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The utility of these notes will be much enhanced if the reader has available the 
Excel workbook Lanchester.xls. That workbook has several named sheets in it 
that will be referred to below at the appropriate place.  
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1. Biological Roots  

Lanchester sytems are systems of Ordinary Diffential Equations (ODE) where the state 

variables represent numbers of surviving combat units. They are named for F. W Lanchester 

(1916), who applied them to aerial combat in WWI. By that time ODE systems had already 

been used to model various biological phenomena. The simplest of such models is  

&x  = αx.  (1.1)  

If x is population size at time t, equation 1.1 says that the rate of increase &x  is proportional to 

current population, with the constant α being a “birth rate.” The same equation applies to a 

bank deposit x continuously compounded at interest rate α. In these notes we will use the 

convention of indicating time derivatives as &x , rather than dx(t)/dt, and of not explicitly 

showing that state variables depend on time. This economy of notation should cause no 

confusion because all derivatives will be with respect to time, and because every state 

variable will have an equation like (1.1) showing its rate of change.  

Equation 1.1 is reasonable when population growth is not limited by factors other 

than fecundity. The solution is  

 x(t) = x0 exp(α t),  (1.2) 

where x0 is the initial value at time 0. This is the law of exponential growth. It can be 

witnessed for a period of time in populations that are suddenly placed in an enriched 

environment and freed from predation (man and certain laboratory raised microbe 

populations being examples). 

 Equation 1.1 is solvable analytically, but in practice most ODE systems are solved 

numerically.  The simplest numerical method is Euler’s method, which replaces equation 1.1 

with the iterative equation x(t+δ)=x(t)+δ &x , in this case x(t+δ)=x(t)(1+αδ).  To advance time 

by δ, it suffices to multiply by the factor (1+αδ).  Thus, if α=0.1/year and δ=.5 years and 

x(0)=100, then x(0.5)=105, x(1)=105(1.05)=1.1025, x(1.5)=1.157625, etc.  The procedure is 

2 



easily automated in a spreadsheet, with the analytic solution being the limit as δ approaches 

0. 

In a finite environment, any exponentially increasing population must eventually become 

so dense that its birth rate will decrease. The simplest model of this phenomenon is to make 

the birth rate α(l – x/x∞), which decreases linearly from α when x = 0 to 0 when some 

limiting population x∞ is reached. The ODE governing x is then  

 &x x x= − ∞α 1b gx . (1.3) 

The solution of (1.3) is  
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where x(0) = x0. This is the “logistic curve” introduced by P. F. Verhulst in the mid-

nineteenth century. Figure 1 shows the actual population of the United States along with a 

fitted logistic curve. Note that the slope of the curve has stopped increasing, but has not yet 

started to decrease. If the logistic fit is as good for the future as it is for the past, then the 

asymptotic population will be x∞ = 420,000,000.  
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Figure 1.  A logistic fit to the population of the United States 

One can also model populations that interact with each other using ODE. For example, 

the Lotka-Volterra ODE for a predator-prey relationship are  
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In equations 1.5, the rate at which predators catch their prey is proportional both to the prey 

population (x) and the predator population (y). The biological assumption is that a predator’s 

main activity is searching, with the success rate being proportional to y.  This is why there is 

a prey decrease term proportional to xy and a predator increase term proportional to xy. In 

addition, there is a birth rate r for the prey (if predators were wiped out x would grow 

exponentially with rate r), and a “natural hazards plus deaths” rate s for the predators 

(without such a term the equations would show the prey being eventually wiped out and the 

predators growing to some equilibrium level and staying there). The solution of these ODE is 

periodic—first the prey population increases, then the predators increase until they start to 

wipe out the prey population, after which the predator population decreases due to lack of 

prey, after which the prey increases due to lack of predators, ad infinitum. It is not necessary 

to postulate variations in the environment to explain these cycles; they are a natural property 

of the system in the same way that swinging back and forth is natural to a pendulum.  

More than two different populations can be discussed simultaneously. In modeling the 

herring population in the ocean, for example, one might have to simultaneously model the 

populations of diatoms, copepods and salmon as other important elements of the food chain 

that herring are involved in. The systems of equations quickly reach the point where analytic 

solutions are not available, but this fact is of little consequence given the ease of solving 

ODE numerically. There continues to be a significant amount of effort devoted to the 

modeling of ecological systems, some including man, using systems of ODE. The 

DYNAMO computer language is specifically oriented toward constructing such models.  
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2. Deterministic Lanchester Systems  

2.1  Historic Battles  

In Lanchester systems, the positive terms are generally due to resupply efforts, since most 

military systems have rates of increase unrelated to populations currently in the field. For 

example, Engel (1954) applied the ODE  

 
& ;
& ;
x r t y x
y x y

= − >

= − >
b g β

α
0

0
 (2.1) 

to the battle of Iwo Jima, where x and y are U.S. and Japanese troops on the island and r(t) is 

the rate at which U.S. troops were landed. The parameters α and β have units of “opposing 

casualties per man day of combat,” and were chosen to fit the record of what actually 

happened. If x is defined to be “U.S. troops not killed, wounded, or missing,” the best fit is 

with β= .0544 U.S. casualties per Japanese man day and α = .0106 Japanese casualties per 

U.S. man day, for which choices the theoretical and actual graphs of x vs time are shown in 

Figure 2. The upper curve in Figure 2 also shows a different comparison where x is defined 

to be “U.S. troops alive.” The fit in both cases is quite good, although different parameters α 

and β were needed to fit the upper curve.  
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Figure 2.  Lanchester model of the Iwo Jima battle 

There were initially 20,000 Japanese troops on Iwo Jima, all of whom were killed. The 

number of U.S. casualties was also about 20,000, of which only about 25% were killed. It is 

somewhat surprising that total casualties on the two sides were equal when a Japanese soldier 

behind prepared defenses had about five time the lethality rate (β/α = 5.1) as an attacking 

U.S. soldier. The explanation is that U.S. troops substantially outnumbered Japanese troops 

during most of the battle, and there is a big advantage to numerical superiority when 

equations 2.1 govern the dynamics. We will return to this topic when discussing Lanchester’s 

Square Law.   Sheet IwoJima of Lanchester.xls contains a numerical solution of Engel’s Iwo 

Jima equations.  Implemenation in a spreadsheet makes it easy to experiment with different 

parameters α and β, or different reinforcement schedules.  Try increasing the initial number 

of Japanese troops to 30,000, for example. 
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Engel also did some similar computations for the battle of Crete, concluding that there 

were something like .104 Allied casualties per German man day and .0162 German casualties 

per Allied man day, although he had considerable trouble deciding what an Allied troop was 

(some were unarmed, some were wounded before the start of the battle, etc.). The lethality 

coefficient for the German troops is particularly high, probably because the German troops 

were crack paratroops attacking a poorly organized Allied force. Even so, the Crete 

parameters are not grossly different from the Iwo Jima parameters that held at a different 

place at a different time in a different part of the world. There does seem to be a certain 

degree of predictability about what will happen in land combat. Further historical material 

can be found in Willard (1962). 

Engel was not the first to estimate Lanchester parameters from combat results. The 

Russian M. Osipov had already done considerable work along these lines for land battles at 

about the time when Lanchester was applying the idea to air warfare (see the translation in 

Helmbold and Rehm (1995)).  

2.2  Lanchester’s Square Law (Aimed Fire)  

The ODE system  
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 (2.2) 

represents a situation where attrition to each side is proportional to the number of units 

remaining on the other, and there are no reinforcements. It should be understood that no state 

variable can become negative in (2.1) or in any other Lanchester system; that is, that the rate 

of decrease is zero rather than negative when the subject state variable is 0. Equations 2.1 are 

consistent with the idea that each unit has a fixed rate of fire, with each shot having a certain 

probability of eliminating the opposing unit at which it is aimed (but no other unit), hence the 

“aimed fire” description. Except for the U.S. reinforcements, it is the model Engel applied to 

Iwo Jima. A typical time history for x0 = 1000, y0 = 800, α = .8, and β = .9 is shown in Figure 
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3, where it can be seen that y is eliminated entirely at time 1.5 in spite of the fact that β > α. 

Figure 3 is taken from the SquareLaw sheet, which permits easy variation of parameters to 

explore sensitivity to initial conditions and firing rates. 
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Figure 3.  A square law battle  

Equations 2.2 can actually be solved explicitly for x and y as functions of time, but it is 

simpler to eliminate time by dividing the second equation by the first to obtain y as a function 

of x. The result is dy
dx

x
y

=
α
β

 which has the solution  

  (2.3) β αy y x x2
0
2 2

0
2− = −d i d i

as long as x and y are both non-negative. If it is presumed that the battle will proceed until 

one side or the other is reduced to 0, and if xf or yf is the final number of survivors on the 

other side, then, according to (2.3),  
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In the example in Figure 3,  = 576,000 and  = 800,000, so yβy0
2 αx0

2
f = 0 and xf = 529.  

8 



Since the outcome in a square law battle is determined by a comparison of  with 

, these quantities are sometimes referred to as “fighting strengths.” It is important to note 

that fighting strength is proportional to the lethality coefficient and to the square of the 

number of units. This heavy dependence on numbers is reasonable if one considers that there 

are two distinct reasons for introducing a new unit into a square law battle:  

βy0
2

αx0
2

1) the new unit fires at the enemy  

2) the new unit dilutes the enemy’s fire against the units already in battle.  

The introduction of better weapons does not have a dilution effect, which is why the lethality 

coefficient enters fighting strength only as the first power.  

One consequence of the heavy emphasis on numbers is that an attacking force can easily 

make up for an inferior lethality coefficient by having superiority in numbers, Iwo Jima and 

guerilla warfare being examples.  

2.3  Lanchester’s Linear Law (Unaimed Fire)  

If x’s fire is merely directed into y’s operating area, rather than being aimed at a specific y 

unit, then the attrition rate for y will be proportional to y, as well as to x. If the number of 

targets is doubled, then the number hit will also be doubled. In the simplest situation, each x 

unit fires at rate r, each shot eliminates all y units within some lethal area a, and y units are 

uniformly distributed over an area A, in which case  = –(ra/A)xy. Identifying ra/A as α and 

the corresponding parameter for the other side as β, we are led to the equations for 

Lanchester’s linear law:  

&y
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By eliminating time and proceeding as before, we obtain  

 α βx x y y x y− = − >0 0 0b g b g for ,  (2.6) 

and also  
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The definition of fighting strength is now αx0 or βy0; that is, the product of lethality 

coefficient and initial force level. There is no “dilution effect” for the linear law, since fire is 

unaimed, and consequently a lesser influence of numbers on fighting strength than in the 

square law.  

2.4  Extensions  

There are circumstances where one side aims and the other does not. Equations 

corresponding to equations 2.6 and 2.7 are left as exercise 5. One can also investigate power 

laws other than the first and second, make the lethality coefficients functions of time, etc. 

Two other extensions are the multivariable case (section 2.4.1 below) and the introduction of 

dynamic control (2.4.2).  

2.4.1 More than two state variables  

Military forces are generally made up of a variety of participants, all with different 

parameters.  This is no barrier to the construction of Lanchester models as long as an ODE 

can be written for each state variable.  Numerical solution of the resulting system will 

generally be required, but such solutions are not difficult.  Three examples follow. 

Mine Warfare:  The following system of equations represents a hypothetical situation 

where mines (M) are laid in a shipping channel by minelayers (ML) to cause shipping losses 

(L). The minelayers are opposed by a counterforce (CL) that is itself subject to attrition from 

the mines. The mines are gradually swept by sweepers (S), as well as by other ships that 

strike mines accidentally. The mines also have a tendency to fail all by themselves (.02 of 

them every day). The minelayers are reinforced at a rate of one per day, and each lays 10 

mines per day as long as it survives; otherwise, there is no reinforcement.  
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The equations provide a concise summary of the description, as well as making it more 

precise. Given initial values, they can be solved numerically to provide records of the five 

state variables as functions of time. It is inevitable that CL and S will eventually approach 0, 

since they are not reinforced, after which ML, M, and L will become very large. The 

equations could be used to explore the impact of parameter changes, as well as sensitivity to 

initial numbers (see Problem 6, or the Minelayer sheet).  

Flak Suppression:  Here is another example. This time, the four state variables are attack 

aircraft (A), suppression aircraft (S), cumulative bombs dropped on target (C), and flak sites 

(F). The flak sites shoot at both types of aircraft, and also have the effect of decreasing the 

accuracy of the attack aircraft in attempting to drop bombs on target. The flak sites are 

themselves killed by suppression aircraft. We make the following assumptions:  

1) one mission per day  

2) the number of flak sites N shooting at attack aircraft depends on the number of 

suppression aircraft per flak site; specifically, N ≡ F exp(–S/F) flak sites fire at 

attack aircraft.  

3) One flak site firing at an attack aircraft shoots it down with probability .05. Attack 

aircraft are resupplied at .1 per day.  

4) Each suppression aircraft knocks out a flak site with probability .1 per mission.  

5) Each flak site shoots down a suppression aircraft with probability .02.  
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6) The probability that an attacker’s single bomb will be accurately delivered is 

1 - exp(–.5(r0/σ)2), where r0 = 100m. and σ = 100(1 + .5N/A).  Note that aircraft 

bombing accuracy suffers as the number of flak sites firing per aircraft increases. 

The resulting differential equations are:  
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Note that N is not a state variable, but rather a quantity determined by F and S that could be 

eliminated by substituting into (2.9). Either the flak sites or the suppression aircraft will 

eventually be wiped out, since they are fighting their own little Square law battle. See the 

FlakBomb sheet. 

It should be evident that most of the work involved in using ODE to model warfare is not 

in solving them, but in writing them down in the first place. Assumptions 1-6 in this problem 

would have to be based on operational experience or other forms of testing. Note the “square 

law” type of assumptions in this model as opposed to the “linear law” assumptions in the 

mine example.  

Battle of the Atlantic:  A roughly realistic  model of the WWII U-boat war in the 

Atlantic is outlined below. It assumes that submarines operate only in “wolf packs” and that 

all ships sail in escorted convoys. Morse and Kimball (1950) make the approximation that 

5n/c and nc/100 merchant ships and U-boats, respectively, will be lost when a convoy 

defended by c escorts is attacked by n submarines. Since the exchange ratio of U-boats to 

escorts was about 5/1, we will also assume that the average number of escorts lost is nc/500. 

Other numbers assumed below were typical of the time. Let  

M ≡ cumulative merchant ships sunk  

S ≡ remaining submarines  
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E = remaining escorts  

pc = probability that a given convoy is attacked by a given patrolling wolf pack on 

the way over = .01  

tc = time a convoy must be escorted counting trips in both directions = 30 days  

Tc = cycle time for an escort = 50 days  

fc = fraction of escorts escorting convoys = tc/Tc = .6  

ts = patrol time for a submarine = 20 days  

Ts = cycle time for a submarine = 50 days  

fs = fraction of submarines on patrol = ts/Ts = .4  

r = rate at which convoys leave = 1/day  

m = convoy size = 40  

n = wolf pack size = 4  

ps = probability of loss per cycle for a submarine due to causes other than escorts = 

.04  

Rs = rate of replacement of submarines = .7/day  

RE = rate of replacement of escorts = .5/day  

 Sfs/n = packs on patrol  

e = engagement rate counting engagements both ways = 2r pcS fs/n  

c = escorts/convoy = (Efc)/(rtc) = E/rTc  

Given all the above assumptions,  

&M  = e(5n/c) = 10r2 Tcpcfs (S/E) ; M>0 

&S  = –e(nc/100) - ps S/Ts + Rs  
 = − +2 100P f T E p T S Rc s c s s sc h + ;S>0  

&E  = –e(nc/500) + RE  

 = –[2Pcfs/500Tc]ES+ RE ;E>0 
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Note that the rate of loss of merchant ships is proportional to the square of the sailing 

rate, and has nothing to do with the size of the convoy.  If one were to double the convoy size 

and halve the sailing rate, merchant losses would go down sharply because there would be 

fewer engagements and also fewer losses per engagement because of increased escort 

protection.  This was basically the observation that led to increased convoy sizes in WWII.  

The wolf pack size also does not appear in any equation, which is superficially at odds with 

histories of the battle that report devastating effects of wolf pack introduction.  However, 

while the effect of encountering a wolfpack was indeed devastating for the unlucky convoy, 

the effect is exactly balanced in these equations by the encounter rate’s inverse 

proportionality to wolf pack size.  McCue (1990) inlcudes a more in-depth analysis of this 

issue. 

Substituting numbers, with time in days,  

&M  = 2(S/E); M > 0  

&S  = –(l.6 × 10–6E + 8 × 10–4)S + .7; S > 0  

&E  = 3.2 × 10–7 SE + .5; E > 0  

Figure 4 shows the solution of these equations for the initial conditions M(0) = 0, 

S(0) = 50, E(0) = 100, except that merchant losses are divided by 2  to keep all 3 curves on 

the same scale. During the 2000 day period, there are 2 × 1250 = 2500 merchant ships sunk. 

The number of escorts grows at approximately .5/day throughout the period, since escort 

attrition is negligible. The number of submarines eventually reaches a peak and declines, but 

not as catastrophically or as fast as actually happened. A major reason for this is that ps 

actually increased strongly with time in WWII, whereas it has been held constant here.  
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Figure 4.  The Battle of the Atlantic  

The Atlantic sheet (from which Figure 4 is taken) permits the user to experiment with 

different initial conditions or parameters. A great many excursions are possible; e.g., change 

pc to indicate better submarine sensors, change RE to illustrate the benefit of increased 

construction capacity, etc. As long as convoy engagements are well approximated by the 

Morse and Kimball equations, however, the submarines are doomed in the long run because 

they can’t sink escorts fast enough.  

2.4.2 The possibility of control  

A Lanchester model, like any other model, should be constructed with some sort of 

decision in mind. The decision might typically involve armament or numbers, with the model 

being used to show sensitivity of some MOE to a coefficient or initial quantity. However, 

tactical questions can also be explored within the Lanchester framework. For example, 

consider a hypothetical pack of S submarines attacking a convoy of M merchant ships 

defended by E escorts. The submarines have to decide whether to attack the destroyers first 

and then the merchant ships, or to attack the merchant ships directly. Allocation of fire 

questions such as this can be formulated as Lanchester systems with a control variable; we 

might also have based an example on whether artillery should fire at an advancing enemy or 

at the artillery supporting him. In the present example we might have  

15 



  (2.10) 

& ;
& ;
& . ;

M S u t M

S E S

E S u t E

= − >

= − >

= − − >

2 0

0

5 1 0

b g

b gc h
where u(t) is the fraction of the submarine forces’ effort devoted to sinking merchant ships at 

time t, with time measured in hours. Note that submarines are 3 times as effective against 

merchant ships as they are against escorts. Suppose that long-range ASW aircraft will arrive 

in 2 hours, after which the submarines will have to break off, and that the submarine MOE is 

based entirely on survivors at that point in time. Specifically, suppose the MOE is 3 S(2) – 

M(2) – E(2); that is, the submarine commander essentially gets 1 point for each enemy ship 

sunk, and loses 3 points for each sub sunk. Suppose further that the initial values are 50, 15 

and 8 for M, S, and E. Each control function u(t), 0 ≤ t ≤ 2, can now be associated with a 

definite value of the MOE, and we can therefore consider the question “Which is the best 

possible control function?” One might suppose that the submarines should spend all their 

time shooting at merchant ships, since they are easier to sink than destroyers and count just 

as much. This would not have the planned effect, however, since the submarines would take 

rather heavy losses from the escorts. The solution turns out to be that the submarines should 

initially spend all of their effort shooting at escorts, and then suddenly turn their attention to 

the merchant ships. See the Control sheet to experiment with different control programs or 

parameters. A control variable might also be introduced into the flak suppression example by 

assuming that any aircraft may be designated “attack” or “suppression” at any time, and 

letting u(t) be the proportion devoted to attack (see Exercise 9).  

3. Probabilistic Lanchester Systems 

In cases where the number of units on each side is small, it is difficult to interpret the 

continuous quantities involved in Lanchester’s equations because the number of surviving 

units must actually be an integer. Furthermore, one expects intuitively that “luck” should 

play a significant role, since the presence or absence of a single unit may make a substantial 
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difference in the outcome. Both of these problems with the ordinary interpretation disappear 

if Lanchester’s equations are interpreted probabilistically.  

3.1  Monte Carlo Simulation 

Specifically, suppose the state equations are &x  = –f(x,y) and  = –g(x,y). In terms of a 

small quantity of time ∆, the equations are x(t+∆) = x(t) – f(x(t),y(t))∆ and y(t+∆) = y(t) – 

g(x(t),y(t))∆. Now, actually, x and y will probably not change at all in a small time ∆, and 

will decrease by exactly one unit if there is a change. To better indicate the integer nature of 

the forces involved, replace x and y by m and n, and think of (m,n) as the “state” of the battle. 

Then there are only three possible changes in the state over a small time ∆: either 

(m,n)  (m – l,n) or (m,n)  (m,n – l) or (m,n)  (m,n), where s

&y

∆⎯ →⎯ ∆⎯ →⎯ ∆⎯ →⎯ 1  s∆⎯ →⎯ 2 

means s2 follows s1 after time ∆. The probabilities involved should be  

  (3.1) 
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Equations 3.1 are an interpretation of the Lanchester system as a continuous-time Markov 

chain (Ross, 1997).  The most direct implementation of this idea is a Monte Carlo simulation 

where equation 3.1 govern transitions made in a long succession of small time intervals. The 

SquareLawRnd sheet does this for Lanchester’s Square Law. Results can be surprisingly 

variable, with sometimes one side winning and sometimes the other. The winner of a Square 

law battle generally does so resoundingly, and as a result a histogram of the net difference in 

survivors is actually bimodal (the SimSheet sheet will draw the histogram if its A1 cell 

references the appropriate net difference cell of SquareLawRnd).  
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3.2  Payoffs Based on the Terminal State 

A time-step Monte Carlo simulation such as the one in SquareLawRnd is computationally 

wasteful because in most time intervals a great deal of trouble is taken to conclude that 

nothing happens, particularly when ∆ is made small to ensure accuracy. If the state 

transitions are of interest, but not their times, this problem can be avoided by requiring that 

the transition should not be null. If we introduce s1  s→ 2 as meaning that the next actual state 

change is from s1 to s2, without regard to when the change occurs, then it follows from (3.1) 

that  
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 (3.2) 

The likelihoods of the transitions from one state to another can be shown on a transition 

diagram like the one below, where all transitions are either “down” or “left,” and p(m,n) is 

the probability of going “left”:  
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The transition diagram might be the

where random numbers are compared t

“down” or “left.” In some cases, howe

interest without doing any simulation at

m = 0 or n = 0, and if some MOE is giv

terminal values of the MOE can be wr

transition diagram. The expected value

square in the diagram, using the princip

already known in (m,n – l) and (m – l,n)

expectations:  

 MOE(m,n) = p(m,n) MOE
enter (p(m,n)  (the probability
of going left) here in each 
small square
 basis of a different kind of Monte Carlo simulation 

o p(m,n) to determine whether the next transition is 

ver, it may be possible to compute the quantity of 

 all. If the battle is presumed to continue until either 

en that depends only on the terminal state, then the 

itten in the m = 0 column and the n = 0 row of the 

 of the MOE can then be computed for any large 

le that the MOE in square (m,n) can be found if it is 

. The required formula is the formula for conditional 

(m – 1,n) + (1 – p(m,n)) MOE(m,n – l). (3.3) 
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Example:  f(m,n) = βn, g(m,n) = αm, α = β.  

This is the “square law”, and p(m,n) = n/(n+m).  

Let  

   MOE
if = 0 before 

if = 0 before .
=
R
S|
T|
1

0

n m

m n

The calculations are shown below  

 

  
M 
0          

2/3  2/4  2/5  2/6  

 
2 

0  1/6  1/2  .775  .919  
1/2  1/3  1/4  1/5  ↑ 

n 1 
0  1/2  5/6  23/24  .992  

y

 
0  1 1 1 1 … 

  0 1 2 3 4  

    m →    

 

The last entry is (2/6)(.775) + (4/6)(.992) = .922, which is the probability that “m

given (m,n) = (4,2) initially. The meaning of the entry in each square is the proba

will win if the state of the battle should ever correspond to the square. No

deterministic law would predict a win probability of 1.0 for m from square (4,2)

.922. It would also predict 4 22 2− =  3.46 survivors. The number of survivors 

random variable. The probability that there are 0 m-survivors is 1 – .922 =

probability that there are exactly 2 survivors could be computed by replacing th

row 0 with (0,1,0,0) and repeating the calculations. Or the average number of 

could be computed by replacing the four l’s with (1,2,3,4). Or the average

(m-type – n-type) survivors could be computed by replacing the four l’s by (1,2,
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two 0’s in the first column by (-l,-2); the only limitation to the technique is that the MOE 

must be defined on the state of the battle when it ends, regardless of how it gets there. The 

computational method is always repeated application of (3.3), a formula that is well suited to 

computer implementation. The method is well suited to spreadsheet implementation-see the 

Endgame sheet for a Square law example.  

The same type of approach would also work for more than two types of unit, but the 

amount of computation involved will grow quickly with the number of unit types. One has to 

do a calculation in each of n1, n2, …, nk cells if there initially are n1 units of the ith type. The 

difficulty is that the MOE for a large battle can only be computed by first computing the 

MOE in all conceivable smaller battles, however unlikely. Even for only two unit types, the 

amount of computation can be very large. To construct even an oversimplified model of Iwo 

Jima would require 20,000 × 50,000 = one billion cells. Fortunately, the deterministic 

interpretation of the equations is usually adequate when the forces involved are large; it is 

problems with a small number of units that are most in need of a probabilistic treatment.  

EXERCISES 

1) Construct a “crossplot” of y as a function of x from Figure 3; that is, eliminate time and 

plot y as a function of x. Show that the crossplot and Formula 2.3 give the same value 

for y when x = 800.  

2) The square law holds, x0 = 200, y0 = 300, α = .04, and β = .01. Assuming the battle 

continues until one side is wiped out, who wins, and how many survivors are there? You 

may wish to use the SquareLaw sheet. Ans.: x wins with 132 survivors.  

3) Same as problem 2 except that the question is “What is x when x = y?”  Ans.: x = 153.  

4) The y side has 1000 men in each of several forts, with β = .02. The x side has 4100 men 

in a single group, with α = .01. The x side attacks the forts in succession, with the 

survivors of one battle entering the next. How many forts are taken before x is wiped 
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out, assuming each battle proceeds until one side is exhausted? Assume first that the 

square law holds and next that the linear law holds.  Ans.: 8,2.  

5) Suppose &x  = –βy and  = –αxy, with α = .01, β = .1, x&y 0 = 100, and y0 = 100. Solve for y 

as a function of x and graph the function.  

6) Use the Minelayer sheet to solve the minelayer problem of section 2.4.1 when the initial 

numbers are (M,CL,S,L,ML) = (0,30,6,30,20). If you were on the side of the ships and 

could change any parameter by a factor of 2, which one would your choose?  

7) The FlakBomb sheet solves eqs. 2.9 numerically for 30 days, assuming initial values for 

A, S, C, and F are 20, 20, 0, and 30. If you had 40 aircraft in total and the goal of 

dropping as many bombs as possible on target by time 30, how would you like them to 

be divided at time 0 between attack and supression aircraft? 

8) Use the Control sheet to optimize the submarines’ division of effort in the convoy 

engagement model. The Solver feature will find the optimal solution. See if you can find 

an easy-to-remember control that does almost as well.  

9) Modify eqs. 2.9 to reflect the idea that aircraft may easily be converted from “attack” to 

“suppression” or vice versa, and then construct a spreadsheet to investigate different 

rules for deciding what fraction u of all aircraft should be devoted to attack at time t, 

where 0 ≤ t ≤ 30. Examples of rules are  

a) u = t/30  

b) u = 0 for t ≤ 15, u = 1 for t > 15  

c) u = 0 as long as F > 0.  

Which of the three is better? See if you can find a rule that makes C at time 30 larger 

than any of them.  

10) Suppose the m side gets 10 points for winning the battle, one point for each n-unit 

eliminated, and -l point for each m-unit eliminated. The Endgame sheet calculates the 

expected MOE from various initial states when β = 2 and α = 1, the Square law 
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interpreted probabilistically. Change β to 20 and α to 10, observe what happens, and 

explain why. 

11) What is the probability that m wins when the initial state is (m,n) = (9,10). Assume 

square law with α = β, interpreted probabilistically. Use the Endgame sheet. 

12) There are two battles to be fought, each square law with α = β. There will be 2 Blue 

n-units in each battle. There are a total of 5 Red m-units available. How should the Red 

units be split up between the two battles, assuming that the goal is to maximize the 

average number of battles won? Interpret the square law probabilistically.  

13) The equations &x  = –k1 and  = –k&y 2 for x, y > 0 could be said to hold in a “gladiator” 

situation where there are successive one-on-one combats. Compare the deterministic and 

probabilistic solutions when k1 = k2 = 1 and (x0,y0) = (3,2).  

14) Consider a Square law battle where (x0, y0, α, β) = (7, 5, .8, .9), interpreted 

probabilistically. Compute the average net difference of survivors x – y at the end of the 

battle. Use the Endgame sheet to calculate it analytically, and also use the 

SquareLawRnd and SimSheet sheets to compute it by Monte Carlo simulation. The 

results will not be exactly the same. Explain why. Caution:  You can do up to 65,535 

iterations with SimSheet if you have several minutes available to wait for the output, but 

it is good practice to do only a small number before saving the worksheet.  Otherwise 

SimSheet (or any spreadsheet with lots of rows or columns) will needlessly consume 

megabytes of storage space. 
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