)tv2 dt is 
maximized, subject to the constraint that JT 
(dy(t)/dt)3 dt I E - e, where e is the energy 
used before time 7. This leads to a Control 
Theory problem similar to the one in Section 7, 
except that the integrand is F(y(t), dy(t)/dt, t) = 
y(t)t-’ + A(dy(t)/dt)3 for some multiplier h. The 
Euler conditions re uire that dy(t)/dt have the 
form K(l/t - q/2forrstsT,andthe l/r> 
energy constraint requires that K3 = T1’2(E - 
e)/M(T/T), where 

M(x) = 
i 

‘(u-l - 1)3’2d~ = 2(x - x+)~‘*/x’ 

x 

+ 3(x - x2)“* - 1.5a cos(2x - 1); 0 < x I 1. 

The submarine’s distance is then y(t) = y(7) + K 
Jt (l/u - 1/T)1’2 du for 7 5 t 5 T. Since y(7) 
should be the maximum value permitted by an 
energy expenditure of e, y(r) = ?‘3e1’3 and 
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i 

T  

y(t)tr2dt = P3P3(1/T - l/T) 

7 

+ T113(E - e)1’3M(,/T)2’3. 

(25) 

This integral should be maximized by choosing 
e in the interval [0, E] . This can be accomplished 
by differentiation. Letting x = T/T and z = (1 - 
xy2 / x1’ 2, the maximizing e is zE/ (M( x) + z). 
Substituting this into (25) and then (25) into 
(24), we obtain 

Z = jJT-1/3E-2/3[3(1 - .9/3) 

- EX~‘~(Z + M(x))““]. (26) 

Upon substituting D into (26) and letting the 
coefficient of E inside the [ ] be R(x), where x = 
r/T as before, (26) becomes 

7Tr 

[3(1 - ~8’~) - sR(x)]/(l - 2s/3). (27) 

The crucial function R(X) can be somewhat sim- 
plified: 

R(x) = [3(1 - X)3/2 + 3(1 - X)i’2 

- 1.5x”2a cos(2x - l)]“‘“. (28) 

We finally come to the question of whether 
shading is a good idea; that is, should A be 1 or 
O? The answer should be 1 if R(x) < 2(1 - x~‘~), 
or otherwise 0. It is a simple computational 
matter to show that R(X) is never small enough 
to invite shading. In other words, even though 
the submarine cannot make y(t) = y*(t) all the 
time, it can come sufficiently close when moti- 
vated to make shading a bad idea. A uniform 
confetti distribution is always better than a lin- 
early shaded one if the distribution must be 
announced to the submarine. It is possible, of 
course, that some other style of shading would 
be a good idea, but intuition argues that not 
much is to be gained here. 

CONCLUSIONSABOUTSTRATEGIES 
The abstract FDP is a complicated game 

that we have only succeeded in bounding. The 

lower bound strategy for the searcher (distrib- 
ute confetti uniformly within the MPD) and the 
upper bound strategy for the submarine (move 
radially and follow the appropriate speed func- 
tion) are each simple enough to emulate in 
practice after making adjustments for theoreti- 
cal artificialities, and the two bounds are often 
close. Furthermore each has the virtue of being 
“optimal” in a certain sense, so it is reasonable 
to consider using each of them as a tactical 
guide. 

For example, Soto (2000) includes a Monte 
Carlo simulation of a FDP where the searcher is 
a helicopter with a dipping sonar searching for 
a submarine with an ideal battery. The “con- 
fetti” with such a sonar consists of only a few 
large circular coverage areas. The location of 
the first dip is especially important and edge 
effects must be considered. Still, the idea of 
placing the center of the next dip uniformly 
within the MPD, as Soto does, is viable and 
reasonable. Soto’s measured detection proba- 
bilities for the engagement are close to the the- 
oretical lower bound regardless of what the 
submarine does, so the confetti approximation 
is not a bad one. 

While it makes no difference what the sub- 
marine does when the searcher uses his lower 
bound strategy, a good submarine strategy will 
avoid being exploitable by other searcher tac- 
tics. Submarine speed is a strongly decreasing 
function of time (see Figures 2-4) in the upper 
bound strategy derived above. After consider- 
able analytic work we have not been successful 
at finding equally good submarine strategies of 
the form “pick a speed at random and stick to 
it until the battery is exhausted”; whatever is 
the optimal strategy for the submarine in the 
FDP, it appears to be a continuous function of 
time that starts out fast and gradually slows 
down. Soto’s (2000) simulated submarine fol- 
lows such a theoretical speed function except 
for making shallow turns to avoid strict ra- 
dial movement. 

The time-late parameter T will be known to 
the searcher, but probably not to the subma- 
rine. Perversely, the searcher’s lower bound 
strategy does not require knowing T, while the 
submarine’s upper bound strategy does. In the- 
ory one might generalize the FDP so that r is 
selected from some probability distribution, 
with T being known to the searcher but only the 
distribution known to the submarine. But the 
FDP is a difficult game even without this gen- 
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eralization, and anyway it is not obvious what 
the distribution should be. The searcher is in a 
similar position with respect to the battery 
charge, but here there is an obvious and rea- 
sonable worst-case assumption. These consid- 
erations hint that the lower bound strategy for 
the searcher may be of more practical use than 
the upper bound strategy for the submarine. 
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