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The purpose of many satellites is to observe or communicate with points on Earth’s 

surface. Such functions require a line of sight that is neither too long nor too oblique, so 

only a certain segment of Earth will be covered by a satellite at any given time. Here the 

term “covered” is meant to include “can communicate with” if the purpose of the satellite 

is communications. The shape of this covered segment depends on circumstances — it 

might be a thin rectangle of width w for a satellite-borne side-looking radar, for example. 

The shape will always be taken to be a spherical cap here, but a rough equivalence with 

other shapes could be made by letting the largest dimension, (w, for the radar mentioned 

above) span the cap. The questions dealt with will be of the type “what fraction of Earth 

does a satellite system cover?” or “How long will it take a satellite to find something?” 

Both of those questions need to be made more precise before they can be answered.  

Geometrical preliminaries  

Figure 1 (top) shows an orbiting spacecraft sweeping a swath on Earth. The leading 

edge of that swath is a circular “cap” within the spacecraft horizon. The bottom part of 

Figure 1 shows four important quantities for determining the size of that cap, those being  

 R = radius of Earth (6378 km)  
 r = radius of orbit  
 α = cap angle  
 β = masking angle.  
 2γ = field of view  
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FIGURE 1.  Illustrating the cap angle (α), the masking 
angle (β), and field of view (2γ).  

A target is visible to the satellite only if the satellite’s elevation, as viewed by the target, 

is at least β. The relation between α and β is that, with ρ = R/r < 1, using the law of sines 

on the sides r and R, plus the fact that γ + α + β = π/2,  

 ( )1cos cos ; 0 2
πα ρ β β β−= − ≤ ≤ .  (1) 
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Coverage may also be limited by a sensor’s field of view, rather than a masking angle, in 

which case,  

 ( )( )1sin sin ; sinα γ ρ γ γ−= − ρ≤ .  (2) 

If sin γ > ρ, the sensor’s field of view is not limiting and formula (1) applies with β=0.  

A cap of size α covers a fraction f of Earth, where  

 1 cos ; 0 22
f α πα−
= ≤ ≤

                                                

.  (3) 

For example, consider a GPS satellite for which r = 26,561 km; this is the altitude 

corresponding to a 12 hour orbit. For a 10 degree masking angle, formula (1) with ρ = .24 

produces sin α = .9158, so α = 1.16 radians, and f is .30. Each GPS satellite can see 30% 

of Earth. If GPS satellites were synchronous (24 hour orbit), r would be 42,164 km., and f 

would increase to .36. The largest possible value of f for fixed β is when ρ = 0 (satellite 

very far away), in which case α = π/2 – β and f = (1 – sin β)/2. When β = 10°, this 

limiting fraction is .41. Of course, increasing f by increasing a satellite’s altitude also has 

some disadvantages, increased insertion cost and on-board power requirements being 

among them.  

Satellites intended for surveillance or remote sensing are often in orbits considerably 

below those of GPS, often only a few hundred kilometers above Earth’s surface, in order 

to provide the required spatial resolution. Such satellites have relatively short rotational 

periods in accordance with Kepler’s third law. The number of orbits completed by a 

satellite in the length of one sidereal day1 is by definition the repetition factor Q. This 

factor is 2 for GPS, but is commonly in the range of 10-15 for satellites in low orbits. 

 
1 Earth’s position with respect to the Sun is the same every day (24 hours).  Earths’s 
position with respect to the fixed stars is the same every sidereal day (23 hours and 56 
minutes, the difference 4 minutes being 1/365 of a year)  
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These satellites have a much smaller coverage fraction f than does GPS, typically limited 

by a sensor’s field of view.  

Effects of inclination  

A satellite’s inclination (I) is the angle between Earth’s equatorial plane and the plane 

that contains the satellite’s orbit. A satellite’s latitude (ψ) is the latitude of the point 

directly beneath the satellite on Earth. This latitude will never exceed I in absolute 

magnitude, and is determined by the anomaly θ according to  

 sin sin sin Iψ θ= .  (4) 

The anomaly θ is an angular measure of the satellite’s progress in moving around its 

orbit. For circular orbits, θ increases linearly with time. Formula (4), as well as formula 

(6) below, are special cases of Napier’s rules for right spherical triangles, with the right 

angle being on the equator between latitude and longitude.  

A satellite spends much of its time near the extreme latitudes ± I. This effect is most 

easily quantified by regarding θ as a uniform random variable on [0, 2π] and deriving the 

corresponding density of the random latitude ψ. Letting fI(x) be the density function of ψ, 

the result is that, in radian measure,  

 ( )
2 2

1 cos ;
sin sin

I
xf x I

I xπ
= −

−
x I< < .  (5) 

Figure 2 shows this density for inclinations of 30, 60, and 90°. Polar satellites (I = 90°) 

spend equal amounts of time above every latitude, but satellites with small inclinations 

have a strong tendency to appear near the latitude limits.  

Relative distances  

A satellite’s ability to find (get within its covered cap) a specific target on Earth 

depends on the target’s latitude. This is already evident from the results of the previous 

section, since it is clear that a target whose latitude exceeds I + α will never be seen by a 
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satellite with positive inclination. Figure 2 implies that targets whose latitude is slightly  
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FIGURE 2.  The density of a satellite’s position over northern latitudes  

smaller than I should be easiest to find, since the density of the satellite’s latitude is 

greatest there. However, even targets within the satellite’s latitude band may not be seen 

if the longitudes of target and satellite don’t match. The relative longitude is influenced 

by Earth’s rotation, as well as the satellite’s. A careful analysis will require a reference 

system within which the locations of the satellite and its target can both be measured. The 

natural frame of reference is the celestial sphere, a sphere that is centered on Earth but 

which does not rotate. Relative to that sphere, the satellite revolves around a fixed, 

circular orbit. Latitude and longitude can be measured as usual if the celestial sphere is 

provided with an axis parallel to Earth’s axis of rotation, except that longitude needs to 
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be measured relative to some fixed direction in space, rather than the rotating longitude 

line that passes through Greenwich, England.  

The latitude (ψ) and longitude (φ) of the satellite on the celestial sphere are 

determined by the inclination (I) of the orbit and the anomaly. Equation (4) applies to ψ, 

and the longitude is governed by  

 tan φ = tan θ cos I.  (6) 

The satellite’s location is a periodic function of θ, and therefore also a periodic function 

of time. Note the implicit convention in (6) that longitude is measured relative to the 

direction to the satellite when it crosses the equator, since ψ and φ are both 0 when θ is 0.  

Let ψE and φE be the latitude and longitude of the satellite’s target on Earth. Since the 

target is assumed stationary,  

 0

0

E

E Q
ψ ψ
φ φ θ

=
= +

 (7) 

where Q is the number of satellite orbits that correspond to one rotation of Earth (the 

repetition factor). ψ0 and φ0 are, by definition, the target’s latitude and longitude when  

θ = 0.  

Let A be the angle between (ψ, φ) and (ψE, φE). This is the angle that needs to be 

smaller than the cap angle α if the satellite is to detect the target. Then, using spherical 

trigonometry,  
 ( )cos cos cos cos sin sinE E EA ψ ψ φ φ ψ= − + ψ .  (8) 

By expanding cos(φE – φ) and using (4), equation (8) can be rewritten as  

 cos cos sinA B Cθ θ= + ,  (9) 

where  B = cos ψE cosφE, and C = cos ψE sin φE cos I + sin ψE sin I.  (10) 
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Figure 3 shows a graph of A versus time as measured by satellite revolutions (θ/2π) 

when Q = 15, φ0 = 1 radian, I = 1 radian, and for ψ0 = 1.2, 1.0, and .8 radians. The 

separation A is in all cases a sinusoidal function modulated by a slowly varying envelope 

that is shown supporting it. In the bottom graph the target is located outside of the 

latitude band covered by the satellite, so the minimal separation is ψ0 – I = .2 radians. In 

the top graph the target is located inside the covered latitude band, and the minimal 

separation is almost 0. Note that the envelope is zero twice during every Earth rotation 

(15 satellite revolutions) in this case. The center graph has the target exactly on the edge 

of the covered band.  

The features shown in Figure 3 are typical, as can be shown by rewriting cos A in yet 

another way. Equation (9) can be written  
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FIGURE 3.  The angle separating a satellite from its target versus time 
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 cos A = cos E sin(θ + D),  (11) 

where cos2E = B2 + C2 and tan D = B/A. Since neither B nor C involves θ, D and E have 

period Q when time is measured in satellite orbits; that is, D and E are slowly varying 

functions of time. E is the angle separating the target from the satellite’s orbit, 

necessarily smaller than the angle A separating the target from the satellite itself. E is the 

envelope shown in Figure 3. E is zero two times per Earth rotation in the top graph of 

Figure 3.  This is because the satellite’s orbit covers the target once ascending and once 

descending, as must always happen for any target within the latitude band covered by a 

satellite.  

It can be shown (see appendix) that  

 sin sin cos sin sin cosE EE I I Eψ φ ψ= − .  (12) 

The only time dependent factor in (12) is φE. If sin sinE Iψ < , there will always be 

some value of φE that makes E = 0; otherwise, the smallest possible value for E is 

E Iψ −  or E Iψ + , whichever is smaller. All of these features are evident in Figure 3.  

Probability of detection and random search  

The initial value of the anomaly θ was taken to be 0 in Figure 3, but this value θ0 

could in principle be any number between 0 and 2π. Given θ0, φ0, ψ0, Q, I, and α, the 

amount of time until the satellite first covers the target (if ever) is deterministic, and can 

be easily found by inspecting diagrams like those in Figure 3. However, there are so 

many parameters involved that it is difficult to get a grasp on how well a given satellite 

covers the various latitudes within its covered band. Figure 2 implies that coverage is 

best near the band edges, but the coverage situation is complicated by the effects of 

Earth’s rotation. As a first approach to quantifying Earth coverage, consider a latitude ψE 

within the satellite’s covered band. As the satellite moves from its southernmost to 

northernmost latitude (a “pass”), it will include a certain fraction g of latitude ψE within 
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its covered cap. If the target’s longitude is random, this fraction is a probability of 

detection. The first order of business is therefore to determine g.  

It will be assumed in the following that α << π, in which case the local coverage 

pattern as the satellite passes over latitude ψE is as if Earth were flat. Figure 4 shows the 

covered region and the covered length W of the latitude line.  
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FIGURE 4.  Satellite coverage for small α.  

The width of the covered strip is 2αR, where R is Earth’s radius, but W is larger than  

2αR because the satellite does not ascend vertically through the latitude line. The angle δ 

is determined by the velocity of the satellite relative to Earth, the horizontal and vertical 

components of which are cosdR
d
φ ω ψ
θ

 − 
 

 and dR
d
ψ
θ

, where time is measured by the 

anomaly θ and ω = 1/Q.  ω is Earth’s rotation rate in terms of radians of rotation per 

radian of anomaly. By differentiating (4), one discovers that d
d
ψ
θ
=  cos θ sin I/cos ψ. By 

differentiating (6) and using trigonometric identities, one discovers that 
d
d
φ
θ
=  2cos cosI ψ . Finally,  
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 ( ) 2
cos sintan

cos coscos

d
d

d
EEd

I
I

ψ
θ

φ
θ

θδ
ω ψω ψ

= =
−−

.  (13) 

The cos θ factor can be eliminated from (13) by using (4), after which  

 
2 2

2

sin sin
tan

cos cos
E

E

I
I

ψ
δ

ω ψ
−

=
−

.  (14) 

The length of the latitude line is 2πR cos ψE, so the fraction of the line covered per pass 

is  

 ( ) 2 sin, , ,
2 cos 2 cos sin cosE

E E

W Rg I
R R E

α δ αψ ω α
π ψ π ψ π β ψ

= = = .  (15) 

Using the fact that 2in 1 1 tan21 s δ δ= + , equation (15) can be put in the form  

 ( ) ( ) ( ), ,
, , ,

cos
E I

E
E

v I f
g I Eα ψ ω ψ
ψ ω α

ψ
= ,  (16) 

where fI(ψE) is the density function given by (5), and where  

 ( ) 2 2, , 1 2 cos cosE Ev I Iψ ω ω ω ψ= − + .  (17) 

The function v(ψE, I, ω) is the surface speed of the subsatellite point (the point on Earth’s 

surface between the satellite and Earth’s center) in units of radians per radian of anomaly. 

Note that  

 • v(ψE, I, 0) = 1 (no Earth rotation)  

 • v(0, 0, 1) = 0 (geostationary case)  

 • v(0, π, 1) = 2 (a retrograde case)  

Since a satellite makes two passes per revolution over each latitude line and Q 

revolutions per day, a target on latitude ψE will be detected 2Qg(ψE, ω, I, α) times per 

day, on the average. If there is a collection of N satellites, each with a small cap angle, 

then the total average rate at which the collection detects a target on latitude ψE is (recall 

Qi = 1/ωi)  
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 ( )
1

2 , , ,
N

E i i i
i

TR g I iψ ω α ω
=

=∑ .  (18) 

In computing TR, it must be borne in mind that g(ψE, ωi, Ii, αi) = 0 unless sin2ψE < 

sin2Ii. If αi is a constant α, then TR is (180α/π) H(ψE), where  

 ( ) ( ) ( )
1

1 , ,
90cos i

N

E E i i I
iE

H v I f E iψ ψ ω ψ
ψ =

= ∑ ω . (19) 

The function H(ψE) is “average detections per degree of cap angle per day on latitude  

ψE”. Figure 5 shows H(ψE) as a function of latitude for the collection of 2000 satellites 

in low Earth orbit in early 1996, treating all orbits as if they were circular. The maximum 

value of the sum is about 280 detections per degree per day at 82 degrees. If you want to 

avoid satellites, don’t go to a pole (too many polar orbiters) or the Equator (every 

satellite crosses the Equator). The best place is at latitude 85°, only three degrees above 
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FIGURE 5.  Intensity of satellite coverage versus latitude 
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the worst place (the 85 degree latitude avoids a large number of Cosmos satellites with 

inclination 83 degrees). Even at 85°, a .1 degree circle (radius 10 km) would still include 

the passes of about three satellites (the subsatellite points, that is) per day, on the average. 

The graph for southern latitudes would of course be identical to Figure 5.  

The word “average” used above in describing detection rates refers to an average 

over the target’s longitude. When Q is an integer, it could be that targets on most 

longitudes will never be seen, and that the average rate is achieved by including a high 

rate of detection on whatever set of longitudes the satellite happens to include in its 

ground track. In such circumstances, knowledge of the detection rate alone will not be of 

much use in predicting the time to detection or the intervals between detections. 

However, there are several phenomena that should make detections tend toward a 

Poisson process, among which are  

 • the target’s longitude may vary from pass to pass  

 • the total rate may be achieved by summing the rates of several satellites  

 • “detection” may only be a necessary condition for some other stochastic 
event  

 • Q may not be an integer or even a rational number.  

In such circumstances, it may be reasonable to refer to the detection rate as λ, the 

conventional symbol for the rate of a Poisson process, to make predictions accordingly, 

and to speak of the search process as “random”. On account of the large number (2000) 

of uncoordinated satellites involved in computing Figure 5, for example, it is reasonable 

to refer to the rate being plotted as λ, and to argue that incidents where some satellite 

comes within 10 km of a point fixed at 85 degrees are a Poisson process with rate 3/day.  

For targets that are only intermittently visible, the amount of coverage time per pass 

may be important. This time depends on the lateral range X in radians from the satellite’s 
track to the target, being 0 if X α≥ . If α is small and X α< , the amount of track 

length in radians over which the target is visible is 22 α= − 2XY . This can be 
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converted to a coverage time by dividing by the satellite’s ground speed measured in 

radians per orbit,  

2πv(ψE, I, ω).  

When α is small, X will be uniformly distributed over the interval [–α, α], given that 
X α< . Under the same condition, the average value of Y is therefore πα/2. Letting τ be 

the orbital period, the average contact time per detection is thus  

 ( )( ) ( )( )2 2 , ,Ev Iπ α τ π ψ ω   

or  ( ) ( )
, , ,

4 , ,E
E

T I
v I

ατψ ω α
ψ ω

= .  (20) 

Since there are two chances at detection per orbit, the fraction of the time that the target 

is within view of the satellite is 2g(ψE, ω, I, α) T(ψE, ω, I, α)/τ, or  

 ( ) ( )2 ,
,

2cos
E

E
E

f I
c I

α ψ
ψ

ψ
= .  (21) 

Note that c(ψE, I) does not depend on Earth’s rotational rate ω.  

As an example of the kind of calculations that are possible, consider a submarine 

patrolling in the vicinity of ψE = 45 degrees. The submarine is invisible unless it uses its 

periscope, which it does occasionally in a Poisson process with rate r = .1/day. If the 

periscope emerges at a time when a satellite is within α = .1 radians of it, the submarine 

will be detected. A single satellite with I = 60 degrees and Q = 10 searches for periscope 

emergences. How long will it take for the satellite to detect the submarine? One way to 

answer the question is to reason that each satellite pass “covers” the submarine with 

probability g(45°, .1, 60°, .1 rad) = .0857, but that each coverage is unlikely to detect a 

periscope emergence because the average length of coverage is only  

T(45°, .1, 60°, .1 rad) = .063 hours (using τ = 2.4 hours in (20)). The detection probability 

per pass is only (.0857) (.063r) = .000540, so the average number of passes required is 
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1/.00540 = 1852. Since there are 20 passes per day, the time required is 92.6 days. An 

alternate method is to argue that the Poisson detection rate is λ = r c(ψE, I) = (.1/hour) 

(.0045) = .00045/hr., the reciprocal of which is 92.5 days. The alternate method is 

simpler but perhaps less intuitive. If the periscope stayed up for a non-negligible amount 

of time, then a pass-based analysis would be required.  

In calculating detection probabilities when the target wishes to avoid detection, it 

should be borne in mind that one of the weaknesses of satellite surveillance is that the 

locations of satellites are quite predictable. If the target’s policy is to act only when no 

satellite is present, then of course the detection probability will be 0. There is some 

literature on the design of constellations of satellites where certain latitudes, at least, are 

always covered. For example, see Rider (1986), Hanson and Higgins (1990), or 

Wilkinson (1994).  
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APPENDIX 

The Separation Angle A 

From (8), the angular separation A between satellite (φ, ψ) and target (φE, ψE) is  

 ( )cos cos cos cos sin sinE E EA ψ ψ φ φ ψ= − + ψ .  (A1) 

If the point (φ, ψ) is governed by equations (4) and (7), there will be some time 

(anomaly) θ at which this separation is minimal. The object in this appendix is to 

investigate the dynamics of A, especially the minimal value.  
Since ( )cos cos cos sin sinE E Eφ φ φ φ φ− = + φ , and since (from (4)) sin φ = sin θ 

cos I/cos ψ and cos φ = cos θ/cos ψ, a simple substitution and cancellation shows that (9) 

is true, and (9) can be put in the form (11) using a trigonometric identity. Let R = cos E, 

so that R2 = B2 + C2, and let µ = sin φE tan I/tan ψE. Then cos2φE = 1 – µ2tan2ψE/tan2I, 

so  

 ( )22 2 2cos cos cos sin tanE E E E
2 2B Iψ φ ψ µ ψ= = − .  (A2) 

Also, since cos sin cosE E Iψ φ  = 2sin cos sinE I Iµ ψ ,  

 ( )22 2 2sin cos sin sinEC I Iψ µ= + I .  (A3) 

Now find the coefficients of µ0, µ1, and µ2 in R2. The result is  

 ( )2 2 2 2 2 2 21 sin cos 2 sin cos sin cosE E
2

ER I Iψ µ ψ µ ψ= − + − I   

or  ( )22 2 21 sin cos 1ER Iψ µ= − − .  (A4) 

Since R = cos E, (A4) can also be written 

 ( )22 2 2sin sin cos 1EE Iψ µ= − ,  (A5) 

which is equivalent to (11). The minimal value of sin2E is achieved when µ = 1, as will 
be feasible if tan tanE Iψ < . As a curiosity, since (A5) is a concave function of µ, the 
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maximal value will be achieved at an extreme value of µ, which will be when φE is either  

π/2 or –π/2. It will be characteristic of the maximum angle Emax that 0 ≤ Emax ≤ π/2, and 

that  

 ( )sin sinmax EE Iψ= ± .  (A6) 

For example, if I = 2/3π (retrograde orbit) and ψE = –π/2 (South Pole), the angle between 

target and orbit is π/6.  
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Exercises  

1. Obtaining a terrestrial fix with GPS satellites requires that at least 4 be 
simultaneously in view. The 24 GPS satellites are actually placed in carefully 
selected orbits to make this event be as likely as possible over the mid-latitudes where 
most users are found, but what if they were not? Supposing each satellite can view 
30% of Earth’s surface,  

a) What is the average number of satellites that can see a randomly selected 
point on Earth’s surface?  

b) If all 24 satellites had independent, identically distributed, uniform locations 
on the celestial sphere, what would be the probability that at least 4 would be 
able to see a user in Monterey, California?  

2. Derive equation (5).  

3. Use equation (3) to derive and sketch the density of ψ, the latitude of a point selected 
randomly on Earth’s surface.  

4. Use the answer to exercise 3 and equation (21) to show that the average fraction of 
the time that a randomly selected point on Earth’s surface is within view of a satellite 
is α2/4, where α is a small cap angle, regardless of the inclination I. Explain why this 
result is “obvious”.  

5.  It is claimed on p. 13 that the average value of Y is πα/2. Prove it.  

6. A missile is launched at latitude 45°. If a satellite is within a masking elevation of 5°, 
the launch will be witnessed by a thermal sensor carried on board. There are 10 such 
satellites, each in a circular orbit with Q = 40/π, (an irrational number), and I = 60°. 
What is the probability that the launch will be witnessed? State any assumptions.  
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