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1. Introduction. 

A mine is basically a weapon that can’t move and can only attack a target by 

blowing itself up, a rather primitive approach to warfare. Being required neither to move 

nor to project power at a distance, mines are relatively cheap; a mine may cost thousands 

of dollars while a missile or torpedo of equivalent destructive power would cost hundreds 

of thousands. Being cheap and available on the international arms market, mines can be 

employed in significant quantity by any country with even a modest military budget. 

They can be very effective. In 1950 during the Korean War, the minefield in Wonsan 

harbor inspired RADM Alan Smith to say (Milia, 1991): 

  

The US Navy has lost control of the sea to a nation without a Navy, using pre-World 

War I weapons laid by vessels that were utilized at the time of the birth of Christ.. 

 

That minefield delayed the planned landing at Wonsan by over a week while 250 ships 

steamed back and forth outside the harbor. The United States Navy lost four 

minesweepers in the process of clearing it, and several other ships were also sunk or 

damaged (Hartmann (1979)).   

About Iraq’s use of mines in the Gulf War, ADM Arthur (COMUSNAVCENT) said 

(Mardola and Schneller, 1998): 

 

Iraq successfully delayed and might have prevented an amphibious assault on 

Kuwait’s assailable flank, protected a large part of its force from the effects of naval 

gunfire, and severely hampered surface operations in the northern Arabian Gulf, all 

through the use of naval mines.  

 

Even when the location and nature of the Iraqi minefields was revealed after the war, it 

took several months for the allied nations to clear them. 

The first effective use of mines was by the Confederacy in the US Civil War — the 

“torpedoes” that Adm. Farragut damned at Mobile Bay. Adm. Farragut also stated that 

mines were not a weapon that a chivalrous nation would employ.  General Sherman was 

even more direct in expressing the feeling of the time that mines were simply not an 

acceptable weapon of war (Orders to General Stedman, June 3, 1864): 

 

If torpedoes are found in the possession of an enemy to our rear, you may cause 

them to be put on the ground and tested by wagon-loads of prisoners, or, if need be, by 

citizens implicated in their use. 
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The use of mines no longer provokes that kind of response, and is by now an accepted part of 

warfare.  Mines have been employed effectively in every major war since then, by all 

participants. Hartmann (1979) gives a concise naval history, as well as considerable 

technological information, or see Milia (1991). Mines will surely continue to be an important 

part of warfare. The availability of cheap microprocessors with low power requirements has 

given modern mines a technological advantage, and even mines designed decades ago have 

shown themselves to be effective in recent combat (Wettern (1991)). 

Minefield models at several levels of complexity are needed to study, rehearse, and conduct 

mine warfare. These notes will review naval planning models, beginning with the simple and 

proceeding to the complex. Heavy use is made of the theory of probability, a natural 

consequence of the fact that neither side knows exactly what the other is doing in mine warfare. 

Reference will be made to models that are used or have been in use by the US Navy. 

2. A Little Technology. 

The earliest sea mines were contact mines. Contact mines are still in use, but they have three 

important disadvantages. Except in shallow water, one disadvantage is that they must be 

anchored to the seabed by a cable that extends nearly to the surface, making them vulnerable to 

mechanical minesweeping. A second disadvantage is that the radius of action is limited by the 

target’s presented width, and a third is that sea mines are most lethal when they detonate 

significantly below the target, rather than in contact with it. There are thus three powerful 

reasons for employing mines that can sense targets at a distance, so it should not be surprising 

that most modern mines are “influence” mines of this type. In water that is not too deep (roughly 

200 feet, depending on charge weight and target), influence mines can rest on or near the seabed 

and still be a threat to ships on the surface. In deeper water they must either be moored or have 

some way of moving toward the target. The former choice makes the mooring cables vulnerable 

and the latter makes the mines expensive, so, given a choice, a minefield planner would prefer 

water that is not too deep. Figure 1 shows the options available as a function of water depth, 

including the possibility of a rising mine in deep water. 

The three most common sensory phenomena are magnetism (the passage of a steel ship 

changes the local magnetic field), sound (ships make underwater noise), and pressure (there is a 

temporary decrease in pressure under the keel of a moving ship, proportional to the square of the 

ship’s speed). The first two sensor types permit longer detection ranges than the third, but are 

subject to sweeping by minesweepers or helicopters that artificially create the magnetic/acoustic 

signatures characteristic of target ships. The advantage of the pressure sensor is that there seems 

to be no way to create the pressure effect except by having a large “guinea pig” ship pass over 

the mine, an awkward sweeping technique. The pressure sensor is subject to false alarms due to 

waves, so it is usually used in combination with other sensors. Using a combination of sensors 

also tends to frustrate minesweeping, as does the employment of other counter-countermeasures 

such as time delays or “counters” that detonate the mine only after it has been actuated a certain 

number of times. 

Mines can also be countered by “hunting”, by which is meant locating a mine by some 

mechanism (eyeball, sonar, laser,…) independent of the mine’s sensors. Any “mine-like-objects” 

detected are examined more closely and, if judged to be mines, either avoided or destroyed. 

Hunting has an advantage over sweeping in that counter-countermeasures that work against 

sweeping are without effect, but hunting suffers from false alarms, a relatively low sweep width 

(particularly against buried mines), and susceptibility to decoys. The proper division of effort 

between sweeping and hunting is one of the reasons for developing mine warfare models. 
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Figure 1:  Mining options depend on water depth.  

 

A third countermeasure is to cover a given area with such intense lethal effects that all mines 

contained in it are necessarily destroyed. This “destruction” alternative has the advantages that it 

can’t be outwitted and that false alarms are not an issue, and the disadvantages that it is 

expensive and (of course) destructive. It is generally implemented by line charges or intense air 

strikes, and used only when minefields are both dense and unavoidable.  On land, a minefield 

can also be destroyed by plowing it. 

Water is denser and less compressible than air, so sea mines tend to have a much larger 

radius of action than land mines, particularly against targets subject to damage by shock waves. 

Sea mines are also harder to sweep and hunt than land mines, so mine warfare is an essentially 

different topic in the Navy, where mines are a potential show stopper, than in the Army, where 

mines tend to be viewed as a nuisance, albeit one that has to be planned for. An exception to this 

is the availability of artillery in conjunction with minefields on land. Artillery does well against 

concentrated targets, and since one countermeasure to minefields is concentration, the two 

measures can be particularly effective if used together. Naval minefields are rarely supported by 

artillery, although the WWI Turkish minefield in the Dardanelles is an exception to this. 

Once planted, a minefield does not distinguish between friend, foe, or neutral. The Hague 

Convention of 1907, which was adopted by many nations after mines laid in the Russo-Japanese 

War caused extensive damage to neutral merchant shipping, contains some rules designed to 

prevent damage to neutrals. Floating mines are essentially prohibited, and the existence of 

minefields threatening to neutrals is required to be published. Floating mines still occur, 
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however, and the use of influence mines was not even anticipated in 1907. It remains true that 

most ships damaged by mines are neutrals, rather than combatants. The situation is even more 

serious on land, where there is widespread use of mines costing only a few dollars that remain 

dangerous for years after they are laid.  

3. Campaign/Theater Level Models. 

Large scale models of warfare are generally not built to study the details of minefield 

construction and countermeasures, but still need to represent mine warfare in some simple 

manner. The problem in such models is to retain the essence of mine warfare without including 

too many details, databases, or megaflops.  

In a wargame, a “minefield” might be as simple as a prohibited region with an associated 

story line. The designer might announce, “Blue ships are not allowed to transit XYZ strait 

because of the presence of minefields”. The implied model of mine warfare is that 

countermeasures are impossible, reconnaissance is perfect, and Red’s logistic problems in 

creating the minefield are negligible. All of those statements might be false, but even so the 

model might be satisfactory. XYZ strait might be a shallow, easily mined area that, in the 

judgement of the wargame designer, would simply be avoided by Blue in the event of a conflict. 

The players might also be allowed to create their own minefields if the game included 

realistic rules and constraints. A possible set of rules might be:  

 1) Red can construct only 10 square miles of minefield during the game, and each 

minefield requires the presence of some Red unit when it is created. 

 2) Except for minesweepers, any Blue unit is sunk immediately upon entering a Red 

minefield, and the outlines of the minefield are then revealed to Blue. Red units are unaffected 

by Red minefields. 

 3) Entry of any Blue minesweeper into a Red minefield will immediately reveal its 

outlines to Blue, and furthermore the minefield will disappear 48 hours later. 

There would be similar rules for minefields created by Blue. These rules are probably overly 

simple, since they permit a single unit to create or counter a minefield. A clever game player 

might create lots of long, thin minefields covering very little area that would effectively prohibit 

movement by the other player, an effective but unrealistic tactic that is permitted by the rules. 

Nonetheless, the rules are easily understood, easily implemented, and adequate for some 

purposes. They permit mine warfare to be “played” in a manner that is impossible if minefields 

are simply announced by the designer. A rough replication of what happened at Wonsan might 

happen within them. 

The above sketches might be called 

“permission” models, since the central idea 

is an area where every unit either has 

permission to enter or not. While such 

models are useful for some purposes, an 

important idea is missing — the idea that a 

target ship might enter a minefield and still 

not be damaged. The fact is that most ships 

that enter real minefields are not damaged, 

so there is a danger of overstating the 

effectiveness of minefields if the 

possibility is ignored. Including it in a 

quantitative way will require the 
minefield width (b)

ship track

mines

W

 
Figure 2: One ship, three mines 
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introduction of probability, a characteristic of all the models that follow.  

The US Navy’s wargaming model ENWGS includes a mine warfare feature that is a 

permission model with one more level of detail: the number of mines M in the minefield. This 

number gradually decreases with time in ENWGS, either due to detonations caused by target 

ships or to minesweeping. ENWGS does not retain a location for each mine, but instead 

incorporates the assumption that a ship that travels a length L in the minefield during some time 

interval will actuate all mines in an area WL, where W/2 is the radius of action of each mine. If 

the minefield covers an area A, the probability that the ship actuates any randomly located mine 

is therefore WL/A. When running in its Monte Carlo mode, ENWGS computes for each ship the 

length L traveled in the minefield over the period in question, converts L to an actuation 

probability WL/A, and then generates a uniform random number U; if U is smaller than WL/A, 

the mine actuates and disappears. The ship also disappears, unless it is a minesweeper. 

Alternatively, since all mines are assumed to be located independently at random within A, 

ENWGS might compare a single random number to the probability PM that at least one mine is 

detonated by the ship: 

 PM=1 − (1− WL/A)M.  (1) 

 

Comparing one random number to PM is equivalent to comparing M independent random 

numbers to WL/A. Figure 2 shows as a dashed line the track of a ship that does not actuate either 

of three randomly located mines. Obviously the track and/or the mines could be rearranged so 

that one or more of the mines is actuated. Ignoring edge effects, the probability of that event is 

given by (1). 

Formula (1) requires the assumption that the mines are located independently at random in 

the minefield, an assumption echoed by most minefield models. There is an odd dissonance here: 

the platforms responsible for laying mines usually practice laying them accurately, whereas 

practically every minefield model begins by assuming that the mines are simply strewn about at 

random within the minefield. The reasons for this curious situation are worth a digression. 

Seemingly a minefield planner would want to arrange his mines in such a manner as to leave 

no gaps in coverage, which would typically have them being evenly spaced on a single line 

perpendicular to the direction of ship traffic, rather than spaced randomly throughout the 

minefield. Laying mines in lines is also tactically convenient, so one would expect to encounter 

lines of mines in practice, rather than fields of them. In fact one does encounter mine lines in 

practice. Figure 3 shows the locations of the mine lines/fields laid by Iraq before Desert Storm. 

Even the areas shown as fields actually consisted of multiple lines. Incidentally (to digress a bit 

within this digression), figure 3 also makes it clear that the original US sweeping plan was in an 

area where there were no mines. The strikes on the Tripoli (moored mine) and Princeton (bottom 

mine) were the first indications that the minefields were actually located as shown, and the exact 

locations were not known until after the war. The Tripoli and Princeton paid for the lack of 

surveillance of minelaying operations (see Lyons, et al. (1993), from which figures 1 and 3 were 

taken). 

Even though Desert Storm mines were laid in lines, they were not laid in a single line. There 

are two advantages to the miner for not using a single line. One is the avoidance of fratricide 

among the mines or minelayers. The other is to complicate the MCM job, since mines in a single 

line are easy to sweep or avoid once the orientation of the line is discovered. At the end of World 

War II, Japanese Navy Captain Tamura was interviewed about the effectiveness of the Massive 

B29 drops of mines in Japanese waters (Navy, 1946). He said that the mines were on the whole 

very effective, but that: 
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The mine laying planes always laid their mines in a simple row which made it easy for our 

lookout activities to analyze the plan and determine where the mines were and adopt 

effective countermeasures. It is necessary to vary the plan of laying occasionally.  

 

 

And so, partly because a minefield planner is already thinking of counter-countermeasures, a 

given “approach channel” like the one in figure 3 is likely to include parts of several mine lines. 

Straighten out the approach channel into a long, narrow rectangle, and speculate about the cross-

channel coordinates of the enclosed mines. They are unlikely to be evenly spaced for two 

reasons. First, the effective mines on a given line will not be evenly spaced because some mines 

are duds, some are deliberately configured differently from their neighbors, and because of 

navigation or timing errors in minelaying. Second, the positions on the various lines can 

reasonably be assumed independent — how could they be coordinated when the minefield 

planner doesn’t know exactly where the channel will be or whether it will be slightly crooked, 

like the one in figure 3? The net result of superimposing the cross-channel coordinates of the 

mines on different lines, each with a different spacing, will be much closer to the cross-channel 

coordinates of a random minefield than to a minefield with regular spacing. In other words, the 

 

Figure 3:  Desert Storm minefields 
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random minefield assumption is robust to the kinds of deviations from the ideal of regularity that 

actually occur in practice. It is not true that mines are deliberately placed at random, but the 

effect is much the same.  

This long digression has had the purpose of justifying the assumption of independence in 

equation (1). The independence assumption is not always so easily justified, and has caused 

considerable mischief when employed in the wrong circumstances. The assumption usually leads 

to simple, transparent computations, so it is often tempting to make it “as an approximation” to 

avoid some analytical complexity or database deficiency. If the assumption is substantially 

wrong, results can be misleading. 

When equation (1) is applied to the first ship through a minefield, the left-hand-side is 

known as “Simple Initial Threat (SIT)”. The threat to the second ship will not be as high. For one 

thing, the first ship might remove one of the mines (every ship gets to be a minesweeper once). 

This effect is handled in the ENWGS Monte Carlo simulation by decrementing the number of 

remaining mines, but there is an implied assumption about reality in proceeding with that 

method. The assumption is that the remaining mines have locations that are independent of the 

locations of the original mines, as if the passage of the first ship caused all of the mines to 

activate a little motor and move to a new position. The assumption is incorrect, since the 

remaining mines are a subset of the original mines and mines don’t move. The falsity of the 

assumption might not be important if the second ship chose a track far away from that of the first 

ship, but in fact the second ship is likely to take great pains to follow the first ship’s track as 

closely as possible, especially if the first ship makes it through the minefield. That being the 

case, this second independence assumption is disastrous to the verity of the model for anybody 

wishing to explore the benefits of channelization, the most basic mine countermeasure. If the 

first ship actuates no mine, then the second ship’s chances should be improved by the 

knowledge, but the ENWGS model gives the same chance to both. A naive user might conclude 

from experience with the model that the most basic countermeasure is actually ineffective. 

It does not follow from the above comments that the ENWGS model is useless, but only that 

it should not be used to explore the benefits of channelization. ENWGS comes closer to reality 

than a simple permission model, and it does so without being excessively complicated, an 

important feature in a wargame where more important things than minefields must be 

represented. This kind of situation is typical in studying mine warfare — models are neither good 

nor bad in any absolute sense, but only for specific purposes. 

4. Uncountered Minefield Planning Model (UMPM). 

A more exact title for this section would say “almost uncountered”, since planning is 

conducted in the expectation of channelization. The channel shown in figure 3 was intended to 

avoid most of the Iraqi mines by using only a very small part of the mined area; all mines outside 

the channel have no chance as long as traffic sticks to the channel. Since the minefield must be 

planned without knowing where the channel will be located, channelization is an effective 

countermeasure to the extent that many channels are possible. Obviously the minefield planner 

would prefer a narrow constriction where the number of potential channels is small. Iraq had no 

such choice in mining the waters off Kuwait, but mines have historically tended to be utilized in 

straits and ports where traffic is naturally constricted. 

Channelization never works perfectly because ships make navigation errors. Let U be the 

typical ship’s navigation error relative to the track centerline, with the errors of multiple ships all 

being identically distributed and independent.  The common error distribution is usually assumed 

to be normal. We must find some way of incorporating that distribution into the minefield 
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planning process. 

In section 3, actuation was assumed to be a matter of whether the ship came within W/2 of 

the mine. We now replace that assumption with one that realistically permits mine actuation to 

be uncertain.  Specifically, let a(x) be the probability that a mine actuates if the ship’s closest 

point of approach is x, an “actuation curve” that can be determined by experimentation. If the 

mine is located a distance x from the channel centerline, then the distance between the mine and 

a ship with navigation error U is x−U, and the actuation probability A(x) is  

 

 ( ( ))     A(x)= E a x U                     −  (2) 

 

A(x) has rounder corners than a(x), as can be seen in figure 4. In that figure a(x) corresponds to a 

mine that always actuates if the ship comes within 100, while A(x) includes the possibility of 

normal navigation errors with mean 0 and standard deviation 50.  A(50), for example, is not 1.0 

because a ship attempting to negotiate a channel whose centerline is 50 from the mine may get 

lucky and pass the mine at a distance exceeding 100 due to navigation error.   

In section 3, a ship was assumed to 

be damaged if and only if it actuated a 

mine. In reality a ship may sometimes 

actuate several mines before being 

damaged, particularly if the mines have 

high sensitivity settings. In minefield 

planning, it is essential to have a model 

that at least recognizes the possibility 

that a mine might detonate without 

damaging anything. Let d(x) be the 

“damage curve”, the probability that a 

detonating mine will damage a ship at 

distance x.  Like a(x), d(x) is typically 

determined by experimentation.  Now let 

D(x) be the probability that a ship 

attempting to follow the channel 

centerline will actuate a mine located x 

away from the line and be damaged by it. Then 

 

                         ( ( ) ( ))           D(x)= E a x U  d x U                        − −  (3) 

 

In principle, the first actuation may not lead to detonation because of the presence of counter-

countermeasures that require multiple actuations. These possibilities are being ignored in this 

section because no countermeasures are expected, hence the simple multiplication of a(x− U) by 

d(x− U) in (3). The difference A(x) −D(x) is the probability that the mine detonates and does no 

damage, in other words the probability of a “wasted fire”. 

Now consider a group of n ships that attempt to transit a channel whose centerline is located 

a distance x away from a mine. All transits are independent when x is given because of the 

assumption about navigation error, so the probability that the mine detonates is 1−(1−A(x))n. The 

probability of damage given detonation is D(x)/A(x), so 

 

 Rn(x)P(1 out of n ships is damaged by a mine at x) 

 

 

 

Figure 4:  Actuation probability A(x) vs 

distance (x) from mine to intended track. 
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                                     =D(x){1−(1−A(x))n}/A(x) (4) 

 

The only other possibility is that no ships are damaged, since a mine can only detonate once.  

Assume next that the ships attempt to follow a line near the center of a rectangular minefield 

of width b, as in figure 2, and consider the effect of the first mine encountered, the mine nearest 

the horizontal line of ingress. The unconditional probability Rn* that one of the first n ships is 

damaged by the first mine is just the average value of Rn(x) across the breadth of the minefield: 

                 R =
1

b
R (x)dx                          n

*

-b/ 2

b/ 2

nz  (5) 

Formula (5) also applies to the second and subsequent mines that are encountered by the group 

of ships, possibly with a reduced value for n.   

The numbers Rn
* turn out to be all that is necessary to analyze a minefield of multiple 

mines. So far the UMPM inputs have been an actuation curve, a damage curve, a navigation 

error distribution, a minefield width, and a number of ships. The computational effort required is 

mostly in performing the numerical integrals required to evaluate (2), (3), and (5). With the 

ENWGS assumptions, Rn
* would be given by equation (1) with M=n. Thus the main difference 

between UMPM and ENWGS is in the way Rn
* is calculated. UMPM uses (5) instead of (1). 

It is not obvious what Measure of Effectiveness (MOE) to use in planning a minefield. 

Simple Initial Threat is one possibility, but SIT gives no clue to the threat to following ships, 

which can be much smaller than the threat to the first (imagine a minefield with one big mine). 

There has been some debate within the US mine warfare community over exactly what statistics 

are worth looking at when designing a minefield, the result being that UMPM computes and 

displays multiple MOE’s for the inspection of the planner. For a hypothetical input number n of 

transiting ships, these include 

 1) “Threat profile”: The probability that the ith ship is damaged by a mine, i=1,…,n. For 

i=1 this is SIT. 

 2) “Casualty distribution”: The probability that k out of n ships are damaged, k=0,…,n. 

For i=0 the probability is called the “catastrophe probability”1, catastrophe being from the 

viewpoint of the minefield planner. 

 3) “Stopped penetrator distribution”.1 For an additional user input “number of casualties 

after which no further transits will be attempted”, UMPM outputs the probability that i ships will 

penetrate; that is, that i out of n ships will neither turn back nor be damaged by mines, i=0,…,n. 

Each of these quantities has a similar method of computation in UMPM, with the numbers 

Rn* being the crucial input in all cases. The computational details are given below only for the 

casualty distribution (see Odle (1977) for the others). There is no loss of generality if one 

imagines that all n ships attempt to transit the minefield in a compact group that is gradually 

reduced in size as additional mines are encountered. Let x(m,k) be the probability that k ships are 

still alive (undamaged) after the group has passed the first m mines, for 0kn. Then, by the 

theorem of total probability,  

 

                         x(m+1,k) = Rk+1
*x(m,k+1) + (1−Rk

*)x(m,k); 0kn, (6) 

 

except that the first term is missing if k = n because there is no (n+1)st ship. Equation (6) 

expresses the idea that, if k ships remain after m+1 mines have been passed, then there must have 

 
1 This term was coined by Jim Horrigan. Interest in stopped penetrator distributions is also due to him.  
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been either k+1 or k ships alive after passing m mines. In either case, the probability that the 

(m+1)st mine does no damage is assumed to depend on the number of remaining ships, but not on 

the mine index. Since x(0,k) = 0 for 0k<n and x(0,n) = 1, equation (6) can be used to calculate 

x(1,k) for all k, then x(2,k) for all k, etc., until finally x(M,k) for all k is obtained. The casualty 

distribution is then x(M,n-k); k=0,…,n.  

The assumption in (6) that the chances of damage do not depend on the mine index is 

slightly questionable. The reason is that the theorem of total probability requires the damage 

probabilities in (6) to be conditional on the number of surviving ships, and there is information 

about navigation errors in the mere fact of survival. Ship navigation errors relative to the channel 

centerline are all independent a priori by assumption, but they are not independent under the 

condition of no damage by the first mine. In particular, the probability that the navigation errors 

all happen to be approximately equal ought to be relatively high under that condition, since one 

reasonable explanation of no damage to a group of ships is that they all happen to follow nearly 

the same lucky track. If navigation errors are the same at every mine, use of (6) is therefore 

unjustified, strictly speaking. The simplest way out of this analytic crisis is to assume that ships 

wander about the centerline of the channel as they move through the minefield, so that 

navigation errors at the successive mines are independent even for the same ship. The resulting 

minefield analysis is known as “semi-configured”, in contrast to the “fully-configured” case 

where ships travel in straight lines and the navigation error for a given ship is the same at every 

mine, as illustrated in figure 2. Thus UMPM is a semi-configured model. The fully-configured 

case is a more difficult analytical problem in spite of its seeming simplicity. 

Another way of putting it is that UMPM models the number of surviving ships k as a 

Markov chain with a transition every time the group of surviving ships encounters a mine, with 

each transition being to either k or k−1 according to (6). The Markov assumption requires the 

ship’s tracks to wander about the centerline. 

UMPM calculations according to (6) are incorporated under the command button in sheet 

“UMPM” of workbook Minewar.xlsm. That sheet differs from the US Navy’s UMPM model 

primarily in three ways: 

1. No allowance is made for navigation errors. 

2. Given detonation, damage is assumed to be certain inside an input damage radius, 

or otherwise impossible. 

3. The actuation curve is assumed to be of the form ( ) (1 exp( ( / ) ))ca x a b x= − − , where 

a, b, and c are adjustable parameters. 

The spreadsheet itself includes further notes, or see exercise 9. 

4.1  Simple extensions to UMPM 

Several important phenomena can be included in semi-configured calculations by making 

minor modifications to the UMPM algebra. Four of these phenomena are discussed in separate 

paragraphs below. 

If every mine has a reliability R that represents the probability that the mine is independently 

functional, then it can be accounted for by multiplying the damage curve d(x) by R. The effect of 

this will be to multiply D(x) and Rn
* by R. All measures of minefield effectiveness will be 

affected adversely. 

A probability actuator is a counter-countermeasure that detonates the mine with probability 

ACT when the physical signals sufficient for actuation are received, or otherwise waits for a 

subsequent opportunity.  A better name might be “probability detonator”.   To account for it, 

multiply the actuation curve a(x) by ACT. This will have the effect of multiplying both A(x) and 
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D(x) by ACT.  This will decrease SIT, but may increase the threat to later arriving ships.  The 

minefield planner’s idea here is that the probability actuator may prevent the mine’s falling 

victim to early sweeps by minesweepers, thus preserving it for later action. 

Minefields are typically planned by inputting a fixed number of mines M and seeing the 

consequences, but the UMPM calculations can be easily adapted to the case where the number of 

mines is random. There are a number of reasons why the number of active mines might be 

random, even to the minefield planner. Let P(m) be the probability that m mines will actually be 

present, m=0,…,M, and let x(k) be the probability that k ships out of n will survive. Then 

 

 M

m=0     x(k)= x(m,k)P(m)                      (7) 

 

Since UMPM already computes x(m,k) for m=1,…, M−1 in the process of computing x(M,k), 

implementation of (7) is easy. Exercise 14 is related.  

It may be desirable to include the possibility that a damaged ship will actuate additional 

mines, in contrast to the UMPM assumption that damaged ships sink immediately. If every 

damage incident results in independently sinking the victim with probability S, then the casualty 

distribution can still be obtained by Markov chain calculations. However, the state space must be 

changed to include “ghost” ships (damaged but not sunk) as well as “virgin” ships (see exercise 

3), so this extension is more difficult than the ones above. 

4.2  Essential problems with UMPM 

It was mentioned in section 3 that UMPM is a semi-configured model: UMPM’s mines 

don’t move, but ships are assumed to wander enough in the channel to justify the independence 

assumption required in (6). A fully-configured analysis would probably come closer to reality, 

but the required modifications to UMPM would be complex. While this may be an example of a 

problem that is insoluble but not serious, there are also some serious problems with UMPM. 

Chief among these is UMPM’s use of a “pre-averaged” actuation curve. 

Suppose that half of the target ships are of type 1, with actuation curve a1(x), while the other 

half  have actuation curve a2(x). Let a(x)  0.5a1(x)+0.5a2(x), so that a(x) represents the 

probability that a randomly selected ship actuates a mine. Is there anything wrong with simply 

running UMPM with the single pre-averaged actuation curve a(x)? There would be nothing 

wrong with doing so if every ship somehow selected its type independently for each mine, but 

unfortunately a ship’s type remains fixed throughout the transit. Displacement, magnetic 

moment, speed, and noisiness are all important determinants of the actuation curve for which 

there is no reason to expect any fluctuation during a transit. The independence assumption that 

UMPM requires is not true in these circumstances, and the error involved in using it can be 

significant. For an extreme example suppose that a1(x) = 1 and a2(x) = 0 for all x, possibly 

because the mines are magnetic and type 2 ships have no magnetic moment.  For simplicity, 

suppose d1(x) = d2(x) = 1 for all x. The planner’s object is to make SIT =0.9. Using d(x)  1 and 

a(x) 0.5 in UMPM would lead to the conclusion that 4 mines are required. In actuality SIT 

cannot be made larger than 0.5 no matter how many mines are used, and only one mine is 

required to do so. This is an extreme example, but the effect can be significant even in practical 

situations.  

Pre-averaging was described above as a problem caused by the variability of ships. Ships 

can vary among themselves without a given ship varying as it moves through the minefield, as 

UMPM implicitly assumes. The variability of mines causes similar difficulties. a1(x) might be 
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for a mine with high sensitivity while a2(x) is for a mine with low sensitivity. The UMPM 

calculations assume implicitly that sensitivity is independently determined for each interaction 

with a ship, which isn’t true if a given mine’s sensitivity remains constant in time. If mines differ 

significantly from each other, UMPM’s predictions may be wrong (see exercise 5). Here are 

some reasons why mines might differ from each other: 

 

 1) Magnetic mines that lie on the bottom, a common type, typically measure only one 

component of the magnetic field. Therefore the actuation curve depends on the orientation of the 

mine when it hits the bottom. The orientation is random, but does not change with time. 

 2) The mines might be of different types. Mixed minefields are not uncommon. 

 3) Tactical parameters such as sensitivity or actuation probability might be deliberately 

varied from mine to mine by the minefield planner. 

 4) Production variances. Two mines of the same type with identical settings will in reality 

perform differently. 

 

To summarize, UMPM correctly handles the fact that the location of a mine does not change 

between transits, but all other mine characteristics are necessarily pre-averaged into the actuation 

curve. Mine location is surely the most important property to configure, and in this sense UMPM 

wisely devotes computational effort to that feature (in fact, configuration of mine location is the 

main difference between UMPM and the ENWGS model). Nonetheless, mines have many 

properties other than location that, while random, are not independently random for each mine-

ship interaction.  This lack of independence causes difficulties in analytic models like UMPM, 

but Monte Carlo simulation may provide a remedy. 

4.3  Monte Carlo simulation 

Analytic and Monte Carlo methods are two essentially different approaches to probability 

problems that compete with and complement each other in many areas, minefield analysis being 

one of them. Analytic methods exploit independence assumptions to produce formulas like (6) 

that make computer implementation efficient. Monte Carlo methods appeal directly to the idea of 

probability as a long-run frequency, using a random number generator to determine random 

quantities in a repeated experiment. Monte Carlo methods do not require insights like (6), but 

they do typically require long computer run times to determine accurate results.  

Appendix A is a flow diagram of a Monte Carlo simulation that parallels the UMPM 

assumptions except that it is fully-configured. It measures the casualty distribution C() by 

making REP replications of an experiment where n ships transit a minefield with M mines. The 

number of casualties CAS is accumulated in the appropriate cell of C() at the end of each 

replication. To parallel the UMPM calculations, the actuation question in Appendix A would be 

answered by finding the distance x between mine j and ship i and then testing a uniform random 

number against a(x). Given actuation, the damage question would test another uniform random 

number against d(x). The convoluted functions A(x) and D(x) are not required; instead, the 

navigation error is set for each ship in the “set ship properties” block. This navigation error is set 

only once for each ship in each replication, so the simulation is fully-configured. 

If REP=10,000, then C(K).01 is at least a 95% confidence interval on the true probability 

of K casualties, sufficiently accurate for most minefield planning. Modern (1995) computers are 

fast enough to do 10,000 replications of Appendix A’s logic in a few seconds, so an evaluative 

tactical decision aid could be based on Monte Carlo simulation (see Mullens (1993), or 

Washburn (1995)).  Sheet “MonteUMPM” of Minewar.xlsm demonstrates this.  In addition to 
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observing the power of modern computers for performing repetitive tasks like this, the user can 

also witness the slight variations of results from the exact answers on sheet “UMPM” by 

repeatedly pressing the command button on sheet “UMPM”.  Exercise 24 is related. 

Monte Carlo simulation can deal with pre-averaging problems. The actuation curve could 

depend on ship properties such as magnetic moment or on mine properties such as orientation. 

The damage curve might depend on ship displacement or some better measure of ship hardness. 

However, it is not just a matter of revising Appendix A, since these changes would require either 

a more extensive data base or a better physical understanding. UMPM requires only one 

actuation curve for a given ship-mine combination. To make that curve “depend on” the mine’s 

orientation requires either an expansion in the amount of data that has to be measured and stored 

(8 orientations would require 8 times as much data, etc.), or else some method of adapting a 

single actuation curve to specific situations. An example of the latter approach would be to argue 

that magnetic actuation distance is proportional to the cube root of ship displacement2, in which 

case one actuation curve will suffice for all ship displacements. 

One could go further. UMPM and all of the minefield planning models discussed so far 

settle actuation questions at the closest point of approach, using an actuation curve. One could 

dispense with the actuation curve, since it is in measuring it that most of the pre-averaging 

problems arise. The idea would be to gradually move each ship along its track, use a physical 

model to predict influences, and imitate the mine’s signal processing to decide when actuation 

occurs, if ever. In fact such detailed simulations already exist, the Total Mine Simulation System 

(TMSS) being one of them. The trouble is that simulations like TMSS are so slow that they 

cannot be used for tactical purposes. A good minefield planning model must be a compromise 

between the twin goals of accuracy and speed.  UMPM is certainly fast enough, but possibly 

lacks accuracy.  TMSS is certainly accurate enough, but possibly too slow.  The best model for 

minefield planning may be somewhere between the two, possibly a Monte Carlo simulation like 

Appendix A. 

5.0 Mine Countermeasures (MCM). 

In the rest of these notes the ships that are the target of the minefield will be referred to as 

“transitors”. The MCM ships (or helicopters) that employ countermeasures will be called 

“minesweepers” or simply “sweepers”, a term that is meant to include hunting as well as 

sweeping. 

MCM planning has some features that make it more difficult than minefield planning. 

Minefields are usually laid in secrecy, so the location and even existence of the minefield may be 

initially unknown to MCM forces. If at least the identity of the miner is known, it may be 

possible to make some inferences about the type of mines to be expected, but even in that case 

the mines will still have unknown characteristics, some of which are set at the last minute by the 

miner. In the face of all this uncertainty, MCM forces must make clearance plans and eventually 

decide when to say “all clear”. 

The MCM problem has so much uncertainty that one might expect clearance plans to be 

sequential plans where the method of continuation depends on what has been observed so far. 

That is, one might expect to encounter rules of the form “stop sweeping after five successive 

sweeps have detonated no more mines”, or “hunt for 8 hours, determine the identities of any 

mines found, and then, depending on results, either continue to hunt or switch to sweeping”. 

However, formal MCM plans developed with the aid of current US Navy computer programs are 

 
2 The argument would be that the magnetic disturbance seen by a mine is proportional to ship displacement and (in the far field) 

inversely proportional to the cube of distance from the ship (Hartman, 1979, p 115).  
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nonsequential. Nonsequential plans are relatively easy to derive, communicate, and measure. On 

account of these virtues, they are dominant in practice in spite of the intuitive virtues of 

sequential plans. 

The primary MCM planning tools for the US Navy are a pair of computer programs that 

settle most uncertainties by requiring the operator to provide an input. NUCEVL (Non Uniform 

Coverage EVaLuator) is an evaluation tool that asks the operator to provide a sweeping plan and 

then outputs the fraction of mines at location y that will be swept at least k times, for operator 

selected values of y and k. The idea is that the operator inspects the output, decides whether the 

numbers are sufficiently large, and then possibly revises the plan. UCPLN (Uniform Coverage 

PLaNner) reverses the procedure by asking the operator to input the required clearance level 

(fraction of mines cleared), and then outputs the uniform sweeping plan that just barely meets the 

requirement. Minefields are modeled more or less as in UMPM, except that minesweepers 

attempt to follow different paths and can’t be sunk. 

A rough approximation of the clearance level achieved after sweeping an area can be made 

by applying the idea of random search. If a searcher patrols an area A randomly at speed V and 

sweepwidth W for a time T, then the average number of times that a given mine is contacted is 

the area ratio /z VWT A= , and the actual number of contacts is a Poisson random variable with 

that mean. It follows that the clearance level is 1 exp( )z− − , the probability that a Poisson 

random variable is greater than 0. The rest of the Poisson distribution can be used to quantify the 

probability of clearing the mine k times, which may be of interest if the mine is equipped with an 

actuation counter. 

While current tools quantify sweeping effectiveness primarily through clearance level, 

potential transitors are naturally more interested in the residual threat profile, since that profile 

quantifies the chances of safely making it through the minefield.  An estimate of residual threat 

requires an estimate of the number of residual mines, which in turn requires an estimate of the 

number of mines initially present in the minefield.  The quantification and revision of such 

estimates are the subject of the next section. 

5.1 Residual mines. 

NUCEVL and UCPLN do not ask the user to guess the number of mines initially in the 

minefield, and provide no information about the residual number of mines after sweeping. The 

avoidance of reference to this seemingly vital number is actually natural, since the user is likely 

to be highly uncertain about it. The missing estimate causes no problem as long as the only        

quantity of interest is the clearance level, but eventually a judgement that the minefield is 

“sufficiently safe” for transitors will have to be made. At that point an estimate of the number of 

mines remaining is required. 

Suppose, for example, that a minefield is swept in such a manner that every mine is removed 

with probability 0.5, and that the number of mines removed Y is observed to be 4. How many 

mines are left? One could argue that there must be 4 left, since as many mines were not removed 

as were removed. But this is only a guess, since the number of mines remaining is clearly 

random, and besides it may seem odd that the number of mines remaining should increase with 

the number removed. One could argue just as effectively that removing mines should cause the 

number remaining to decrease, rather than increase. This “wishing paradox” (we don’t know 

whether to hope that the number removed is large or small) is primarily due to uncertainty about 

the number of mines initially present.  It can be resolved by introducing a prior distribution for 

the number of mines and applying Bayes Theorem.  A prior distribution is required if statements 

about the residual threat of the minefield are to be made — information about the fraction of 
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mines removed is insufficient, in itself, for making an assessment of the number of mines 

remaining. 

The rest of this subsection deals with a particular “Katz” class of probability distributions.  

If Excel workbook Minewar.xlsm is available, the reader may wish to open it up to sheet “Katz” 

before continuing.  Formulas (10)-(12) below are built into that workbook, along with some 

graphics. In addition to the specific example given below, the reader can experiment with other 

inputs. 

Let M be the initial number of mines, and let xj be P(M=j); j0. The prior distribution 

consists of x0, x1, etc. In principle any prior distribution can be used, but it turns out that there is 

a particular 2-parameter class of distributions with convenient analytic properties. This is the 

Katz class where the formula xj+1/xj=(+j)/(j+1) holds for j0. The two parameters  and  

must be such that >0 and <1 (otherwise the sequence diverges), and the ratio −/ must be a 

positive integer if <0 (otherwise negative probabilities are possible). When <0 the distribution 

is a binomial distribution with −/ trials and −/(1−) success probability. The ratio / need 

not be an integer when >0, but, if so, then the distribution is the negative binomial distribution 

characteristic of counting the failures until the /th success in repeated trials where the failure 

probability is . When =0 the distribution is Poisson with mean . Katz (see Johnson and Kotz 

(1969)) showed that the probability generating function is     
/( ) ( , , ) ((1 ) / (1 ))ME z g z z      − = − − . 

from which all moments can be derived. In particular, E(M)=/(1−) and Var(M)=/(1−)2. The 

probabilities themselves are easily generated by taking advantage of the fact that 

x0=E(0M)=(1−)/; the defining formula then determines x1, x2, etc. This Katz class of 

distributions has sufficient flexibility to reasonably approximate most unimodal priors for M. 

The analytic charm of the Katz class of distributions is that it is closed under the sample-

and-subtract operation that minefield clearance amounts to.  Let M'=M−Y be the number of 

mines remaining after sweeping, and suppose that sweeping is to the clearance level p; i.e., every 

mine is independently removed with probability p. Let q=1−p. Then 
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since P(Y=y|M=y+j) is the binomial probability of y successes out of y+j trials. Let 

xj
*P(M'=j|Y=y) be the posterior distribution of the number of mines remaining. Then, taking the 

ratio of successive terms in (8), 
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The first factor is a ratio of combinatorial coefficients, and the second is by assumption 

xy+j+1/xy+j. The two (y+j+1) factors cancel, so (9) is again a linear function of j divided by (j+1). 

Thus the posterior distribution xj
* is of the same Katz type as the prior distribution xj, except that 

the revised parameters are 

  '=q(+y),  '=q. (10) 
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Note that  '/ ' will be an integer if / is, since  '/ '=/+y. The expected number of mines 

remaining increases with y if >0 or decreases with y if <0.  This resolves the wishing paradox. 

We wish for lots of mines to be cleared if <0, or for only a few to be cleared if >0. The 

Poisson case where =0 is on the boundary; the Poisson posterior distribution still depends on p, 

of course, but not on y. 

Since the posterior distribution is in the same class as the prior, it can itself be revised by 

further sweeping in the same way, so one might have  '',  '' for the distribution following a 

second sweep of the minefield, etc. The distribution remains Katz, and the effect of sweeping is a 

simple revision of two parameters. 

If each remaining mine will damage the first transitor with probability t, then the probability 

that the first transitor is not damaged is E((1−t)M). Substitute 1−t for z in the probability 

generating function to get 
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By substituting (,) values appropriate to the amount of sweeping that has been done, SIT 

at any point in the clearance campaign can be determined (if =0, replace (11) by the limiting 

case for small , which is ( ,0,1 ) 1 exp( (1 ))g t t − = − − − ). For example suppose that the amount 

of sweeping is sufficient to remove each mine with probability p = 1 q− , removing y mines in 

the process. Using (10), we then can write a formula for SIT’, the simple initial threat after 

clearance: 
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An extreme form of this equation is sometimes used in practice, this form being when 1 = = . 

In that case the formula for the post-clearance SIT reduces to  
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SIT

p qt
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+

 

Note that the post-clearance SIT increases with the number of mines cleared, and that it is 1 if p 

and y are both 0, a pessimistic view of the situation. This is because the extreme assumptions 

about the Katz parameters correspond to a “diffuse prior” where all numbers of mines are 

weighted equally; the mean number of mines initially present is infinite in that case. The diffuse 

prior apparently has no need to make an initial assumption about the number of mines present, 

but only because  and  are built into the procedure instead of being a user input. 

One could also use (11) to forecast the SIT associated with a given clearance level p of an 

(,) minefield without knowing the number of mines removed. This forecast would be useful in 

planning the amount of sweeping to be done. The clearance level essentially reduces the threat of 

each mine from t to qt, so SIT before the number of swept mines is observed is 

1 ( , ,1 )SIT g qt  = − − . In connection with clearance planning it may be desirable to solve this 

for the q or p corresponding to a given desired SIT '. The solution is 
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For an example of the application of these ideas, suppose that initially =4.5 and =0.1, 

which corresponds to a distribution where the expected number of mines is 4.5/(1−0.1)=5. This 

distribution is the one labeled “prior” in figure 5. If the individual mine threat is t=0.1, then 

1 (4.5,0.1,0.9) 0.392SIT g= − = . If it is desired to reduce SIT to 0.1 by sweeping, substitute 

SIT '=0.1 in (12) to find q=0.211. Sweeping must therefore be to the level p=0.789. A tactical 

decision aid such as UCPLN might be used to determine the sweeping plan implied by that level. 

If y=10 mines are found and removed in the process of sweeping to that level, then (using (10)) 

 =0.211(4.5+0.1(10))=1.1605 and  '=0.211(0.1)=0.0211. This is the “posterior” distribution of 

figure 5. The average number of mines remaining is 1.186, and SIT’ is g(1.1605,.0211,0.9) = 

0.1112. The effect of the observation of the number of mines swept has been to reduce the initial 

threat, albeit not to exactly 0.1. The observation of  SIT’ may prompt further sweeping, etc. 

. 

5.2 Optimal minesweeping in mixed minefields. 

Minefields often consist of a mixture of mines of different types, partly because this forces 

the minesweeper to make repetitive passes with different sweep configurations. With several 

different sweeping configurations available, the question of how fixed minesweeping resources 

should be divided among them arises. In this subsection, we consider the question of how the 

mixture of sweeping configurations can be determined optimally. 

We assume that the sweeper’s goal is to make SIT as small as possible. Assume that there 

are n mine types, with the number of mines of type i being independently Poisson with known 

mean mi; that is, suppose that Katz parameter i is zero in all cases. Also assume that the first 

transitor will lethally actuate each remaining mine of type i with probability ti, so 

 
Figure 5:  Distributions before and after minesweeping.  
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that 1 1 n nz m t m t + +  is the average number of mines lethally actuated by the first transitor if 

there is no minesweeping. Since the number of remaining mines is itself a Poisson random 

variable, the probability that the number of lethal mines is zero is SIT=1−exp(−z), an increasing 

function, so z itself will do for an objective. The aim of minesweeping is thus to reduce z as 

much as possible while not exceeding any resource constraints. 

Suppose that there are J types of sweep, let xj be the number of sweeps of type j, and let Wij 

be the small probability with which each mine of type i is removed by each sweep of type j.  The 

average number of times that a mine of type i is removed is then 
1

J

i ij j

j

y W x
=

 . Since there are 

many attempts at removal, each of which succeeds with a small probability, we take the 

probability that a mine survives all attempts to remove it to be exp(−yi), the Poisson probability 

of zero removals. Therefore z is reduced by minesweeping to the level  

 z=m1t1exp(−y1)+...+mntnexp(−yn), (13) 

which is to be minimized. In effect, we are assuming that sweeping amounts to conducting a 

sequence of random searches. Equation (13) is the objective, and the decision variables are the 

components of the vector 1( , , )Jx x=x , but the problem description will not be complete until 

the decision variables are subjected to resource constraints. 

Let hjk be the amount of resource k consumed by one sweep of type j, and let there be Hk 

units of resource k available over the minesweeping period. If there are K types of resource 

available, then the problem of optimizing x reduces to the following minimization problem: 
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Sheet “Optsweep” of workbook Minewar.xlsm uses Excel’s Solver to solve this problem when 

K=4, J=7, and n=5. The reader may wish to experiment with it to see how the problem solution is 

sensitive to input data, or see exercise 20. 

        Two extreme forms of this model are the Series and Parallel models, in each of which K=1 

because the only constrained resource is the time available for clearance. In the Series case each 

sweep type works for only one mine type, and in the Parallel case there is only one sweep type 

because it works against all mine types.  

The case where Katz parameter i0 can also be formulated as an optimization problem, 

since the probability that the first transitor survives is still a product of factors raised to powers. 

Appendix B gives a GAMS formulation of such a problem that is otherwise the same as the one 

formulated on the “Optsweep” sheet. If you are familiar with GAMS, see exercise 10.  

6. Countered Minefield Planning. 

Section 4 deals with planning minefields when no countermeasures are expected. Section 5 

deals with countering a minefield when no counter-countermeasures are expected. This section 



20 

deals with planning counter-countermeasures when countermeasures are expected. The reader 

who fears that this sequence might go on indefinitely can take some comfort in noting that there 

is only one more section after this one. 

There is a natural tendency for minefields to become less effective with time on account of 

sweeping and transits. Ship counters are one possible tactic for reducing this tendency. A mine 

on shipcount j will detonate when actuated only if j=1; otherwise, each actuation will decrease j 

by 1 until finally the mine is “ripe” (j=1). By mixing up the initial shipcounts of the mines, the 

minefield planner can achieve a minefield that is threatening for late transits, as well as for early 

ones.  The problem of determining the ideal mixture of shipcounts is a good candidate for a 

computerized tactical decision aid. To make the ideas clear, we will describe the planning 

problem in detail for a simple minefield with only one type of mine and one type of transit, later 

making reference to software that can handle multiple mine types. 

Let tn be the threat (probability of damage) to the nth transitor, and let t be the smallest of all 

these numbers over some specific range for n. The miner’s object is to make t as large as 

possible by cleverly setting the counts of the mines, thus making sure that the threat chain has no 

weak links.  Our first analytic goal must be to find an expression for tn as a function of the 

minecounts. 

Suppose that every transitor actuates each mine independently with probability A, and will 

be damaged with probability d, conditional on actuating a ripe mine. A mine initially set on 

shipcount j will be ripe just before the nth transit if and only if the first n−1 transits actuate it 

exactly j−1 times, a binomial probability.  If Pjn is this probability, then 
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Note that P11=1, since the number of combinations of 0 things taken 0 at a time is by definition 

1. The probability that transitor n actuates a ripe mine and is damaged by it is AdPjn.  If xj is the 

number of mines set on shipcount j, and if all mines act independently, then transitor n’s 

probability of surviving all mines is  
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The upper limit of the product in (15) is n because mines initially on shipcounts exceeding n 

cannot threaten the nth transitor.  

We can now consider the problem of maximizing t, the minimum of all the numbers tn, 

subject to the constraint that the variables xj must not sum to more than M. Solutions can be 

surprising. One might think that there would have to be some mines on high initial shipcounts to 

threaten ships late in the sequence, but this is not necessarily true because A may well be 

considerably smaller than 1. When A is small, it would not be unusual to have a mine initially on 

shipcount 10 still be on shipcount 10 after several transits. If A is small enough, in fact, the best 

tactic may be to put all mines on shipcount 1. It is only in situations where A is large, possibly 

because most transitors are actually minesweepers, that advanced shipcounts become attractive. 

Sheet “ACMPM” of Minewar.xlsm implements the minimization problem described above. 

Exercise 12 will give the reader a chance to experiment with it. 

The Analytical Countered Minefield Planning Model (ACMPM) is a program used to design 

countered minefields (Bronowitz and Fennemore, 1975) that avoids some of the artificial 
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assumptions made above. ACMPM calculates Pjn for every possible cross-channel location of the 

mine before finally averaging to obtain the quantity used in (15), thus correctly reflecting the fact 

that mines don’t move. In that respect, the model outlined above is like ENWGS, while the real 

ACMPM is like UMPM. ACMPM also deals with a variety of mine types simultaneously, and 

includes resource constraints other than simple constraints on the number of mines. Still, 

ACMPM is similar in spirit and tendencies to the simple optimization described above. 

7. Two Person Zero Sum (TPZS) Games 

The measure/countermeasure cycle can be continued indefinitely, with each side thinking “If 

he thinks that I think that he thinks…” in trying to decide what to do next. TPZS games were 

invented to deal with such situations, and hold out the hope of basing actions on the enemy’s 

known capabilities, rather than his presumed intentions. TPZS formulations have some problems 

of their own, as will be seen, but they can still be illuminating. The purpose of this section is not 

to be exhaustive, but merely to show some of the possibilities. 

 7.1 Matrix games 

Is it better to hunt for mines or to sweep them? Hunting has the advantage of working 

equally well regardless of the sensor type, mine count setting, or delay arming, since hunting is 

independent of the mine’s sensors. On the other hand hunting usually has a comparatively small 

sweep width. For a simple analysis suppose that there are only two mine types (MAG and ACU) 

and three possible countermeasures (SMAG, SACU, and HUNT). The miner chooses the mine 

type. The minesweeper elects to sweep or hunt without knowing the miner’s choice, and the 

mine removal probability depends on the choices of both players. These six removal probabilities 

are shown in the matrix below. For the first two countermeasures the matrix entry is an actuation 

probability — we are assuming no mine counters or delay arms, so actuation is equivalent to 

removal. For the HUNT countermeasure the matrix entry is the probability of detecting the mine, 

which is again equivalent to removal. The sweeper is the maximizing player, so his three 

strategies are by convention shown as rows 

 

    MAG ACU

SMAG 1.0 0.0

SACU 0.0 0.5

HUNT 0.3 0.3

  

The solution of this game is that x*=(1/3,2/3,0) and y*=(1/3,2/3). x* is the sweeper’s 

optimal mixed strategy, with the three components being probabilities of choosing the three 

rows, and y* is defined similarly for the miner. The value of the game is 1/3, the probability that 

the mine is removed when both sides act optimally. Note that  

• MAG mines are used 1/3 of the time in spite of the fact that they are more easily 

swept than ACU mines, 

• the sweeper is more likely to do what he is bad at (SACU) than what he is good at 

(SMAG), and  

• the HUNT option is never used.  

If the HUNT detection probability were raised from 0.3 to 0.35, the sweeper would switch from 

exclusive sweeping to exclusive hunting, and the value of the game would be 0.35. Some of 

these results are surprising, and it is hard to imagine discovering them by any means other than 
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TPZS analysis.  

 Exercise 17 involves a situation where there are two mines, rather than 1, each of which 

can be set to detonate after a certain number of actuations. Even is such a simple situation, the 

number of possible strategies can be surprisingly large. 

 7.2 Concave-Convex games. 

It is common for a decision problem to be easy to solve with only a few alternatives, 

complicated for combinatorial reasons as the number of alternatives is increased, and then 

solvable again in the limit as the set of alternatives becomes very large. The problem just 

considered is like this. The number of strategies available to the miner or minesweeper increases 

fast if the number of mine types is increased, or if actuation counters are introduced, or if there 

are multiple ways of sweeping/hunting. This rapid increase destroys any hope of a matrix game 

solution for practically sized problems, but analysis may again become possible when the 

number of alternatives becomes so large as to be, in effect, a continuum.   

For example, consider a generalization of the optimal sweeping analysis of section 5.2. It 

was formulated as a problem where the sweeper was willing to guess how many mines of each 

type were present, and wanted to find the sweeping plan that minimized the total threat z.  

Suppose instead that the numbers of mines of each type are constrained only by the constraint 

that 
1

n
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 , perhaps because logistic considerations permit only M mines to be planted. We 
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Since the objective function is concave in m and convex in x, the game has a saddle point 

(Owen, 1982). Since the game has a saddle point, the sweeper has an optimal strategy that 

assures that the miner has no cheap victories; that is, the minesweeper should make the largest of 

the coefficients exp( )i it y−  be as small as possible. This leads to the following nonlinear 

minimization problem for the sweeper: 
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Solving that minimization problem will reveal the game value v and the optimal strategy for the 
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sweeper x. Once v is determined, the associated SIT is 1-exp(-Mv). 

 The nonlinear optimization shown above can be made into a linear program (LP) by 

letting the objective function be exp( )v z=  and defining ln( )i iT t . The LP is then 

0
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Note that variable z is not constrained to be positive in the LP – the optimized z will invariably 

be negative, in fact. This LP is solved on sheet OptSweep(2) of Minewar.xlsm using the Solver 

addin to Excel. The dual variables for the n constraints involving z can be used to construct an 

optimal strategy for the miner. It is a curious fact that the optimal strategies for this game can be 

obtained by solving a comparatively simple LP, whereas the problem of finding the optimal 

strategy for the sweeper against a given strategy for the miner, as in section 5, requires the 

solution of a more difficult nonlinear program.  

. 

 7.3 The Breakthrough game . 

Using SIT as an objective confines applicability to situations where the number of transitors 

is small, ideally one. A minefield with a high SIT may still be ineffective in a practical sense, so 

one might wish to use some measure of the “staying power” of a minefield as the objective 

function. It is easy enough to measure staying power: let the measure be the number of transitors 

damaged out of infinitely many, rather than out of just one. The threat to every transitor is 

important with this measure, rather than just the threat to the first. Unfortunately, using this 

measure is essentially the same as using “mine survival fraction”, since damage is proportional 

to the number of mines not cleared if there is no danger of running out of targets. 

The Navy’s “Breakthrough” model (Sutter (1983)) fixes both the number of transitors and 

the amount of time available for clearance, and uses the objective function “fraction of mines 

that sink transitors”. The miner’s strategies include the mix of mine types and also a probability 

actuator setting  for each type—the mine detonates with probability β on each actuation, or else 

continues to wait. Making =1 is not generally optimal because doing so makes the mines easy 

to sweep, and making =0 is never optimal because even a mine that survives clearance would 

not damage anything. Selecting the right value for  is nontrivial, especially when the sweeper’s 

options include both hunting, which is not affected by , and sweeping, which is. The 

Breakthrough model is an analysis of this two-sided decision making situation. Breakthrough 

was originally intended as a mine clearance aid for use when dealing with a sophisticated miner, 

but it has actually enjoyed more use in force level studies where its ability to evaluate the 

effectiveness of a mix of minesweeping assets is useful.  
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Exercises (not in order of difficulty—1, 3, 10, 13, 14, and 16 are 
relatively advanced) 

1.  Consider the ENWGS model of section 3. Suppose that M mines with action radius W/2 

remain in a minefield of area A at the beginning of the fixed time interval  that ENWGS uses to 

advance time, and consider an arbitrary ship that will travel some length L in the minefield over 

. As explained above, in the stochastic mode ENWGS compares a random number to WL/A to 

decide whether the ship is damaged by each of the M mines, subtracting one from M if any mine 

is struck. ENWGS also has a “deterministic” mode in which no random numbers are employed, 

the idea being to avoid the vagaries associated with randomness and assure reproducibility of 

results. The simplest deterministic model would be to replace all random numbers by 0.5, the 

midpoint of the interval [0,1]. Explain why this won’t give satisfactory results, and suggest a 

better deterministic model. The principle should be that, since  has no physical meaning and is 

chosen for reasons having nothing to do with the minefield, results should not depend strongly 

on what value happens to be chosen for . 

 

2.  The UMPM model of a minefield is equivalent to a Markov chain where the state is the 

number of ships remaining undamaged and where a transition corresponds to all of the remaining 

ships passing the next mine. Suppose that Rn
* is given by the ENWGS model with WL/A =.5, 

and that 2 ships attempt the transit of a minefield with 3 mines. Let x be a row vector storing the 

probabilities that 0, 1, or 2 ships remain undamaged, initially x=(0,0,1). What is the 33 

transition matrix, what is x after three transitions, and what is the casualty distribution when two 

ships attempt to transit the minefield? 

 

3.  Consider revising UMPM so that there are ghost ships, as well as virgin ships, with ghost 

ships representing ships that have struck a mine, but which act like virgin ships as far as 

activating additional mines goes. When a ship activates a mine, the ship sinks with probability S, 

or else becomes/stays a ghost. Reconsider problem 2, but with S=0.5. The state of the Markov 

chain will be (v,g), where v is the number of virgins (initially 2) and g is the number of ghosts 

(initially 0). You will need to consider transitions among six states: 20,10,11,00,01,02. Assume 

that Rv+g
* is the probability that the group of v+g unsunk ships will actuate a mine, and that each 

of the unsunk ships is equally likely to be the actuator. What is the 66 transition matrix, what 

are the state probabilities after 3 transitions, and what is the casualty distribution? Ghosts count 

as casualties.   

 

4.  In section 4.3, a claim is made about the size of a confidence interval for REP=10,000 

replications. Verify it, and also give the size if REP=1000. This is not a question about mine 

warfare, but rather about statistics. 

 

5.  Consider the extreme example of section 4.2, but this time suppose that there are n=10 

identical transitors and a single mine that is equally likely to be type 1 or type 2. What is the 

fully configured probability of a single casualty? What is UMPM’s probability?  

 

6.  Using the methods of section 5.1, find an example where the results of minesweeping 

could increase SIT from its initial value. 
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7.  Suppose that the prior distribution of M is as in section 5.1 with parameters  and , and 

that sweeping is carried out in two stages. In stage i sweeping is carried out to level 1-qi and yi 

mines are removed from the minefield, i=1,2. One might determine the posterior distribution of 

the number of mines remaining by revising (,) twice, once for each sweep, or by arguing that 

the two sweeps together are equivalent to one sweep to the level 1−q1q2 that removes y1+y2 

mines. Show that both procedures give the same result. 

 

8.  Use sheet “Katz” of Excel workbook Minewar.xlsm to work this problem, if you have it 

available. Suppose that the prior distribution of mines is as in section 5.1 with parameters =3 

and =0.75, and that the individual mine threat is t=0.1.  

 a) What is the initial SIT, and to what level must the minefield be swept to reduce SIT to 

the desired average level SIT'=0.1? 

 

 b) If no mines are found, what is the post-sweep SIT, and what are the mean and standard 

deviation of the number of mines remaining?   

 

9.  Sheet “UMPM” of Excel workbook Minewar.xlsm implements the UMPM calculations 

against ten hypothetical transitors.  Imagine that you are designing a minefield, and that you can 

control the “scale” input by changing the sensitivity of the sensor, as well as the “actuation prob” 

input, a number between 0 and 1 that represents the setting of a probability actuator.  These two 

parameters are 30 and 1/3 in the default scenario. You are concerned about both the average 

number of casualties and also the threat to the last (tenth) transitor.  Can you find a choice of the 

two controllable parameters that makes both of these measures better in the default scenario?  If 

so, what are the parameters and the resulting measures? 

 

10.  Appendix B formulates the problem of maximizing the survival probability S of the first 

transitor through a minefield, with no counter-countermeasures after sweeping. The transitor 

must survive 5 different mine types, each of which has its own Katz parameters. It uses the same 

random search assumption for each mine as in section 4.2, except that the coverage ratio for type 

i mines is yiWi1x1+…+Wimxm, where m is the number of sweep types (7 in the example). The 

decision variable xj is the number of hours of sweeping of type j, and Wij is a parameter 

measuring the efficiency of type j sweeping against type i mines.  

 a) Show that the given objective function Z is the same as -ln(S) provided that the initial 

numbers of mines of the 5 types are independent random variables and that g(i,i,qiti) 

determines SIT for each mine type. 

 b) Run the program and report the optimal value of S. 

 c) The objective function is a convex function of the decision variables. Explain why this 

is important. 

 

11.  The problem discussed in section 6 assumes that all transits have the same actuation 

probability A.  Suppose that both sides are concerned only about the fate of one particular ship, 

the “chief”, and that the chief actually has an actuation probability B that differs from A.  How 

must equations (14) and/or (15) be revised?  
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12.  Worksheet “ACMPM” of Excel workbook Minewar.xlsm implements equations (14) 

and (15), and invites you to determine the best minecount distribution for a given number of 

mines.  See if you can find the distribution that maximizes the minimum threat when M=20, 

N=10, A=0.4 and D=0.3.  You may wish to take advantage of Excel’s Solver feature, which is set 

up to find the best distribution if the requirement that the number of mines on each shipcount 

must be an integer is ignored.  You may also wish to experiment with smaller but more realistic 

values of A such as 0.1, in which case the benefits of advanced minecounts should be much 

smaller. 

 

13.  Sheet OptSweep(2) of Minewar.xlsmm solves the linear program of section 7.2  The 

game value when the miner has 30 mines available is 0.364. What is the game value if the miner 

has only 15 mines available, and why? 

 

14.  Suppose that the number of mines is a binomial random variable with parameters M and 

p. Formula (7) could be used to determine x(k) for k=0,...,n.  Argue that (7) is actually not 

required, since the inputs to UMPM can be modified instead. What is the modification? 

 

15.  Suppose that the number of mines M is a priori equally likely to be either 10 or 15, and 

that 7 mines are found in the process of sweeping to level 0.5. Use Bayes Theorem to find the 

probability that the original number of mines was 10, given the observed result. 

 

16.  Consider a game where the miner places a single mine at x in the unit interval [0,1], 

while the transitor simultaneously selects a point y in the same interval in an attempt to pass 

safely by the mine. The transitor will be sunk if and only if |x-y|0.2. “Obviously” the location of 

the mine should be uniformly distributed over the interval and the game value is 0.4, since the 

mine can cover 40% of the interval. But not so fast… 

 a) Show that a clever choice of y would result in a sinking probability of only 0.2 against 

the uniform strategy. 

 b) Find a strategy for placing the mine that will always sink the transitor with probability 

1/3 or more, regardless of y. Hint: The optimal distribution for x is discrete, not continuous. 

 c) Find a strategy for transiting (a distribution for y) that will result in being sunk with 

probability 1/3 or less, regardless of x.  

The moral of this story is that end effects are potentially important. 

 

17.  There are two mines, each of which must be assigned a “count” of 0, 1, or 2 by the 

miner, a total of 9 possible joint assignments (these counts would normally be referred to as 1, 2, 

and 3, but it is convenient for the moment to begin counting from 0). The sweeper can sweep 

each mine either 0, 1, or 2 times, but the total number of sweeps cannot exceed 2 so there are 

only six joint possibilities. The sweeper wins if and only if both sides select different numbers 

for both mines, so the payoff matrix is a 96 matrix of 0’s and 1’s. This TPZS game models a 

situation where each mine is “ripe” only if its count is reduced to exactly 0 by sweeping, and 

where the sole transitor will encounter both mines. Solve the resulting 96 game. 

 

18.  Five ships transit a minefield of three mines. In terms of R1
*,…,R5

*, as given by (5), 

what is the probability that exactly two of the ships will be damaged, as would be calculated by 

UMPM?  The answer is a formula, not a number.   



27 

 

19.  Find a formula analogous to (4) for the probability of a wasted fire: the probability that 

a mine at distance x from the channel centerline of n ships will actuate without doing any 

damage.  

 

20.  Sheet “Optsweep” of workbook Minewar.xlsm contains a formulation of the optimization 

problem considered in section 5.2. In this problem, do not constrain the variables to be integers. 

 a) Use Solver to find the optimal distribution of minesweeping and the resulting SIT, 

allowing the variables to be real numbers, rather than integers. The minimized SIT should be 

0.215, with no hours devoted to SHPMAG (ships making magnetic sweeps). 

b) The reason why SHPMAG is never used in the optimal sweeping plan is that each      

sweep requires 5 SHPHRS, and the SHPHRS resource is better spent on other sweep types.  

What would happen if that number were reduced from 5 to 3?  You should find that the 

minimized SIT decreases to 0.202, but how many hours of SHPMAG are used? 

 

21.  A minefield is 1000 meters wide, and contains two mines.  Each mine will certainly 

actuate and kill any transitor that comes within 200 meters., or otherwise will not actuate.  Two 

transitors attempt passage, the second following the first with no navigation error.   

 a)  What is Rn*, for n=1, 2, 3? 

 b)  According to UMPM, what is the probability that exactly one of the two transitors       

         survives the passage? 

 c)  Same as b), but according ENWGS. 

 

22.  You are planning a minefield that is 1000m wide. Make the UMPM assumptions about 

how ships will transit and about how mines are distributed in the minefield.  The actuation curve 

a(x) is 1 if |x|<50m, or else 0.  The damage curve d(x) is 1 for all x.  Assume the navigation error 

is either 25m or -25m, equally likely (normality would be more realistic, but would require a 

numerical integral to find A(x)).   Sketch A(x).  A(x) is the expected value of a(x−U), where U is 

the navigation error, so A(x) is the sum of two terms for every x.  Then 

a)  Find Rn* for n=1, 2, and 3.   

b)  What is SIT if the minefield contains two mines? 

c)  How many mines are required to assure that the probability is at least 0.9 that, if three 

ships attempt transit, at least one of them will be damaged? 

 

23. You are planning a minefield that is 400m wide, with all ship transitors going right up 

the middle. Make the UMPM assumptions about how ships will transit and about how mines are 

distributed in the minefield.  Half of the ships that transit have an actuation distance of 40m, and 

the other half have an actuation distance of 80m. The damage distance is 100m for all transitors. 

There are no navigation errors. . 

a)  Sketch ( )a x for 200 200x−   . 

b) Find Rn* for n=1, 2, and 3.   

c)  If the minefield consists of two mines, what is the probability of a “catastrophe” from 

the viewpoint of the minefield planner – no ships are damaged out of a group of 3? 

 

24.  Sheet “MonteUMPM” of Minewar.xlsm has a command button that calls a subroutine 

monte() that performs a Monte Carlo simulation of the same scenario analyzed on sheet 

“UMPM”.  The casualty distribution should fluctuate slightly with repeated presses of the 
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command button, but should still be close to the exact distribution on page “UMPM”.  If the 

seven inputs on page “UMPM” are (reading down column O) 3, 30, 50, 500, 22, and 1/3, the 

average number of casualties out of ten transitors should fluctuate slightly around the exact value 

3.5913. The navigation errors are taken to be 0 in monte(), but it is easy to modify Monte so that 

navigation errors are incorporated in a fully-configured simulation (unlike the exact 

computations on page “UMPM”).  Modify monte() so that navigation errors are uniform in the 

interval [−50, 50], one error for each transitor.  With inputs as specified above, what is the 

resulting average number of casualties?  Hint: Only one line of monte() needs to be modified.  

After you modify it, don’t forget to change it back before saving the workbook.    

 



29 

Solutions to Exercises 

1.   If  is small, WL/A will be smaller than 0.5, and therefore no ship will ever be damaged, 

no matter how many small intervals there are.  A better deterministic method might be to 

introduce a counter D for distance traveled.  The counter would start at 0 and be incremented by 

L when the ship moves.  When the counter exceeds A/W, the offending ship is damaged, and the 

counter reset to 0.  Objections could also be made to the counter method; for example, no ship 

would ever be damaged if it traveled less than A/W in the minefield.  There really is no simple 

deterministic equivalent to a Monte Carlo simulation. 

2.   The transition matrix is 

1 0 0

0.5 0.5 0

0 0.75 0.25

P

 
 

=
 
  

.  The state vector x is (0.656, 0.328, 

0.016) after 3 transitions. The casualty distribution is just the reverse of x: (0.016, 0.328, 0.656). 

 

3.   If the state vector x is initially (1,0,0,0,0,0) with the states ordered as stated in the 

problem, then it is (0.0156,0 .2476, 0.1362, 0.2647, 0.2446, 0.0923) after 3 transitions. The 

casualty distribution is (0.0156, 0.3838, 0.6006) for 0, 1, and 2 casualties. The transition matrix 

is 

 

0.250 0.375 0.375 0 0 0

0 0.500 0 0.250 0.250 0

0 0.1875 0.4375 0 0.1875 0.1875

0 0 0 1.000 0 0

0 0 0 0.500 0.500 0

0 0 0 0 0.375 0.625

 
 
 
 
 
 
 
 
 

  

4.  The subject is “large sample confidence intervals for a population proportion”.   The 

halfwidth in general is zα/2(p(1−p)/n)1/2, where n is the number of trials and p is the true sample 

proportion.  Since zα/2 is 1.96 when α=.05, and since p(1−p) cannot exceed 0.25, the halfwidth is 

approximately (1/n)1/2.  This is 0.01 when n = 10,000; i.e., to measure a proportion to within 

0.01, one needs about 10,000 trials.  When n = 1,000, the halfwidth is 0.03. 

  

5.   The fully configured probability is 0.5, since there will be one casualty if and only if the 

mine is type 1 (effective).  The input to UMPM would have to be an actuation curve for which 

A(x) = 0.5 for all x, since the mine is equally likely to be effective or not.  Therefore 

Rn* = 1−0.5n, and UMPM’s probability for n = 10 mines will be 0.999.  

  

6.  If  > 0, then SIT increases with the number of mines found, so any example with lots of 

mines found will suffice. 

 

7.   The first stage revised Katz parameters are =q1(+y1) and =q1.  The second stage 

parameters are =q2(+y2) and =q2.  Substituting the first stage formulas into the second 

stage, we find that the two stages together are equivalent to a single stage where q = q1q2 and 

y1+y2 mines are removed. 

 

8.  The answers to part a are 0.650 and 0.911.  Part b answers are 0.028, 0.286, and 0.555. 
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9.  There are many ways of accomplishing this.  One is to change the scale from 30 to 40 

and the actuation probability from 1/3 to .3, in which case the average number of casualties 

increases from 3.59 to 3.85, while the threat to the last transitor increases from 0.135 to 0.140. 

 

10.  Given the definitions of Ai and Bi, (1−g(i, i, qiti)) is the same thing as (1 ) iA

iB
−

+ , each 

being the probability that the ship survives all mines of type i. Given the definition of Z and the 

assumption of independence between mine types, the probability of surviving all mine types is 

S = exp( -Z). The optimized value of Z is 0.844, which corresponds to a simple initial threat of 

0.570. Convexity is important because this is a nonlinear optimization problem, and convexity 

guarantees a unique solution.  

  

11.   Substitute B for A in equation (15), but make no changes in equation (14). 

 

12.   The best integer solution found so far makes the threat at least 0.33015 regardless of 

where the chief appears, with the number of mines on each setting being (4, 4, 0, 12, 0, …).  If 

you were able to intuit that solution, then congratulations to your intuition.  If you find a better 

solution, please notify the author.  If your solution isn’t even that good, and if you found it using 

Solver, then you have learned something about Solver. 

 

13.   The game value would be 0.182, exactly half of the value with 30 mines. 

 

14.  The modification is to simply multiply d(x) by p and use M mines.  In effect, p is a 

reliability for each mine. 

 

15.  Let M be the number of mines and Y be the number that are found. The binomial 

probability of getting 7 successes out of 10 trials with success probability 0.5 is 

P(Y=7|M=10) = 0.117.  With 15 trials, the probability is P(Y=7|M=15) = 0.196.  Since the events 

M=10 and M=15 are equally likely, according to Bayes theorem, P(M=10|Y=7) = 0.374. 

 

16.  In part a, the transitor’s probability of being sunk is only 0.2 if it chooses either 

endpoint, as long as x is chosen uniformly.  In part b, x should be equally likely to be either 0.15, 

0.5, or 0.85.  That way every point y is within range of at least one mine location (there are other 

sets of three points with this property). In part c, y should be equally likely to be either 0, 0.5, or 

1.  That way no mine single mine location can cover two transitor locations.  The value of this 

continuous game is 1/3. 
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17.  A possible payoff matrix of the 96 game is shown below, and the value is 2/3. The 

payoff matrix depends on the order in which strategies are listed. The game value does not. 

1 1 1 1 0 1

1 1 1 0 1 0

1 1 1 0 0 0

1 0 0 1 1 1

0 1 0 1 1 0

0 0 1 1 1 0

1 0 0 1 0 1

0 1 0 0 1 1

0 0 1 0 0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

18.   The two successful mines must be either the first and second, the first and third, or the 

second and third, so the answer is R5
* R4

* (1-R3
* ) + R5

* (1-R4
* ) R4

* + (1-R5
* )R5

* R4
*.  The 

same answer can be obtained with more effort by multiplying out the Markov chain probabilities. 

 

19.   The probability that the mine actuates, but does no damage, is 

{1-(1-A(x))n}{1-D(x)/A(x)}.  This is the product of the actuation probability and the probability 

of no damage, given actuation.  

 

20.   When the number of SHPHRS per SHPMAG sweep is reduced to three, the optimal 

number of SHPMAG sweeps increases from 0 to15.89, and the minimized SIT decreases to 

0.2022. 

 

21.  a) Rn* is 0.4 for all n 

  b) 0.48 according to UMPM 

  c) 0.6144 according to ENWGS 

 

22.  a) Rn* is 0.1, 0.125, and 0.1375 for n=1,2,3. 

  b) SIT=1−(1−R1*)2=0.19. 

  c) The probability with m mines is 1−(1− R3*)m, so the required m is 16. 

 

23. b) Rn* is 0.3, 0.35, and 0.375 for n=1,2,3. 

 c) 0.3906 

 

24.  4.6, approximately 
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APPENDIX A:  Monte Carlo Simulation to Measure Casualty Distribution C( ) Appendix A: Monte Carlo Simulation to Measure Casualty Distribution C( )

J still alive?

start mine  loop on J

set ship properties; I=1,…,n

start ship loop on I

end replication loop

C(K) = C(K)/REP; K=0,…,n

kill mine J

C(CAS) = C(CAS) + 1

output C(K); K=0,…,n

end

start re plication loop

CAS = 0

n ships, M mine s, REP replications

initialize C(K)=0; K=0,…,n

set mine properties; J=1,…,M

actuation?

damage ?

end loop on J

end loop on I

CAS = CAS + 1

yes

yes

no

yes

no

no
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APPENDIX B:  GAMS Formulation of a Minesweeping Problem 

$ TITLE NONLINEAR PROGRAM FOR ALLOCATING RESOURCES TO 

MINESWEEPING 

*** By Al Washburn, April 1994.  All values are arbitrary. 

OPTION LIMROW=0,LIMCOL=0; 

***BOT=bottom,MAG=magnetic,ACU=acoustic,PRS=pressure,TET=tethered***CNT=co

ntact,SLD=helicopter towed sled 

***SHP=ship,EOD=EOD team,HEL=helicopter,CUT=cable cutting 

***SHMGAC=ship using both magnetic and acoustic sweeps 

SETS 

   I mine type  /BOTMAG, BOTACU, BOTPRS, TETMAG, TETCNT/ 

   J sweep /SHPHNT, EODHNT, SHPMAG, HELMAG, SHMGAC, HELACU, HELCUT/ 

   K resource   /SHPHRS, HELHRS, EODHRS, SLDHRS/; 

PARAMETERS 

      ALPHA(I)  Katz parameter for each mine type 

      /  BOTMAG 10 

         BOTACU  8 

         BOTPRS  6 

         TETMAG  4 

         TETCNT  2/ 

      BETA(I)   more Katz parameters 

      /  BOTMAG  .1 

         BOTACU  .3 

         BOTPRS  .5 

         TETMAG  .7 

         TETCNT  .9/ 

      THREAT(I)  Unit threat per surviving mine 

      /  BOTMAG  .02 

         BOTACU  .01 

         BOTPRS  .02 

         TETMAG  .04 

         TETCNT  .04/ 

      HRS(K)  clock hours available for resource k 

        / SHPHRS  80 

          HELHRS  48 

          EODHRS  100 

          SLDHRS  48/; 

PARAMETER A(I) derived Katz parameter; 

        A(I)=ALPHA(I)/BETA(I); 

PARAMETER B(I) derived Katz parameter; 

        B(I)=BETA(I)*THREAT(I)/(1-BETA(I)); 

 

TABLE W(I,J)  sweep rate of column J versus row I     

      SHPHNT  EODHNT  SHPMAG  HELMAG  SHMGAC  HELACU  HELCUT 

   BOTMAG        .02              .01             .05             .10              .01            .00             .00 

   BOTACU         .02              .01             .00             .00              .01            .05             .00 



35 

   BOTPRS         .02              .01             .00             .00              .00            .00             .00 

   TETMAG        .03             .00              .05            .10               .01            .00             .08 

   TETCNT         .04             .00              .00            .00               .00            .00             .10; 

 

 

 

 

TABLE H(K,J) clock hours of resource k per hour on task of sweep j 

 

SHPHNT  EODHNT  SHPMAG  HELMAG  SHMGAC  HELACU  HELCUT 

   SHPHRS     4.0             1.0             5.0              0.0            16.0            0.0            0.0 

   HELHRS     0.0             0.0             0.0            12.0              0.0          12.0          14.0 

   EODHRS    1.0             4.0             0.0              0.0               0.0           0.0            1.0 

   SLDHRS     0.0             0.0             0.0              2.0               0.0           2.0            0.0; 

VARIABLES 

        X(J)  total hours on task for sweep type j 

        Q(I)  probability that a mine of type i will not be swept 

        Z     negative of the log of the initial transit survival probability; 

POSITIVE VARIABLE X; 

EQUATIONS 

        OBJ     define objective function 

        MINESURV(I)  define q(i) 

        RESOURCE(K)  enforce resource restrictions on clock hours; 

OBJ..          Z =E= SUM(I,A(I)*LOG(1+B(I)*Q(I))); 

MINESURV(I)..  Q(I)-EXP(-SUM(J,W(I,J)*X(J))) =E= 0; 

RESOURCE(K)..  SUM(J,H(K,J)*X(J)) =L= HRS(K); 

MODEL MINESWEEP /ALL/; 

OPTION NLP=MINOS5; 

SOLVE MINESWEEP USING NLP MINIMIZING Z; 

DISPLAY X.L; 

PARAMETER SIT simple initial threat; 

SIT = 1-exp(-Z.L); 

DISPLAY SIT; 


