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1. Introduction 

These notes are intended to be tutorial in nature, rather than comprehensive. The 

reader who desires a comprehensive treatment should see [1], which contains additional 

references to the considerable literature that exists on “coverage problems.” It seems to 

be the nature of the subject that there are a great many conceptually similar cases and 

sub-cases, each requiring a different mathematical treatment. Our goal here is to describe 

and summarize the main ideas, recording in the process only those results for which 

simple expressions are available.  

The material in the first three sections of these notes is devoted to computations of the 

probability of “killing” a target with possibly several “weapons”, with the effectiveness 

of each weapon depending on a two-dimensional miss distance. The same mathematics 

applies to computations of such things as the probability of “detecting” a target with 

“sensors”; the only essential feature is that the crucial event must either happen or not. 

Partial damage is not permitted — each shot either kills the target or leaves it unscathed. 

This assumption is often not realistic, but it nonetheless must serve because practically all 

analysis is based on it.  

When a density function for firing errors is required, it will invariably be taken to be 

bivariate normal. The Central Limit Theorem is the justification for this assumption, 

since a firing error can usually be thought of as being composed of several more or less 

independent parts. This is not to say that all firing errors are normal, but the normal 

distribution is nonetheless a natural benchmark.  

The reader should already be aware that these notes will only be easily digestible to 

someone whose background in probability includes the idea of bivariate density 

functions. A knowledge of differential and integral calculus will also be assumed. It will 

be useful to have the Firing.xls Excel workbook available.  

1 
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2. Single Shot Kill Probability 

2.1 Definitions 

The basic interaction between weapon and target is through the “damage function” 

D(r), which is defined to be the probability that the target is killed by a weapon if the 

relative distance between them (the miss distance) is r. Determination of the damage 

function is in practice done through some combination of theory and experiment; we will 

invariably assume the function to be known, avoiding any implied statistical estimation 

problems. Note the implicit assumption of radial symmetry of damage effects, since the 

damage function does not have an angular argument.  

The damage function can be thought of as a conditional kill probability. The kill 

probability PK is obtained by averaging over the miss distance. Let f(x,y) be the bivariate 

density of the position of the target relative to the weapon. Then, since r x y= +2 2 ,  

(2-1) P D x y f x y dxK = +zz 2 2e j a f, dy , 

where the lack of limits means that the integral is to be taken over the whole plane. 

Sections 2.2 through 2.4 deal with various special cases of (2-1).  

If the target were uniformly distributed within some large area A, then (2-1) would be 

(substituting f(x,y) = 1/A),  

(2-2) P
A

D x y dx dyK A
= +zz1 2 2e j , 

where the notation indicates that the integral is now taken only over the area A. However, 

since A is by assumption large, (2-2) is approximately the same as PK = a/A, where  

(2-3) a D x y dx dy= +zz 2 2e j ,  or  

(2-4) a rD r= ( )
∞

drz2
0

π . 

2 
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Formula (2-4) was obtained from (2-3) by introducing polar coordinates. The quantity 

“a” is the “lethal area” of the weapon, and serves as a scalar measure of weapon size. It 

plays a role in coverage problems that is similar to the role of sweep width in Search 

Theory, but it has dimensions of area, rather than length.  

Although it is not logically necessary, the damage function is typically non-

increasing. As long as this is true, it is sometimes convenient to imagine that each 

weapon has a random “lethal radius” R associated with it, and that any target within R of 

the weapon will be killed. Recalling the meaning of D(r), it must evidently be the case 

that  

(2-5) D(r) = P(R > r).  

If D(r) is differentiable, one can go further and discover the probability density function 

of R:  

(2-6) f r d
dr

D rR ( ) = − ( ) . 

The area covered by the weapon is πR2, so it should come as no surprise that a = πE(R2), 

where E(  ) denotes expectation; demonstration of this is left as exercise 3.  

2.2 Cookie cutter weapons 

The conceptually simplest kind of weapon is one for which the lethal radius R is a 

constant, in which case the lethal area is of course πR2. If the firing errors are circular 

normal (by which we mean that the standard deviation of the error in all directions is the 

same number σ) and centered on the target, then the two-dimensional density function of 

the error is f(x,y) = exp(– 
1
2 (x2 + y2)/σ2)/(2πσ2), and (2-1) reduces to  

(2-7) P RK = − −FH
I
K1 1

2
2 2exp σ .  

Unfortunately, most departures from the above assumption about errors result in much 

more complicated expressions for PK. If the circular normal error distribution is offset 

3 
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from the target, for example, or if the normal distribution is not circular, then evaluation 

of (2-1) must be done by numerical integration or some other numerical technique. The 

fact that tables of the results are available has not prevented the application of (2-7) in 

circumstances where it is at best approximate, for example to problems where the down-

range error is significantly larger than the cross-range error.  

Formula (2-7) is sometimes expressed in the form  

(2-8) PK
R= − ( )1 5

2 2

. CEPc h  

where the CEP or “circular error probable” is by definition the radius of the circle that 

contains half the firing errors. For a circular normal distribution, CEP is related to σ by 

CEP = σ 2 2ln =  1.1774σ.  

2.3 Diffuse Gaussian (DG) weapons 

The DG damage function has the form D(r) = exp(– 
1
2 r2/b2) for some scale factor b. 

The lethal area of such a weapon is 2πb2. Figure 1 compares D(r) for a DG weapon with 
0
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two other damage functions that will be discussed in the next section. The DG weapon is 

evidently “sloppier” than the others. Whether this feature makes the DG assumption more 

realistic depends on the damage mechanism. Weapons that kill by fragmentation 

generally have a sloppier damage function than those that kill by overpressure.  

The DG assumption combines very nicely with the assumption of normal errors to 

produce a simple, general expression for PK. If the center of the error distribution is (µX, 

µY), and if the standard deviations of the X and Y errors are (σX, σY), then (2-1) can be 

evaluated analytically. In fact, (2-1) can be integrated in closed form even when the 

damage function is not radially symmetric, so we record here the result for the 

nonsymmetric DG damage function D(x,y)=exp(-.5{(x/bX)2+(y/bY)2}):  

(2-9) 
( )( )

2 2

2 2 2 22 2 2 2

1exp
2

X Y X Y
K

X X Y YX X Y Y

b bP
b bb b

µ µ
σ σσ σ

 
= −   + + + +  

+ . 

In the special case where µX = µY = 0, bX=bY=b,  and σX = σY = σ, (2-9) reduces to  

(2-10) PK = b2/(b2 + σ2),  

which is comparable to (2-7). There is no cookie cutter counterpart to (2-9). While it is 

true that the cookie cutter weapon is conceptually simpler than the DG weapon, it is 

equally true that the DG is analytically simpler than the cookie cutter.  The simplicity of 

the DG assumption was first taken advantage of by von Neumann [5], who used it in 

determining optimal bomb spacing. 

The “formula2_9” sheet of Firing.xls calculates PK from (2-9), as well as performing 

a Monte Carlo simulation whose object is to estimate the same quantity. 

2.4 Other damage functions 

It was pointed out in Section 2.1 that any non-increasing damage function can be 

interpreted as the probability law for a random lethal radius R. The Diffuse Gaussian 

damage function, for example, has associated with it the density function  

5 
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fR(r) = (r/b2) exp(– 
1
2 r2/b2), which is a Rayleigh density. It is perhaps more natural to deal 

with the random variable R2, since R2 is directly related to area covered; for the DG 

damage function, R2 is an exponential random variable with mean 2b2.  

It is possible, of course, to reverse the process: begin with some convenient density 

for R or R2 and then discover the associated damage function by integration. One 

convenient class of damage functions (the Gamma class) can be obtained by assuming 

that 
1
2 R2/b2 has the Gamma density [(αx)n-1/Γ(α)]exp(-αx) for some α > 0, in which case 

the DG damage function is the special case α = 1, the cookie cutter is obtained in the 

limit as α → ∞, and E(R2) = 2b2 for all α; i.e., every member of the class has the same 

lethal area 2πb2. The associated damage function is  

(2-11) D r P r
b

α α α( ) = −
F
HG
I
KJ1

2

2

2,   

where P(α, x) is the incomplete Gamma function (in Excel, P(α, x) is 

GAMMADIST(x, α, 1, true) — see Figure 1 or sheet “Gamma” of Firing.xls for plots of 

Dα(r) versus r
b2

).  

The Gamma class is convenient because it has both scaling (b) and shaping (α) 

parameters, and also because there is a simple formula for PK when the firing error is 

circular normal with standard deviation σ and centered on the target:  

(2-12) P b
K = − +
F
HG

I
KJ >

−

1 1
2

2ασ
α

α

; .0  

(2-10) is the special case α = 1, and (2-7) is the limiting case as α → ∞.  

Another class of density functions for R2 with both a shape and a scaling parameter is 

the class of lognormal densities. There turns out to be little to recommend this class in 

terms of analytic convenience; there are no counterparts to (2-11) and (2-12), for 

6 
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example. Nonetheless, the class is widely used to model the effects of nuclear weapons 

[2]. 

3. Multiple Shot Kill Probability 

3.1 Simultaneous independent shots 

Suppose that n shots are fired at a target, and let qi be the probability that the ith shot 

fails to kill the target. The numbers qi may be obtained from one of the formulas in 

Section 2 or by some other method. Since all shots are by assumption independent, the 

probability that all n miss the target is the product of the miss probabilities, so  

(3-1) PK = 1 – q1q2 … qn.  

Formula (3-1) takes on a particularly simple form if the shots are cookie cutter and the 

firing errors are circular normal centered on the target. Let Ri and σi be the lethal radius 

and error standard deviation of the ith shot. Then q Ri i= − i
F
H

I
Kexp 1

2
2 2σ  from (2-7), and 

therefore  

(3-2) PK = 1 – exp(– X/2), where  

X R Rn= +…+1
2

1
2 2σ n

2σ . The quantity X can be thought of as a measure of the 

effectiveness of an arsenal of weapons against a particular target. The target dependence 

can be eliminated if lethal radius scales in a known manner with the energy yield Y of the 

weapon. If the kill mechanism is overpressure, for example, then R KYi i= 1 3  where K is a 

target dependent constant, and therefore X K Y Yn= +…+2
1
2 3

1
2 2 3σ n

2σ . The quantity 

in [  ] is a target independent measure of effectiveness for the group of weapons taken as 

a whole. It differs from “counter military potential” (CMP) only in the scale factor 

required to convert standard deviation to circular error probable (CEP) for circular 

normal weapons (see Sec. 2.2). The CMP of a group of weapons is  

7 
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(3-3) CMP CEP CEP≡ +…+Y Yn n1
2 3

1
2 2 3 2 .  

Counter Military Potential is one of several quantities that have been used to compare 

arsenals of nuclear weapons, with yield being measured in megatons and CEP in nautical 

miles. Note that CMP is very sensitive to accuracy; doubling all yields increases CMP by 

the factor 22/3 = 1.6, whereas halving all CEP’s increases CMP by the larger factor 22 = 4. 

In the 1970’s, this fact was sometimes used to make the point that the small (relatively) 

but accurate nuclear arsenal of the United States was actually more potent than the large 

but inaccurate arsenal of the Soviet Union. Tsipis [3], for example, estimated in 1974 that 

CMP was 22000 for the US and 4000 for the SU. An alternative measure of effectiveness 

for an arsenal is “equivalent megatons” (EMT), according to which the Soviet Union had 

the larger arsenal during the same period. The definition of EMT is  

(3-4) EMT ≡ +…+Y Yn1
2 3 2 3 .  

Since Yi
2 3  is proportional to , EMT is essentially a measure of the total lethal area of 

the arsenal. Whether EMT or CMP is the more appropriate measure is discussed further 

in Section 3.3. The “EMTCMP” sheet of Firing.xls compares the 1978 ICBM arsenals of 

the USA and the USSR using both measures.  

Ri
2

If a total of C units of CMP are applied to a target, then the kill probability is of 

course still a function of the hardness of the target. For nuclear weapons making 

overpressure kills, with hardness h being measured in pounds per square inch, an 

approximate formula is  

(3-5) PK = 1 – exp(– 7.51Ch–.75).  

For example, a one megaton weapon with a CEP of .25 nautical miles will kill a 1000 psi 

target with probability 1 – exp(–(7.51)(16)(.0056)) = .49. Sixteen such weapons would be 

equally effective if the CEP were 1 nautical mile.  

8 
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Figure 2 shows an application of the EMT idea to various historical ships. E8RPM is 

the equivalent rate of applying 8″ rounds per minute, plotted against range for each of 

five ships. Since yield (Y) is proportional to weight and weight to the cube of dimension, 

Y2/3 is proportional to dimension squared. Thus one 16″ round is equivalent to four 8″ 

rounds, etc. Reducing all firepower to a common scale permits each ship to have a single 

“weight of broadside” versus range curve, independent of the target. Aircraft carriers can 

be portrayed on the same scale by calculating the rate at which aircraft can deliver 500-

pound bombs, each of which is equivalent to two 8″ rounds.  

Figure 2 does not tell the whole story, of course, since no information about accuracy 

or armor is given. Figure 2 does make it clear that the Enterprise and (say) the New 

Jersey were very different weapon systems, and that the passage of 35 years produced an 

aircraft carrier much more powerful than the Enterprise.  

9 
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Figure 2. Equivalent 8″ Rounds Per Minute For Five Ships 

3.2 Simultaneous dependent shots 

The firing errors dealt with in the previous section were dispersion errors, by which 

is meant that the weapon impact points relative to the target are a collection of 

independent random variables. In this section we assume the additional presence of a bias 

error, by which is meant a normally distributed error that is common to all shots. This 

error might be due to a misalignment between the aiming and launching systems, to an 

error in target location, or to any other effect(s) that introduces an error component 

common to all shots. The result is frequently as illustrated on the cover; the impact points 

relative to the target are tightly grouped (indicating small dispersion errors) but in the 

wrong place. One can think of the bias error as being the center of gravity of the group, 

10 
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and as the dispersion errors as being deviations from the center of gravity. We shall use 

the notation that (σU, σV) are the (horizontal and vertical, say) standard deviations of the 

bias error, whereas the independent dispersion error for each shot has standard deviations 

(σX, σY).  

It is no longer possible to proceed by first finding the single shot kill probability and 

then invoking an independence assumption to obtain a simple expression for PK, since the 

independence assumption is falsified by the bias error. We will find, in fact, that there are 

no simple exact expressions for PK in any circumstances. The primary reason for this is 

that the shots should in general be aimed in some sort of a pattern, rather than directly at 

the target, which means that PK should now be “the probability that the target is killed 

when the shots are aimed in an optimal pattern”. The implied optimization problem is 

non-linear in the variables (2n of them if there are n weapons), and with no special 

structure that can be exploited. The best that can be hoped for in such circumstances 

(other than solutions to specific problems that are important enough to justify the work 

involved in evaluating a large number of patterns) is some rules of thumb that take the 

form of approximations. In deriving these approximations, it will be convenient to 

imagine that the only source of bias is an error in target location, but the approximations 

are valid regardless of the source of bias or even if there are several sources (see Sec. 

3.3).  

Our first approximation to PK is an upper bound obtained by making two unrealistic 

assumptions that are clearly favorable to the marksman. One assumption is that there are 

no dispersion errors, and the other assumption is that the marksman can exchange his 

weapons for any other weapon or weapons with the same total lethal area. If σU = σV = σ, 

it is clear that the marksman would always prefer to have a single large cookie cutter 

weapon that he would aim directly at the target, or more precisely at the mean location of 

the target. If the total lethal area of n weapons is na, then the lethal radius of such a single 

11 
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weapon would be R na= π , and the resulting kill probability would be (from (2-7)) 

1 1
2

2 2− −FH
I
Kexp R σ  = 1 2 2− −( )exp na πσad fi . More generally, the best weapon for our 

privileged marksman to choose is a cookie cutter with the same elliptical shape as the iso-

probability contours of the error distribution, and the resulting bound is  

(3-6) PK ≤ 1 – exp(–z),  where  z na
U V

=
2πσ σ

.  

Formula (3-6) was obtained by essentially assuming away all the overlap that is 

caused by dispersion errors, circle-packing problems, and (effectively) non-cookie cutter 

weapons. The expression 1 – exp(–z) should therefore be expected to be an accurate 

approximation in circumstances where overlap is expected to be a minor problem. Seven 

circles, for example, pack rather nicely into one circle without very much overlap. Figure 

3, which is taken from the “Patterns” sheet of Firing.xls, shows the upper bound lying 

well above two other approximations that are introduced below.  

A different kind of approximation is based on the idea that overlap is inevitable, and 

that one should expect the amount of overlap to be whatever happens “at random”. More 

precisely, the total lethal area na is assumed to be in effect so much confetti, with the 

marksman being able to control the density of confetti on a large scale, but not the small-

scale tendency of the flakes to overlap one another. Now, if d square inches of confetti 

are scattered on a one-inch square, or in other words if the density or coverage ratio is d, 

then the fraction of the square that remains uncovered is exp(–d) as long as the flakes are 

sufficiently small (see exercise 6). The conditional kill probability is therefore  

1 – exp(–d), and the marksman’s problem is to determine d in such a manner that the 

(unconditional) kill probability is maximized.  

12 
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Figure 3 

Assume that σU = σV = σ, and that the marksman scatters the confetti uniformly over 

a circle with radius r in the hope that some flake covers the target. This is the strategically 

uniform, locally random (SULR) case. Within the circle, the coverage ratio is d = na/πr2, 

so the probability of killing the target given that the target lies within the circle is 1 – 

exp(–d). The probability that the target is actually in the circle is (from (2-7)) 1 – exp(–
1
2 

r2/σ2), so the unconditional kill probability is  

(3-7) p r r na r( ) ≡ − −FH
I
K

L
NM

O
QP − −1 1

2
12 2 2exp expσ πc h .  

Note that the first factor in (3-7) is 0 if r = 0, whereas the second is 0 if r = ∞. There must 

be a maximizing value for r. The value is r* = σ(4z)1/4, where z = na/2πσ2, as can be 

verified by showing that (d/dr)p(r*) = 0. Upon substituting r* into (3-7), one obtains the 

SULR formula  

(3-8) P p r zK = = − −* expa f b gc h1
2
.  

13 
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Formula (3-8) also holds when σU ≠ σV, provided that z = na/2πσUσV and that the confetti 

is scattered uniformly over an optimally sized ellipse. Figure 3 shows that the SULR 

formula provides a much smaller estimate of PK than does (3-6).  

The final approximation is the same confetti approximation except that the coverage 

ratio can be any function d(x, y) of two spatial coordinates, subject of course to being 

non-negative and to the constraint that the total amount of confetti used must be na. This 

includes the case where d(x, y) is constant within some region and 0 outside it, so we 

should expect the current approximation to be larger than (3-8). This is the strategically 

optimal, locally random (SOLR) case. Formally, the optimization problem is:  

 

maximize ,

subject to ,  for all 

and ,

f x y d x y dx dy

d x y x y

d x y dx dy na

a f a fc h
a f
a f

1

0

− −

≥

=

zz

zz

exp ,

,

,

 

where f(x, y) is the bivariate normal density function with standard deviations (σU, σV). 

The solution can be found in [4], together with a discussion of how the optimal coverage 

ratio d*(x, y) can be used as a guide in designing effective patterns. The optimal function 

d*(x, y) is  

(3-9) d x y z x y
U V

* ,a f = − −
F
HG

I
KJ

+
1
2

8
2

2

2

2σ σ
,  

where the + indicates that d*(x, y) is to be 0 rather than negative, and where  

z = na/2πσUσV as usual. Note that the confetti should be most dense at the origin, with the 

density falling off gradually to 0 on the (8z)1/4 standard deviation ellipse. Outside of this 

ellipse there should be no confetti at all. The result of substituting d*(x, y) into the 

objective function is the SOLR formula  

(3-10) P zK = − + −1 1 2 2b g bexp z g ,  

14 
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which is usually identified as the “ −  formula”, even though (3-8) is equally deserving 

of the name. The −  formula is also shown in Figure 3. There is not much difference 

between (3-8) and (3-10). Once the total lethal area has been conceptually reduced to 

confetti, it turns out not to be crucial that its distribution be exactly (3-9). The −  

formula is much more widely used as an approximation than (3-8).  

An example may be of some help at this point. Suppose that there are four cookie 

cutter weapons, with R = 7.5, and that the error standard deviations are σU = σV = 7.5, 

σX = σY = 1. By exhaustive trial and error computations, it can be determined that the 

exact best pattern is a square of side 11.7, and that the associated kill probability is .80. 

Since z = 4π(7.5)2/2π(7.5)2 = 2, the three approximations are .865, .594 (SOLR), and .573 

(SULR). The upper bound is considerably closer to the truth than either of the confetti 

approximations. The confetti approximations can be made to look better by letting the 

weapons be Diffuse Gaussian with the same lethal area, in which case the approximations 

don’t change but exact computations reveal that the best PK is only .69, achieved by 

aiming the four weapons in a square of side 10. If the dispersion error is in addition 

increased from 1 to 5, the approximations still don’t change, but the best possible PK 

decreases to .62.  

Since neither σX, σY, nor any feature of the damage function other than lethal area 

enters the computation of z, it is clear that one could find cases where the actual kill 

probability is even smaller than the confetti approximations. In fact, one has only to 

consider any problem where the shots are nearly independent, since z = ∞ when σU or σV 

is 0. In problems where the bias errors dominate the dispersion errors, however, the 

confetti approximations can usually be thought of as lower bounds on PK.  

Given all the above considerations, we offer the following procedure for obtaining an 

approximate PK in the general case where both bias and dispersion are present:  

15 
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(a) If dispersion dominates bias, determine the “equivalent” dispersion standard 

deviations ′ = +σ σ σX X
2

U
2  and ′ = +σ σ σY Y

2
V
2 , solve the single shot kill 

probability problem, and then use (3-1) to obtain an approximate PK.  

(b) If bias dominates dispersion, and if the “packing problem” can probably be solved 

without much overlap (nearly cookie-cutter weapons, dispersion small compared 

to lethal radius as well as bias, etc.), use (3-6).  

(c) If bias dominates dispersion, and if it is clear that the best pattern will involve 

substantial overlap, use one of the confetti approximations. 

The above rules are not exhaustive, since there are certainly cases where neither type 

of error dominates the other, and in any case the resulting estimate of PK is only an 

approximation. An accurate PK can only be obtained by evaluating (by Monte Carlo 

simulation, for example — see exercise 8) sufficiently many patterns to be sure of having 

discovered the best one.  

3.3 The Diffuse Gaussian special case 

The case of the DG damage function with normal errors is an exception where PK can 

be evaluated analytically for any given pattern of shots, even when the shots have 

different parameters. 

Formula 2-9 is a product of two factors, one depending on x and the other on y.  Let  

(3-11) 
2

2 22 2

1( , , ) exp( )
2

bK b
bb

µσ µ
σσ

= −
++

. 

Then (2-9) states that PK=K(bX,σX,µX) K(bY,σY,µY).  Now, let n shots be aimed at (xi,yi), 

i=1,...,n.  If (U,V) is the error common to all shots, then the ith shot is offset from the 

target by (µX, µY)=(xi+U,yi+V), and the kill probability for the ith shot is therefore 

Pi(U,V)≡K(bXi,σXi, xi+U) K(bYi,σYi, yi+V). Here we have changed the name of the product 

because we wish to reserve the symbol PK for the kill probability of the whole collection 

of n shots, which is 

16 
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(3-12) , 
1

1 ( {1 ( ,
n

K i
i

P E P U V
=

− = −∏ )})

where the expected value is with respect to the normal distribution of the random 

common error (U,V).  Note that each shot can potentially have distinct parameters for 

dispersion and lethality, with bXi and σXi being the dispersion and lethality of the ith shot 

in the X-direction, etc. 

Since our goal is an analytic evaluation, we have no choice but to expand the product 

into a sum of terms, each of which is associated with one of the 2n subsets of the n shots.  

For the subset S, the term is 

(3-13) ( ( , ))S i
i S

t E P U V
∈

≡ ∏ . 

The plan is to analytically evaluate each of these terms, and then sum up all 2n of 

them, paying proper attention to signs.  Our first observation is that, since U and V are 

independent errors, and since Pi(U,V) can be factored into an X-part and a Y-part, so can 

tS.  In fact, let 

(3-14) ( , , , , ) ( ( , , ))i i i
i S

t b s S E K b Wσ µ σ µ
∈

≡ +  ∏ ,  

where b, σ, and µ are n-vectors indexed by shot number, and the expectation is taken 

with respect to a normal distribution of W that has standard deviation s.  Then  

tS= t(bX,σX, x,σU,S) t(bY,σY, y,σV,S).  Here bX=(bX1,...,bXn), and similarly σX, x, bY, σY, and 

y are also n-vectors.  The central problem is to evaluate t(b,σ, µ,s,S). 

Let , let 2 2/( ); 0,1,2k
k i i i

i S

M b kµ σ
∈

≡ + =∑ 2 2
i

i S i i

bC
b σ∈


≡

 + 
∏ 

,and recall the definition 

of K() in (3-11).  The product in (3-14) is 

(3-15) 2
0 1

1( , , ) exp( ( 2 ))
2i i i

i S

K b W C W M WM Mσ µ
∈

+ = − + +∏ 2  
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The expectation of (3-15) with respect to W can be accomplished analytically because 

(3-15) involves a quadratic expression in W lying within an exponential.  The result is 

(3-16) 
2 2

1
2 22

00

1( , , , , ) exp( ( ))
2 11

C st b s S M
s Ms M

σ µ = − −
++

M  

Calculating PK is now just a matter of going through the steps outlined earlier.  One 

can even include a shot reliability by modifying the C-factor.  An implementation of the 

method outlined above is the Visual Basic function PK() included with Firing.xls.  The 

method is essentially that of Bressel [5], who goes on to take the additional step of 

averaging over a rectangular target.  The PK() function uses double-precision arithmetic 

because the series being summed alternates in sign.  See [6] for alternatives with better 

numerical stability. 

 

3.4 Area targets/Multiple error sources 

Section 3.2 is often applicable even when there are multiple sources of error. 

Suppose, for example, that  

(a) the location of a target relative to some known datum is E1.  

(b) all shots are to be fired from a platform whose location relative to the same datum 

is E2.  

(c) each shot has an individual firing error E3 due to trembling on the part of the 

marksman.  

(d) an additional firing error is introduced due to an unknown wind velocity E4.  

(e) E1, E2, E3, and E4 are all independent, normal random variables with 0 mean and 

variances , i = 1, 2, 3, 4.  σ i
2

It is necessary to classify each of the four errors as either “bias” or “dispersion.” E1 and 

E2 are clearly bias, since the positions of the target and the platform are the same for each 
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shot. E3 is clearly dispersion, since each shot has an independent dispersion error that is 

different from all the rest. E4 might be bias if the unpredictable part of wind velocity were 

constant in space over the length of time required to fire the shots (the predictable part is 

irrelevant, since the marksman could allow for it in aiming), or it might be dispersion if 

the wind were very gusty. Assume that wind error is actually dispersion. Then, making 

the natural assumption that the four error types are independent of each other, and noting 

that it is only the total bias and the total dispersion that affect the fate of the target, the 

equivalent bias and dispersion variances are  and , respectively, and 

Section 3.2 can be applied to the equivalent errors. The principle being used is the 

theorem that the variance of a sum of independent random variables is the sum of the 

variances.  

σ σ1
2

2
2+ σ σ3

2
4
2+

It is remarkably easy to handle area targets within this scheme. Suppose that E1 only 

applies to the center of the target, about which point the value density (value per unit 

area) of the target is V(x, y), and that the meaning of PK is “the average fraction of the 

target value killed”. If the total target value is V0, then V(x, y)/V0 has all the properties of 

a density function, and can in fact be interpreted as the density function of the location E0 

of a randomly selected “test element” of the target. With this interpretation, PK is “the 

probability of killing the test element (a point target)”, and E0 is a bias error. In other 

words, any area target can be handled by converting the value density of the area target to 

an equivalent density function of a bias error, and then proceeding as if the target were a 

point target. This is especially easy to do, of course, if V(x, y)/V0 turns out to be bivariate 

normal. Suppose, for example, that V(x, y)/V0 is circular normal with standard deviation 

σ0 = 80 ft., that E1, E2, E3, and E4 are all circular normal with standard deviations 10, 20, 

30, and 40 ft. respectively. Assuming as before that the wind error is dispersion, the 

equivalent dispersion is σX = σY = 30 402 + 2  = 50 ft., and the equivalent bias is σU = 

σV = 10 20 802 2+ + 2  = 83 ft. One could now proceed as in Section 3.2, probably by 
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ignoring the dispersion error and using the −  formula to estimate PK, which is now 

interpreted as the maximum possible expected fraction of the target killed by an optimal 

pattern.  

The fact that area targets introduce an effective bias error is important in determining 

whether CMP or EMT is a better measure of effectiveness for an arsenal of weapons (see 

Sec. 3.1). Since (3-3) was derived under the assumption that the only firing error was 

dispersion, we can say that CMP is the proper measure if the targets are point targets and 

if the bias errors are very small. If the effective bias (including the effects of target size) 

dominates the effective dispersion, however, then EMT is more appropriate. Thus (to 

conclude the comparison that was begun in Sec. 3.1), the United States nuclear arsenal in 

the 1970’s was more effective against well located, hard targets such as ICBM silos, but 

the Soviet Union arsenal was more effective against cities, which are well located area 

targets, or against submarines, which are poorly located point targets. Dispersion is 

almost irrelevant for either of these latter target types, even though it is crucial for the 

former.  

Some firing errors are neither bias nor dispersion, but instead vary by a small amount 

between shots. Wind, for example, may fall in this category, as may aim point wander in 

rapid-fire weapon systems. Firing problems associated with such errors are difficult.  

3.5 Sequential shots with feedback 

Sections 3.1, 3.2, and 3.3 all deal with firing problems where no information feedback 

is available between shots. Such feedback can be quite valuable in terms of resources 

required to kill the target. The purpose of this section is to examine two firing procedures 

that take advantage of it: shoot-adjust-shoot (SAS) and shoot-look-shoot (SLS).  

In the (one-dimensional) SAS procedure, it is assumed that an observer provides a 

signed miss distance Xi after the ith shot. These observer reports are useful because they 

help the marksman to estimate whatever bias error B is present, and thereby to adjust his 
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ith aim point Ai to take account of it. Assuming that the dispersion error is Ei for the ith 

shot, the fundamental relationship is  

(3-17) Xi = B + Ei – Ai;  i > 1.  

The aim point Ai+1 can be determined by the marksman from the observed miss distances 

X1, …, Xi, and should in all cases be the marksman’s best estimate of the unknown bias B. 

Since B + Ei is an inaccurate but unbiased observation of B, and since B + Ei, = Xi + Ai, 

the minimum variance estimate of B after i shots is:  

(3-18) ( )1
1 1

1 1 ; 1
i i

i j j j
j j

A X A B E
i i+

= =

= + = +∑ ∑ i > ,  

and therefore, with all aim points but the first being given by (3-17),  

(3-19) 1 1
1

1 ; 1
i

i i j
j

X E E i
i+ +

=

= − >∑ .  

Assuming that the dispersion errors are normal, independent, identically distributed 

random variables with mean 0 and variance σ2, E(Xi+1) = 0 and (from (3-19))  

(3-20) Var X i i i ii+ = + = +( ) >1
2 2 2 1 1a f σ σ σ ; .  

Formula (3-20) applies to every shot except the first, which we regard as a 

“calibration shot” (A1 = 0) that is incapable of killing the target, with subsequent shots 

being “for effect”. Alternatively, the bias error can be regarded as being unknown but so 

large that the chances of success for the first shot are negligible. In either case, the 

desired effect can be obtained by taking (3-20) to hold for i = 0, in which case Var(X0) = 

∞. Since the miss distances after the first are all independent of each other, the 

probability of kill with a fixed number of shots can be obtained with the same 

independence argument that leads to (3-1).  

Equation (3-18) can be rearranged to look like  
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(3-21) Ai+1 – Ai = Xi/i;     i ≥ l.  

Equation (3-21) states that the aim point for the next shot should be corrected by a 

decreasingly small fraction of the previous miss distance. In this form it is sometimes 

called “Whistler’s rule.”  

Suppose now that the SAS procedure is carried out independently in each of two 

dimensions, using n cookie cutter shots with lethal radius R, including the calibration 

round. The two dimensional miss distances will then be circular normal with variance 

given by (3-20), and therefore, using (2-7) and (3-1) in the same manner as in Sec. 3.1,  

(3-22) P R n
nK = − − + + +
−F

H
I
K

F
HG

I
KJ1

2
1
2

2
3

12

2exp
σ

" .  

Note that the effectiveness (CMP – see Sec. 3.1) of the ith shot, compared to its 

effectiveness in a problem with no bias error, is (i – 1)/i. The SAS procedure is evidently 

not completely effective in getting rid of the effects of the bias error, except in the limit 

when there are many shots. There is nonetheless a reasonable sense in which it is the 

optimal aim adjustment procedure.  

The shoot-look-shoot (SLS) procedure involves feedback about whether the target has 

been killed, rather than about miss distance. The advantage of such information is that it 

helps prevent the assignment of additional weapons to a target that has already been 

killed. In the extreme case where the number of looks is unbounded, the marksman can 

even adopt the strategy “fire until the target has been killed”, in which case the problem 

is not to compute PK (which is 1.0), but rather to investigate the random variable N ≡ 

“number of shots required to kill the target”. If, for example, the shots are all independent 

with kill probability p, then N is a geometric random variable with mean 1/p. More 

generally, if qi is the miss probability of the ith in a sequence of independent shots, then  

(3-23)  E N P N n q q q q q q
n

( ) = >( ) = + + + +
=

∞

∑
0

1 1 2 1 2 31 …
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There is not a great deal more that can be said about the SLS procedure as applied to a 

single target. SLS is more naturally applied to problems with several targets, as in Sec. 

4.1 below.  

In general, knowledge of miss distance is not sufficient to determine whether the 

target is killed, so there are firing problems where SLS is present but not SAS, as well as 

vice versa, or both may be present. When both SLS and SAS are present, one can 

consider the problem of computing E(N) for a given aim adjustment procedure, or even 

the problem of determining the procedure that minimizes E(N). Computation of E(N) for 

the aiming procedure (3-18) is left as exercise 10.  

4. Defense of One Target  

4.1 Known attack size 

Assume that each of n attackers will kill its target with probability p if not 

intercepted, and that the defender has m interceptors, each of which will kill an attacker 

with probability ρ, and all of which are to be used against the n attackers. The defender’s 

goal is to maximize the probability that the single target survives, to accomplish which he 

should distribute the defenders as evenly as possible over the attackers. Let r be the 

remainder when m is divided by n:  

(4-1) m = kn + r,     where     0 ≤ r < n.  

When the defenders are distributed as evenly as possible, (n – r) attackers are assigned k 

interceptors, r are assigned k + 1, and the probability that the target survives is  

(4-2) Q m n p pk n r k r
,a f a f a f≡ − − − −

− +1 1 1 1 1ρ ρ .  

For example, suppose p =.8, ρ = .5, m = 7, and n = 3, so that k = 2 and r = 1. Each of the 

2 attackers that are assigned 2 interceptors will kill the target with probability  

p(1 – ρ)2 = .2, and the target will therefore survive both attackers with probability .82 = 
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.64, which is the first [  ] factor in (4-2). The second is (1 – .8(.5)3)1 = .9, so Q(7, 3) = 

.576.  

The target survival probability Q(m, n) can be approximated by permitting non-

integer allocations of interceptors, m/n to each attacker:  

(4-3) Q(m, n) = (1 – p(1 – ρ)m/n)n  

Equation (4-3) approximates Q(7, 3) in the previous example by .595; (4-3) will in all 

cases be at least as large as (4-2).  

The conclusion that interceptors should be evenly distributed also holds if the 

defender’s goal is to destroy as many attackers as possible, on the average. This might be 

a reasonable goal if p were unknown, or if the attackers were not all aimed at the same 

target. Let A(m, n) be the average number of attackers out of n that survive the m 

interceptors. Exercise 11 is to find an expression for A(m, n) and record it in the space 

provided below:  

(4-4) A(m, n) =  

Suppose now that the attackers arrive one at a time, and let m be the number of 

interceptors allocated to the ith attacker. We have just concluded that the mi should be as 

equal as possible (a “flat” defense), but the reader may have intuitive feelings that a 

“tapered” defense would be more desirable; i.e., that m1 should be larger than m2, etc. 

There are a variety of reasons why a tapered defense might actually be a good idea, the 

most important of which is the possibility that the total number of attackers might be 

unknown. Sections 4.2, 4.3, and 4.4 deal with three distinct versions of the problem 

where n is unknown. Even in the case where the objective is to shoot down as many 

attackers as possible, a tapered defense might still be advisable if the defensive system 

were part of the target; i.e., if no further interceptors could be launched after a target kill. 

If the objective is to maximize the target survival probability, however, the best defense 
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is flat as long as n is known. This is true even if the attack is sequential and if the 

defensive system is part of the target.  

We return now to the case where all attackers appear simultaneously, and where the 

object of the defense is to maximize the target’s survival probability, but we suppose that 

the defender has the time and information required to implement a J stage shoot-look-

shoot policy; i.e., the defender can shoot at the attackers, then shoot at the survivors, etc., 

until either no attackers remain or only one stage remains, in which case all remaining 

interceptors should be distributed evenly over whatever attackers are still alive. In each 

stage, the defender can use as many interceptors as he likes. If J is very large, the 

defender can safely adopt the strategy of firing one interceptor at each surviving attacker 

at each stage until either no attackers or no interceptors remain, but this strategy is not 

optimal if J is small (the analysis culminating in (4-2) corresponds to the special case J = 

1, in which the defender may very well fire more than one interceptor per attacker).  

The problem of computing the optimal firing policy at each stage is non-trivial, even 

if one recognizes at the outset that interceptors should still be distributed evenly over 

attackers at each stage. The difficulty is due to the fact that it is not obvious how many 

interceptors should be used per stage, except in the last stage, and that in any case the 

best number to use probably depends on how many attackers survive, which is random. 

In other words, the form of the optimal policy is not “use 5 in the first stage, 3 in the 

second, …”, but rather, “use 5 in the first stage, 4 in the second if 4 attackers survive the 

first, six in the second if 3 attackers survive the first, …”; i.e., the actual optimal policy 

must involve a great many statements that are conditional on the results of earlier stages. 

There are a great many policies of the latter form — so many that one would not even 

consider solving a non-trivial problem by examining all of them, even on a computer. 

Nonetheless, the optimal policy is not difficult to determine. The technique required is 
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Dynamic Programming (DP), a recursive method that involves the idea of “state”, an idea 

that is fully as important in Operations Research as in Physics.  

Dynamic Programming problems usually involve an evolving process of some sort, 

with the definition of “state” being whatever information about the past is sufficient for 

purposes of taking action in the future. Correct identification of the state is a crucial part 

of Dynamic Programming problem formulation. It may help to imagine a “change of 

command” in the middle of the process, with the state of the process being whatever 

information the old commander should transfer to the new one. In the problem under 

consideration, the state is (j, m, n), where the three variables are the number of stages left, 

the number of interceptors left, and the number of attackers still surviving, respectively. 

The past may have much more detail than that, but all such detail is irrelevant for 

purposes of future action — three numbers suffice.  

Given the state, there are two more steps to be taken in the successful formulation of 

a DP. The first step is simple: write down what the objective function of the new 

commander should be, both as a mathematical function of the state and in English. The 

English part is essential. For our firing problem,  

(4-5) F(j, m, n) = “the maximum possible probability of surviving n attackers if m 

interceptors and j stages remain”.  

Let M and N be the total number of interceptors and attackers, respectively. These were 

previously called m and n, but m and n are now being used as dummy variables. The 

number that we seek is F(J,M,N), together with the associated firing policy. The function 

F(1,•,•) is already known, being given by (4-2). The idea is to use F(1,•,•) to compute 

F(2,•,•), then F(2,•,•) to compute F(3,•,•), etc., until finally F(J,•,•) is obtained, after 

which F(J,M,N) is a special case. The second step in a DP formulation is the construction 

of a recursive formula that accomplishes this. For our firing problem,  
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(4-6) , F j m n E F j m u X
u m

+ = −
< <

1
0

, , max , ,a f ac hn sf
where X is the random number of attackers that survive the current stage. The crucial 

thing about (4-6) is that F(j,•,•) appears on the right hand side and F(j + 1,•,•) on the left. 

(4-6) must be evaluated for 1 ≤ j < J, 0 ≤ m ≤ M, and 0 ≤ n ≤ N, a total of (J – 1) 

(M + 1)(N + 1) times. If u is the number of interceptors utilized in state (j + l, m, n), then 

the state will be (j, m – u, X) when the next decision is made; the probability distribution 

of X depends on u, and the fact that X is random requires the expectation operation. The 

amount of computation required is considerable, but quite feasible on a computer, and 

nowhere near as much as would be required to examine all possible firing strategies. The 

optimal number of interceptors to fire is simply the maximizing value of u obtained in the 

process of computing (4-6); call it u*(j + l, m, n). By recording the function u*(•,•,•), the 

defense is prepared for all possible eventualities.  

There are three applications of DP In these notes, the most difficult of which is 

probably the one just discussed. The reader who is unfamiliar with DP may prefer to 

begin with the more elementary applications in Secs. 4.2 and 4.3 (especially 4.3). This 

application is continued in exercise 12.  

4.2 Bayesian defense 

In this section a stockpile of M interceptors, each of which has kill probability ρ, is 

available for the defense of a single target against a sequence of attackers, each of which 

has kill probability p if not intercepted. The total number of attackers (A) is unknown, but 

is assumed to be no larger than some number N. For example, N attackers might be 

committed to the attack, with an unknown number of them either malfunctioning or being 

destroyed by other defensive systems. It is assumed that enough is known about the 

process to construct the probability law for the random variable A, so the quantities 

P(A > i) are assumed known for i = 0, …, N, with P(A > 0) = 1. Let mi be the number of 

inceptors allocated to the ith attacker. The object is to determine the firing schedule 
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m1, …, mN that maximizes the probability of surviving all A attackers subject to the 

constraint that m1 +…+ mN = M. Section 4.1 would apply if A were known, but A is 

random.  

We will solve the problem using Dynamic Programming. The state of the process is 

(m, i), where m is the number of interceptors remaining and i is the number of attackers 

that have already arrived. The decision required is to determine the number of 

interceptors u to use against the next attacker. The state must include i because if i = N –

 1, for example, then it is clear that m is the best choice for u, whereas it may be wise to 

make u < m if i = 1. The objective function is  

(4-7) F(m, i) = “the maximum probability of surviving all future attackers if i have 

already arrived (without killing the target), and if m interceptors 

remain” 

To develop the recursive formula for F(m, i), we must first recognize that there may not 

be any future attackers at all, in which case survival is certain. The probability that there 

will be at least one more attacker, given that i attackers have already arrived, is Qi ≡ 

P(A > i + 1 | A > i) = P(A > i + 1)/P(A > i). If there is at least one more attacker, and if the 

next attacker does not destroy the target, then the next state will be (m – u, i + 1). The 

desired recursion is therefore  

(4-8) F m i Q Q p F m u ii i
u m

u, maxa f a f a f{ }= − + − − − +
≤ ≤

1 1 1
0

ρ , 1 .  

It is clear that F(•, N) = 1, since survival is certain if all attackers have already arrived. 

(4-8) can therefore be used to compute F(•, N – 1), then F(•, N – 2), etc., until finally 

F(•, 0) is obtained. In the process of doing the computations, the optimal allocation of 

interceptors can be recorded as u*(m, i), and this determines the optimal firing schedule. 

The number of interceptors to be allocated to the first attacker is m1 = u*(M, 0), and then 

m2 = u*(M – m1, 1), etc. See exercise 13.  
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4.3 The maximum cost defense 

We assume here, as in Section 4.2, that the number of attackers is unknown, and that 

a firing schedule for the defensive interceptors must nonetheless be set up for use against 

a sequence of attackers. However, no probability distribution is given for the total 

number of attackers. Instead, the defense takes the point of view that any target defended 

by a finite stockpile of interceptors can be killed if sufficiently many attackers are 

committed, and that the proper goal is therefore to maximize the cost (measured in 

attackers) of killing the target. If this number turns out to be so large that the attack does 

not take place, then so much the better, but in any case the defensive goal is to make the 

target as hard to kill as possible. The attacker is assumed to have a shoot-look-shoot 

capability.  

The objective of maximizing the average number of attackers required to kill the 

target can be accomplished using Dynamic Programming. The state of the process is 

simply the number of interceptors m remaining, and the objective function is  

(4-9) c(m) = “the average number of additional attackers required to kill the target if 

m interceptors remain”. 

Suppose u interceptors are allocated to the next attacker. The probability that the next 

attacker kills the target is then p(1 – ρ)u, where ρ and p are the kill probabilities of 

attackers and interceptors, respectively. If the next attacker fails to kill the target, then the 

next state will be m – u. Therefore,  

(4-10) .  c m p c m u
u m

u( ) = + − − −( )
≤ ≤

1 1 1
0
max ρa fd i{ }

If m = 0, (4-10) is the equation c(0) = 1 + (1 – p)c(0), which has the solution c(0) = 1/p. 

This is the average number of attackers required to kill an undefended target. For m > 0, 

the option u = 0 can safely be ignored, since at least one interceptor should be used in any 

case. (4-10) can now be used to determine c(l), then c(2), etc., recording the maximizing 
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value of u at each stage (call it u*(m)). For example, suppose p = .8 and ρ = .5. Then 

c(0) = 1.25, and (the maximizing element is underlined)  

 c(1) = 1+.6c(0) = 1.75,  and u*(1) = 1 

 c(2) = 1 + max{.6c(1), .8c(0)} = 2.05,  and u*(2) = 1 

 c(3) = 1 + max{.6c(2), .8c(1), .9c(0)} = 2.40,  and u*(3) = 2 

Continuing in this manner, we find that c(m) = 1.25, 1.75, 2.05, 2.40, 2.64, 2.92, 3.16, 

3.38, 3.63, 3.84, 4.04, 4.27 for m = 0, 1, …, 11, and also u*(m) = 0,1,1,2,2,2,3,3,3,3,3,3. If 

11 interceptors remain, 3 should be used against the first attacker, then u*(8) = 3 should 

be used against the second, u*(5) = 2 against the third, u*(3) = 2 against the fourth, and 

u*(1) = 1 against the fifth. The sixth and subsequent attackers would not be opposed, 

assuming that six or more were actually required to kill the target.  

The function c(•) is not tactically necessary, since the firing schedule is implicit in the 

function u*(•). One might, however, use c(m) as a measure of effectiveness for making a 

quantity vs. quality decision (see exercise 15).  

4.4 Prim-Read defense 

The assumptions in this section are the same as in Section 4.3, except that the attacker 

is no longer assumed to have a shoot-look-shoot capability. The attackers still arrive 

sequentially, but a certain number (say n) out of a large stockpile must be irrevocably 

committed to the target. Let p(n) be the probability that the target is killed by one of n 
attackers, and let λ = ( )

>
max

n
p n n

1
. λ is the largest possible kill probability per attacker. 

The objective of a Prim-Read defense is to make λ as small as possible, the idea being to 

prevent “cheap kills”. The idea was first proposed as a method for defending targets with 

ABM’s against ICBM attack.  

The problem of minimizing the defensive stockpile required to achieve a given λ 

turns out to be much easier than the problem of minimizing λ for a given stockpile; so 

much so that a problem of the latter type is most easily solved by guessing values for λ 
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until the calculated stockpile is whatever happens to be available. This technique is 

illustrated below. Let mi be the number of interceptors allocated to the ith attacker. 

Making the usual independence assumptions, and letting p and ρ be the kill probabilities 

of attackers and interceptors,  

(4-11)   p n p nm

i

n
i( ) = − − − ≥

=
∏1 1 1

1
ρa fd i; ,1

and the central problem is to minimize  subject to the constraints that p(n) ≤ λn 

for all n ≥ 1. Suppose, for example, that p = .8, ρ = .5, and that there are m = 11 

interceptors available. Our initial guess is that 11 interceptors should be sufficient to 

guarantee that the kill probability per attacker need not exceed (say) λ = .3. We now 

consider the problem of minimizing the number of interceptors required to guarantee that 

the maximum kill probability per attacker does not exceed .3, hoping that the answer is 

11. From (4-11), p(1) = p(1 – ρ)m1. Since p(1) must not exceed .3, the smallest possible 

value for m1 is 2, so we take m1 = 2. From (4-11), we therefore have p(2) = 1 – .8(1 – 

p(1 – ρ)m2. The smallest value of m2 for which p(2) < .6 is 1, so we take m2 = 1. From 

(4-11), p(3) = 1 – (.8)(.6)(1 – p(1 – ρ)m3, and the smallest value of m3 for which p(3) < .9 

is 1 (p(3) = .904 when m3 = 0, which is just barely too large), so we take m3 = 1. Since 

.3n > 1 for n ≥ 4, mi = 0 for n ≥ 4. The total number of interceptors required to guarantee 

that the kill probability per attacker does not exceed .3 is therefore 2 + 1 + 1 = 4. Eleven 

interceptors are evidently sufficient for a smaller value of λ. The next step is to guess a 

smaller value (see exercise 17) and repeat the above calculations. The calculations are 

easy because the product in (4-11) can be formed sequentially, with the first (n – 1) 

factors being known when mn is being determined. The process could be easily automated 

in a spreadsheet. The easiness of the calculations makes up for the fact that they must 

typically be repeated several times. 

mi
i=

∞

∑
1
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Although a Prim-Read defense can certainly be constructed for a single target, the 

technique is more naturally applied to a group of several targets, using the same value of 

λ for every target in the group. If the targets differ from each other, one simply replaces 

p(n) with the function v(n) ≡ “avg value killed by n attackers”. An implicit assumption in 

setting up such a defense is that the attacker can determine the defensive firing schedule 

before making his own allocations. There may be good physical reasons for assuming 

this, but it may also be true that the attacker has just as much trouble ascertaining 

defensive allocations as vice versa. In the latter case, a Prim-Read defense is probably a 

mistake. The Prim-Read defense of several identical targets would treat all targets 

equally, for example, whereas the best defense may be to abandon half of the targets in 

order to construct a strong defense of the remainder. The natural way to formulate such a 

problem would be as a two person zero sum game, but doing so is beyond the scope of 

these notes.  

Exercises 

1) Suppose D(r) = 1 – r if r < 1; 0 if r > 1. What is the lethal area?  

  Ans.  a = π/3  

2) Plot D(r) for the target illustrated below, assuming that the weapon must hit the 

shaded area and that the impact point is (r, θ) with θ uniformly random in [0, 2π]. 

Show that the lethal area is equal to the area of the target.  

  Ans.  D(r) is a step function, a = 2.5π  
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3) Show that (2-4) produces πE(R2) for lethal area, where E(R2) is computed using 

(2-6). Hint: use integration by parts.  

4) Derive (2-7). 

5) When aiming errors are basically angular, the miss distances should increase with 

range. Suppose several independent shots are taken at a target, with σi = .1ri, where 

ri is the ith range, and that the cookie cutter lethal radius is 1. If the successive ranges 

are 10, 11, 12, etc., compute PK for the first shot, the first five shots (as a group), and 

the first 10 shots.  

  Ans.  (PK (1) = .39, PK (5) = .84, PK (10) = .93).  

6) Justify the exp(-d) formula that was used in deriving (3-7). Hint: Argue that the 

number of times any given point is covered is a Poisson random variable with mean 

d.  

7) An aircraft attempts to kill a tank as follows: It first drops a canister of “stickers” in 

the hope that one will hit the tank and activate. If a sticker activates, it can guide a 

projectile to the tank. The canister opens and scatters 1000 stickers, with the amount 

of scatter being under the control of the designer. The exposed area of the tank is 

100 yd2. The aircraft makes a 2-dimenslonal error with standard deviations (100 

yards, 300 yards) in dropping the canister. What is the probability that a sticker hits 

the tank, assuming a well-designed canister? If the tank is longer than it is wide, 

does the direction of the aircraft’s approach matter?  

  Ans.  (.275, no)  

8) Suppose you are given 16 detection devices, each of which is guaranteed to detect a 

target if and only if the relative distance is either less than 4 miles or between 30 and 

33 miles (the “convergence zone” phenomenon in the ocean might be one 

explanation for such an assumption). The devices can be placed in any pattern 

whatever, and the object is to detect a target whose location relative to some known 
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point is circular normal with standard deviation 30 miles in each direction. There are 

no dispersion errors.  

  a) Estimate pK.  

  b) Make up a pattern and test it by writing a 5000-replication computer 

simulation.  

  Ans.  The lethal area is π(42 + 332 – 302) = 205π, so z = (16)(205)/1800 = 1.82. 

Given that the shape of the lethal area makes considerable overlap inevitable even in 

the absence of dispersion, a confetti approximation is natural. The −  formula 

produces PK ≈ .57. This example has been the result of considerable 

experimentation, with the best pattern as of this writing having a detection 

probability of .64.  

9) Suppose 10 cookie cutter shots are available, with the lethal radius being 30 ft. for 

each. Estimate PK for the area target and errors considered in Sec. 3.3, assuming that  

  a) the wind error is dispersion  

  b) the wind error is bias  

  Ans.  Using the −  formula in both cases, the expected fraction of the target 

killed with an optimal pattern would be approximately .316 in case a), or .275 in 

case b).  

10) If the SAS procedure (3-12) is used for aim adjustment, then the miss probability 

with the ith shot is qi = exp[–(R2/2σ2)(i – 1)/i)]; i > 1. Use this fact along with (3-22) 

to compute E(N) when (R2/2σ2) = ln(2). It will be necessary to write a computer 

program. Note that only 2 shots would be required, on the average, if there were no 

bias error, since each shot would have a kill probability of .5.  

  Ans.  E(N) = 3.76.  

11) Do the exercise described in Sec. 4.1. Hint: A(7,3) = 5/8 when p = .5.  
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12) The “Dynamic Programming” sheet of Firing.xls implements (4-6) for up to 7 

attackers, 12 defenders, and 3 stages, with the p and ρ parameters of Sec. 4.1 being 

inputs (there is a separate p for each stage). The optimized function F(j, m, n) is 

shown in yellow cells, and the optimizing allocation of defenders to targets u*(j, m, 

n) is shown in green cells. Solve several problems and state whether you think each 

of the following propositions is true or false when all stages have the same p:  

  a) For fixed (j, n), u*(j, m, n) is a nondecreasing function of m.  

  b) All attackers are treated equally; that is u*(j, m, n) is always an integer 

multiple of n.  

  c) u*(j, m, n) ≥ min(m, n).  

  d) For fixed (j, m), u*(j, m, n) is a nondecreasing function of n.  

Also, give a qualitative description of what happens if the last stage has a higher p than 

the other 2, as might happen if defenders were more effective at close range.  

13) Suppose that the number of attackers A is random, with P(A = i) = .1, .3, .4, .2 for i = 

0,1,2,3. The attackers, whatever their number, arrive sequentially, so that 

interceptors must be allocated to each attacker as it appears. Each interceptor kills its 

target with probability .5. Using (4-8), determine the firing schedule that maximizes 

the probability of destroying all attackers if there are 4 interceptors in total.  

  Ans.  m1 = 2, m2 = 2, m3 = 0. The probability of destroying all attackers is 

F(4,0) = .55.  

14) Modify (4-7) and (4-8) to reflect the goal of shooting down the largest number of 

attackers on the average, and determine the optimal firing schedule using the 

parameters given in problem 13  

  a) assuming that the defense is invulnerable;  

  b) assuming that no further attackers can be shot down if an attacker succeeds in 

killing the target.  
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15) Sec. 4.3 includes an example where ρ = .5, p = .8, and m = 11. Would the defender 

prefer 4 perfect (ρ = 1) interceptors to 11 imperfect (ρ = .5) ones  

  a) using the measure of effectiveness c(m)?  

  b) using the measure of effectiveness ρm?  

  Ans.  Perfect in a), imperfect in b). Note the high emphasis that c(m) places on 

quality. 

16) Using a modified version of (4-10), compute c(8) under the assumptions that p =.8, 

ρ = .5, and that at most two interceptors can be allocated to any attacker.  

  Ans.  c(8) = 3.49.  

17) Continue the sample analysis begun in Sec. 4.4 by next guessing λ = .15. You should 

find that the required firing schedule utilizes 11 interceptors. Compare your 

calculations with the firing schedule obtained in Sec. 4.3 using the same parameters.  

18) Use sheet “DG” of Firing.xls to verify the claim made in section 3.2 about a pattern 

of four Diffuse Gaussian shots having a kill probability of .69.  The lethal area of the 

cookie-cutter weapons in that example is π(7.5)2, so the two DG “standard 

deviations” should each be 7.5/ 2  to make the lethal areas equal. 

19) Use sheet “DG” of Firing.xls to devise a four-shot pattern for the symmetric case 

where all independent standard deviations are 10, both dependent standard 

deviations are 20, all reliabilities are 1.0, and the two DG “standard deviations” are 

10 for each shot; i.e., the lethal area of each shot is 200π.  A square of side 15.2 will 

achieve a kill probability of .438. 

a) Verify .438, and try to find a better pattern. 

b) Change the shot reliability to .8.  Does the best pattern change?  

c) Change the dependent standard deviations to 10.  Does the best pattern change? 
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