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ABSTRACT

Shape control of spaceborne antennas can provide the ability to correct for effects
such as thermal distortion and manufacturing errors as well as control the shape of an
antenna’s radiated beam. This thesis examines the performance of piezoceramic actuators
in producing static deformation of a cantilever beam and analyzes the optimal placement
of actuators to best approximate a desired deformation profile. Predictions of actuator
effectiveness at producing curvature are developed using an Euler-Bernoulli model. An
algorithm to determine the optimal locations and input voltages for a fixed set of actuators
to achieve a desired deformation profile of a cantilever beam using embedded Nelder and
Mead simplex search routines is presented and evaluated for two shape functions and
various combinations of actuators. Experimental measurements show that the Euler-
Bernoulli model provides a reasonable prediction of actuator performance at low input
voltage but does not account for nonlinear behavior of the piezoceramic and the effects of
hysteresis and transverse stresses. Further experiments demonstrate the ability of four
piezoceramic actuators to produce an approximation of a parabolic deformation profile of
a cantilever beam and illustrate the importance of considering these effects in determining

the required actuator input voltages.
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L INTRODUCTION

A BACKGROUND

Control of the shape of long flexible structures is of interest for a variety of space-
related applications. Many spacecraft designs include slender flexible appendages as
components of on board antenna systems or sensors. Maintaining the desired shape of
such an appendage can be a central requirement for obtaining optimal performance from
its associated system. Effects such as thermal distortion, manufacturing errors, spacecraft
acceleration and vibration can all cause deviation of the shape of a component from its
desired profile. Active means to counter these and other effects are therefore of
considerable interest.

Piezoceramic actuators offer an attractive means to produce deformation of
flexible structures. These actuators have no moving parts and require only a supplied
electrical voltage to produce an electric field across the actuator material in order to
function. Piezoceramics can be bonded to or, when properly insulated, embedded inside
the structure they are intended to control. Applying an electric field to a piezoceramic
actuator causes deformation of the piezoceramic material which, in turn, applies stress to
the structure it is attached to.

While substantial research effort has been devoted to the employment and
placement of piezoceramic actuators for the active suppression of structural vibrations,
considerably less attention has been focused on the use and optimal placement of
piezoceramics for quasi-static shape control of flexible structures.  Although
piezoceramics are limited to the production of relatively small structural deformations,
they may be more than adequate for certain applications, such as countering thermal
effects or manufacturing errors or producing a small desired deformation profile in a

flexible structure.




B. SCOPE OF THESIS

This thesis examines the performance of piezoceramic actuators in producing static
deformation of a thin cantilever beam and analyzes the optimal placement of actuators to
best approximate a desired deformation profile. Models of common configurations of
piezoceramic actuators bonded to the surface of the beam are developed from the Euler-
Bernoulli model of Crawley and Anderson [Ref. 1] to compare the effectiveness of the
different configurations and examine the effects of actuator thickness, width and material
properties on the ability of the actuator to produce curvature of the composite
actuator/beam structure. Predictions of actuator performance from the Euler-Bernoulli
model are compared to experimental measurements of the tip displacement and surface
strain of a cantilever beam for several actuator configurations.

An algorithm to determine the optimal locations and input voltages for a fixed set
of actuators which minimize the error between the actual and desired shape of a cantilever
beam under piezoceramic actuator induced deformation is presented. Optimization of the
actuator locations and voltages is accomplished using the Nelder and Mead simplex search
algorithm for the optimization of nonlinear functions. The MATLAB software package is
used to implement and test the algorithm for two shape functions and various
combinations of actuators. Capabilities and limitations of the algorithm are discussed.
The predicted performance of four actuators placed in the optimum locations determined
by the algorithm to approximate a parabolic beam deformation profile is compared to the

results from a second set of experiments.




IL PIEZOCERAMIC MATERIAL PROPERTIES

Piezoceramics are part of a class of materials which exhibits piezoelectric behavior.
Such materials have the property that material strain is produced in response to an electric
field applied to the material in line with the its "poling" direction. Similarly, strain due to
mechanical stresses on the material will produce an electric field in the material poling
direction due to the accumulation of electrical charge on the material surfaces normal to
the poling axis. This accumulated charge results in a voltage between the two surfaces.
Figure 1 shows the standard coordinate system used to describe the orientation of a
piezoelectric material. The poling axis is normally designated as the 3-axis, with the 1-
and 2-axes indicating the principal material directions orthogonal to the poling axis.

Piezoelectric materials are typically orthotropic, meaning that the material
properties are uniform along each principal material axis, but the properties along one
principal axis may not be the same as those along another principal axis. Piezoceramics,
however, are generally transversely isotropic, meaning that the material properties are the
same in all directions in the plane orthogonal to the poling axis, depicted by the 1-2 plane
in Figure 1.

Figure 1. Piezoceramic Material Coordinate System Conventions




The strain behavior of piezoelectric materials in response to applied electric fields
and the voltage produced by mechanical stresses makes piezoelectric materials suitable for
use as both actuators and sensors in a variety of applications. The voltage between the
two surfaces normal to the poling axis in both actuation and sensing applications requires
that these two surfaces be electrically insulated from one another, hence piezoelectric
materials are generally bonded to the surface of conductive metal structures with the
material poling axis normal to the bond. Piezoelectric materials can, however, be

embedded in electrically insulating materials, including many composites.

A. CONSTITUTIVE RELATION

The axial strains in a piezoelectric material are functions of the normal stresses
applied to the material and the electric field applied in the material poling direction. These

strains are given by the material constitutive relation:

1 vy Vis
€ 2 lil £, —0'1 d;,
Vi Vi
&, 1= o o, |+]|d 2.1
2 E, E, E, 2 d3z 9, 2.1
& —Viz  “Vy _1_ L9 33
| E, E, E; |

where the 3-direction is the poling direction of the piezoelectric material, the 1 and 2-
directions are the principal material axes orthogonal to the poling direction, &; is the axial
strain in the /-direction, E,, v; and ds; are the material elastic moduli, Poisson ratios and
piezoelectric coefficients, respectively, o; is the axial stress applied in the i-direction and ¢
is the electric field applied in the material poling direction. The piezoelectric coefficients
are generally dependent on the value of the applied electric field but are typically assigned

a constant value which provides a linear approximation of the material's piezoelectric




behavior over a specified operating range. The material elastic moduli are also field
dependent and are typically specified for constant electric field (short circuit) and open
circuit conditions along the poling axis. The moduli for constant electric field are used in
Equation 2.1. Typical values of the material properties for various types of lead zirconate

titanate (PZT), the most commonly used piezoceramic material, are listed in Table 1.

Material PZT-4 PZT-5A PZT-8 PZT-5J PZT-5H
DOD Type I I 11 v VI
Ey, E; (x 10" N/m®)

e Short Circuit 82 6.1 8.7 6.2 6.2

e Open Circuit 9.9 6.9 9.9 7.1 7.1
E; (x 10" N/m?) |

e Short Circuit 6.6 53 7.4 44 4.8

¢ Open Circuit 12.6 10.6 11.8 n/a 11.1
ds; (x 102 m/V) -122 -171 97 220 274
v (approximate) 0.31 0.31 0.31 0.31 0.31

Table 1. Material Properties of Selected Piezoceramic Materials [After Ref. 2]

It should be noted tha;c the piezoelectric constitutive relation is of the same form as
the thermal-mechanical constitutive relation, with the piezoelectric coefficients
corresponding to the material coefficients of thermal expansion and the electric field
applied in the poling direction corresponding to the difference in material temperature
from its reference temperature. This fact proves useful in modeling piezoelectric material
behavior using finite element software which includes thermal-mechanical models but not

piezoelectric models.




B. ACTUATOR STRESS

If the piezoceramic material is under a state of plane stress in the plane orthogonal

to the poling axis, i.e. 03 = 0, then the expression for the transverse strains in Equation 2.1

can be simplified to:

1 vy .
Sl B B o ey 22)
& ,__—-VU __1_ o, d32

E, E,

which can be solved for the transverse normal stresses:

o |_ O, le]{gl—du(bz»] 2.3)
O, - le sz 82_d32¢3 '

where the reduced stiffnesses O, are given by:

E
O, = -
1- V2V
Q12 - VZIEI —_ V12E2 (24)
1-vpvy  1-vy,v,
E
0, = i S
“ 1- VieVa
and the material Poisson ratios are related by:
E
Va = E_2 Vi (2.5)
1




Equations 2.1 through 2.5 apply to orthotropic piezoelectric materials and must be
used for materials such as polyvinylidene flouride (PVDF) film which are not transversely
isotropic in the plane orthogonal to the poling axis. Transversely isotropic materials such

as PZT ceramics have the same properties in all directions in the 1-2 plane, i.e.

E, =E,
Vig =V (2.6)
d31 = d32

which allows Equation 2.3 to be further simplified to:

[01} _ I:Qu O :“:31 "d31¢3:] 2.7)
g, O, . On &, —dy
where:
E
Qu = : 2
1-v, 2.8)
vk
le - 2
1-v,,

If the material is under a state of uniaxial stress along the 1-axis, i.e. 0z = 03=01n

Equation 2.1, then the expression for the axial strain along the 1-axis can be reduced to:

&= % +dy, ¢, 2.9
1

which can be solved for the normal stress along the 1-axis:




o, = E1(€1 ‘d31¢3) ' (2.10)

The plot of Equation 2.10 in Figure 2 is illustrative of the performance of a
piezoelectric material as an actuator. An unconstrained piezoelectric material will have
normal strain &; equal to the actuation strain ds;¢; and will therefore produce no normal
stress 0;. In contrast, a piezoelectric material constrained to have no normal strain &; will

produce the material's blocked normal stress:

O-]blocked = —Eld3l¢3 (211)

In general, the normal stress in a piezoelectric actuator bonded to or embedded in a
deformable structure will be somewhere between zero and the blocked normal stress, as

determined by the material properties and geometry of the actuator and structure.

A
O

-E; d31¢3 7

¢3 = constant

»
>

]
d31 ¢3 €

Figure 2. Axial Stress vs. Strain For Piezoelectric Material Under Uniaxial Stress




IIl. EULER-BERNOULLI MODEL OF BEAM DEFORMATION DUE TO
SURFACE-BONDED PIEZOCERAMIC ACTUATORS

Piezoceramics can be used as actuators to produce curvature of a section of a
beam. Voltage applied to a piezoceramic actuator bonded to the surface of a beam as
shown in Figure 3 will induce normal strain of the same sign in both the 1- and 2-
directions. The beam will resist expansion of the piezoceramic to its full actuation strain,
producing normal stress in the piezoceramic which will cause curvature of the composite
actuator/beam about the x- and z-axes. The curvature about the z-axis for a configuration
such as that shown in Figure 3 will be significantly greater than the curvature about the x-
axis due to the difference in the moments of inertia of the respective beam cross-sections.
The resulting stress state in the actuator and the beam can be assumed to be plane stress
provided that the material dimensions in the 3-direction are much smaller than the
corresponding dimensions in the 1- and 2-directions. The normal stresses in the
piezoceramic for the plane stress condition are coupled in the 1- and 2-directions by the
Poisson effect, as indicated by Equation 2.7. Solution of the coupled equations requires
the use of a complex plate theory model, but a simple approximation of the curvature

about the z-axis can be obtained using Euler-Bernoulli assumptions.

Figure 3. Piezoceramic Actuator Bonded to Beam

9




Euler-Bernoulli beam theory assumes that the transverse components of normal
stress o, and o3 are negligible compared to the axial component o; and hence uses
Equation 2.10 to determine the normal stress in the piezoceramic along the beam axis.
Comparison of Equations 2.7 and 2.10 reveals that the Equation 2.10 provides a lower
estimate of the axial stress than Equation 2.7 for a given normal strain ¢ and applied
electric field ¢;. The Euler-Bernoulli model therefore gives a conservative approximation
of the bending moment produced by the actuator about the beam’s z-axis for a given
curvature of the beam about that axis.

Crawley and Anderson [Ref. 1] compared two models of beam curvature due to
induced strain actuation by piezoceramic actuators bonded to beam structures. The first
model, initially presented by Crawley and de Luis [Ref. 2], assumed uniform axial stré.in in
a pair of piezoceramic actuators bonded symmetrically to the outer surfaces of a beam
undergoing actuator-induced bending. The second model assumed that the beam behaves
as an Euler-Bernoulli beam, with a linear distribution of axial strain throughout the
composite actuator-beam cross-section, as shown in Figure 4. The predicted beam
curvature under both models was compared to that predicted by a detailed two-
dimensional finite element model. The Euler-Bernoulli model was found to provide results
that are within 0.1% of the finite element model over the full range of possible actuator-
to-beam thickness ratios, while the uniform strain model results diverged significantly for
actuator thicknesses greater than about 20% of that of the beam. The Euler-Bernoulli
model was therefore judged to provide a much more accurate prediction of beam
curvature produced by surface bonded piezoceramic actuators.

Chaudry and Rogers [Ref. 4] performed a similar analysis of an actuator bonded to
one side of a beam using a thermal-mechanical finite element model incorporating two-
dimensional linear plane stress elements to model the effect of the actuator’s piezoelectric
behavior. The Euler-Bernoulli and finite element models were again found to be in close
agreement, differing by at most 3.9% for actuator-to-beam thickness ratios of 1 or less.

Bronowicki and Betros [Ref. 5] refer to experimental work conducted by Griffin

and Denoyer [Ref. 6] which demonstrated that the tip displacement of a beam with a pair

10




| of piezoceramic actuators mounted symmetrically on opposite sides was 8% less than
predicted by the Euler-Bernoulli model. The difference between the predicted and
measured displacements was within the range of measurement and manufacturing

tolerances of the experiment.

Yo €0

ex(y)

Figure 4. Linear Strain Distribution for Euler-Bernoulli Beam

All of the above references support the use of Euler-Bernoulli assumptions as a
suitable model for analysis of the effectiveness of piezoceramic actuators in producing
curvature of the composite actuator/beam. The development of this model by Crawley
and Anderson [Ref. 1] was used as a basis for comparison of various actuator

configurations in this thesis.

A. GENERAL FORMULATION

Crawley and Anderson [Ref 1] expressed the total strain energy in an Euler-

Bernoulli beam with attached or embedded piezoceramic actuators as:

e Bl ol o

0

11




where / is the length, & is the axial strain at y = 0, as shown in Figure 4, and « is the

curvature of the actuator/beam section, which can be approximated by:
K=— f<<1 32
P CA) (32)

The total area stiffness (£A4),, the first moment of inertia (ES). and the second

moment of inertia (EI). of the composite actuator/beam cross-section are respectively

given by:
(E4), = ;[ EQw(y)dy (.3)
(ES), = I E@w(y)ydy (.4)
(ED), = j Ew()ydy - (.5)

‘where E(y) is the elastic modulus and w(y) is the width of the composite actuator beam
material as a function of the coordinate y. The first term inside the integral in Equation
3.1, with the 1/2 multiplication factor, represents the strain energy per unit length for a
composite beam with the specified cross-sectional properties composed of materials which
exhibit linear stress-strain behavior in accordance with Hooke's Law. The second term
and 1/2 multiplication factor represent a reduction in the strain energy per unit length due
to the portion of the material strain which is induced by the piezoelectric effect rather than
applied stress.

The resultant force P, and resultant moment A, due to the actuation strain A are

respectively determined from:

12




P, = [E)AQWO) (.6)

M, = [ EQ)AG)w()ydy 3.7)

where the actuation strain A is determined by the actuator piezoelectric charge constant
d;, the actuator thickness 7, and the actuator input voltage V applied in the poling

direction of the piezoceramic:

A=d

3

y
ll‘_ (3-8)
P

If the actuator and beam properties are constant over the length of the

actuator/beam section, Equation 3.1 can be integrated to give:

0 = Lo (), +26,0(85), +x*(E1), ~28,6, ~2M ] 69)

Equations for the axial strain & at y=0 and the curvature x can then be obtained by

differentiating Equation 3.9 with respect to & and « and using Castigliano's First Theorem’

% =0, (=12,..n) (3.10)

where g; is the 7th displacement and Q; is the ith generalized external force. If no external
forces or moments are applied to the beam, substitution of Equation 3.9 into Equation

3.10 gives:

13




a1
- El[ZaO(EA)e +2«(ES), -2P,]=0

O,U" . (3.11)
= EI[ZgO(ES)c +2xc(EI), -2M, | =0

which can be solved to obtain expressions for the axial strain at y = 0 and the curvature of

the composite beam:

£ = fk(ﬁy)c__AlA(ES)c
" () (1), - (BS),

€= MA __(ES)c {PA(EI)C_MA(ES)C}
(&), (ED), | (£, (ED), - (ES),

(3.12)

If the composite beam cross-section is symmetrical with respect to the z-axis, then

the first moment of inertia of the cross-section is zero and Equations 3.12 simply to:

£ _ B
o (E4)
¢ (3.13)
K= M,
(E1),

The location of the neutral axis, which has zero axial strain as shown in Figure 4,

can be determined by solving:

e, =& k=0 (3.14)
for y, giving:
Yo=2 (3.15)
K

14




B. MODELS OF SELECTED ACTUATOR/BEAM CONFIGURATIONS

Piezoceramic actuators are typically bonded to beams in one of four
configurations: a single actuator, a pair of actuators bonded symmetrically to opposite
sides of the beam, a stacked pair of actuators bonded to one side of the beam and stacked
pairs of actuators bonded symmetrically to opposite sides of the beam. Prepackaged
actuators, such as the PZT QuickPacks from Active Control eXperts, Inc., which have the
piezoceramics and wiring encased in an insulating matrix material, can also be bonded to
one or both sides of a beam. It is of interest to compare the effectiveness of each of these
configurations in producing curvature of the composite beam. The general formulation of
the Euler-Bernoulli model is applied to each of these configurations in the following
subsections. ~ While the bond between an actuator and a beam is often negligibly thin
when compared to the thicknesses of the beam and actuator, Baz and Poh [Ref. 7] noted
that the thickness and material properties of the bond may contribute significantly to the
composite beam’s mechanical behavior. The dimensions and modulus of the bond material
are therefore included in the models for completeness. For simplicity, all piezoceramic
actuators in the models with more than one actuator are assumed to have the same

dimensions.

1. Beam Deformation Due To Single Piezoceramic Actuator.

Figure 5 shows a schematic representation of a piezoceramic actuator bonded to a
section of a beam which extends in the tx-direction. The total area stiffness for the
composite single actuator configuration is obtained by substitution of the elastic moduli E;
and dimensions w; and ¢ into Equation 3.3, where no subscript, the subscript » and the
subscript p denote the properties of the beam, bond and piezoceramic actuator,

respectively:

15




t t
—+t,, —+ty -+t

(1), = jEwdy+ [rmas” [

L
2 b

(3.16)

2 2
=Ewt+ Ewt, +Ewt,

Side View Cross-Section

Figure 5. Schematic of Single Piezoceramic Actuator Bonded to Beam

The first and second moments of inertia of the composite beam cross-section are similarly

obtained from Equations 3.4 and 3.5:

t t t
7t S+t

(ES), = J.Ewydy-l- IEwbyaj/+ IE w,ydy
L, (3.17)

"2 2 2

t 1 t t
= Ebwbtb(E + —2”—) + Epwptp(g +1, + —;1)

16




t t t

E E+tb E+tb +p
(1), = [Ewy'dy+ [Ew,y’dy+ [E,w,ydy
_t ! !

—+1,
2 2 2 ?

Ewt® (z‘)z t 12
= +Ewt || =] +=t, +2 3.18
12 bR ”{ 2 2% 3 (3.18)

t e t?
+E w t (—+t) +[——+t)t 4t
ppPP 2 b 2 b |'p 3

The resultant force P4 and resultant moment M, due to an actuator input voltage V are

obtained from Equations 3.6, 3.7 and 3.8:

t
—2—+tb+lp
P, = [EAwd=Edwy (3.19)
%+tb+tp y
M, = [E,Awydy= Epdglwp[§+tb +?”}V - (3.20)
¢
—+1

2

Since the composite beam cross-section is not symmetrical with respect to the z-
axis, an actuator input voltage will produce both non-zero axial strain & at y = 0 and

curvature x about the z-axis, as given by Equations 3.12, with the location of the neutral

axis given by Equation 3.15.

2. Beam Deformation Due To Symmetric Piezoceramic Actuator Pair

Figure 6 shows a schematic representation of a symmetric piezoceramic actuator

pair bonded to a section of a beam which extends in the +x-direction. The total area

17




stiffness and first and second moments of inertia for a beam with a symmetric actuator pair

can be computed as for the single actuator configuration using Equations 3.3 through 3.5:

(;*"b) ! ! i+t,, L+t,, +1,
(EA) = J' w dy + wabdy+_[Ewajz+ wabdb)+ IE,, w dy 3.21)
—(%+tb +tp (z””) 3 2 5+1b .
= Ewt +2E w1, +2E w t,
( +tb) ot t
(ES), = [Ew,ydy+ j E,w,ydy + j Ewydy
(2“”” ) (2“") 2
£+,b -t—+tb+t
+ j.E w,ydy + IE w,ydy (3.22)
2 5””
=0
(t+tb) ot t
(EI)C: IEpwpy dy + jEwby dy+_[Ewyajz
(;+t,,+t ) _[Tt,,j -
Ly t+t,,+tp
+ !Ebwbyzdy+ LJ‘Epwpyldy 6.23)
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Side View

Cross-Section

Figure 6. Schematic of Symmetric Piezoceramic Actuator Pair Bonded to Beam

The resultant force P, and resultant moment M, as given by Equations 3.6, 3.7 and 3.8,

depend on the input voltages V; to the actuator on the +y side and V> to the actuator on

the -y side of the beam:

—;—+tb+t1, _(%'Hb)
P = [EAwdy+ [EAwdy
LH,, —(i-ub +tp]
2 2 b

= Epdzlwp(Vl +7,)

: (5+)
—2—+tb+—t‘p 2 b

M, = J.EpAlwpydy + IEpAzwpydy
L+t1, —(i+t,,+tp)
2 2

t t
=Ed,w, >t +—2P— (. -7,)
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Since the composite actuator/beam cross-section is symmetric with respect to the
z-axis, the axial strain at y = 0 and curvature about the z-axis are given by Equations 3.13.

Substitution of Equations 3.24 and 3.25 into Equations 3.13 gives:

. Ed.w,(V,+V,)
. (E4),

t t
Epdmwp[i +1, + ?"}(V] -7,)

(3.26)

K =

c

Thus, equal voltages applied to each actuator will produce axial strain with no curvature
and input voltages of equal magnitude and opposite polarity will produce curvature with
no axial strain at y = 0. Input voltages of unequal magnitude will produce a combination

of curvature and axial strain at y = 0.

3. Beam Deformation Due To Stacked Pair of Piezoceramic Actuators

Figure 7 shows a schematic representation of a stacked piezoceramic actuator pair
bonded to a section of a beam which extends in the tx-direction. The total area stiffness
and first and second moments of inertia for a beam with a stacked actuator pair are
determined by substitution of the appropriate cross-sectional dimensions and properties

into Equations 3.3 through 3.5:

t t t t
—+ I+, 2+, S+2t+21,

3 ;
(EA), = [Ewdy+ [Ewdy+ [Ewdv+ [Ewdy+ [Ewdy
—i ! £+tb £~1~t,,+tl, —t-+2tb+tp
2 2

2 2 2
= Ewt+2E,w, i1, +2E w t,

(3.27)
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Side View Cross-Section

Figure 7. Schematic of Stacked Piezoceramic Actuator Pair Bonded to Beam

t t t
3 E+t,, E+tb+2p
(ES), = | Bwydy+ [Ew,ydy+ [E,w, ydy
3 2 3+
t t 2
—2—+2tb+tp E+21,,+ ty

+ [Ewydy+  [Ew,ydy (3.28)

t t
~+iy+1 —+24,+t
2 b 'p 2 b7 'p

= Ebwbt,,(t +2t, +tp)+ Epwptp(t +3t, +21p)
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! 4/ ! 1,
2t TH L,
/) 3t

(ET), —jEwyay+ jEwby dy + jE w,ydy

"2 2 E“"
£+2t t ! 2
2 pt1lp 5‘+ tb+2tp
+ IEbwbyzdy + IEpwpyZdy
t t
E+tb+tp E+2tb+t” (329)

The resultant force P, and resultant moment M, as given by Equations 3.6, 3.7 and 3.8,

depend on the input voltages V; to the inner actuator and 7> to the outer actuator:

i+t[,+t -t—+22,,+2t

EAwdy+ |E,Awdy
—;ft,, —+2.t[+t AZ (330)
2 2

=E,dyw,(V,+V,)

—t—+tb +t, —+2tb +2t,
jE Aw,ydy+  [E,Aw,ydy
—2—+tb 5+21,,+t (33 1)

t f, t 3,
:Epdﬂwp 54—1,, +—2" V1+ 5+21‘b +7 V2

Since the composite actuator/beam cross-section is not symmetric with respect to
the z-axis, the axial strain at y = 0 and curvature about the z-axis are given by Equations
3.12. Actuator input voltages will, in general, produce both non-zero axial strain & at y =

0 and curvature x about the z-axis, with the location of the neutral axis given by Equation
3.15.
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4. Beam Curvature Due To A Symmetric Pair of Stacked Piezoceramic
Actuators

Figure 8 shows a schematic representation of a symmetric pair of stacked
piezoceramic actuators bonded to a section of a beam which extends in the +x-direction.
The total area stiffness and first and second moments of inertia for a beam with a stacked
actuator pair are determined by substitution of the appropriate cross-sectional dimensions

and properties into Equations 3.3 through 3.5:

LGoww)  fwen) i)
(Ed),= [Ewdy+ [Ewdy+ [Ew,
—(%"'2’1:*2’1: - %+21,,+tp ~(%+tb+t},)

ot t t
2t

+ jE w,,dy+jEway+ jEw,,dy

(3.32)
- E“” ) 2
%+tb+tl, ;+21,,+t §+2t,,+23
+ !E w dy + _[E w,dy + IE
5+t,, 2+z,,+t —+2tb+t
= Ewt +4E,w 1, +4E w I
3o, (L) (tw)
(ES), = [Ewydy+ [Ewydy+ [Ew,ydy
—(§+th+2!‘, —(%+21,,+tp - §+tb+t
+ jE w,ydy + IEwydj)+ IE w, ydy (3.33)
— E+r,, 2 2
;+tb+t +2t,,+t —+th+2t
+ IE w, ydy + IE w, ydy + jE w ,ydy
E+tb 5+tb+t E+2tb+t
=0
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Side View Cross-Section

Figure 8. Schematic of Symmetric Pair of Stacked Piezoceramic Actuators Bonded to

Beam
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L) A )
@)= [Ewyd+ [Ewyd+ [Ewyd
Gova) ) )

t t L
— - —+
2 3

+ [Ewydy+ wayzdw 2 [Ew,y*dy
! _t £

- E“") 2 2
t t t
5+tb+tp §+2tb+t11 SH24,+21,
2 2 2
+ JEwydy+ [Ewydy+ [Ew,ydy (3.34)
t t t
5+tb E+t,,+tp -2-+Zt,,+tp

_ Ewt? 1\ (1 5

=13 +2E,w,t, 5 + 5+tb+tp + t+§tb+tp t,
t Pt 2 5

+2E w t, —2-+tb + E+21b+tp + t+3tb+§tp Z,

~ The resultant force P, and resultant moment M, as given by Equations 3.6, 3.7 and 3.8,
depend on the input voltages V; and V', to the inner actuators and V5 and V, to the outer
actuators, where the odd numbered voltages are applied to the actuators on the +y side

and the even numbered voltages are applied to the actuators on the -y side of the beam,

respectively:

t t
“(3* 2+ -5+
P= [EAwdv+ [EAwdy
t t
—(5+2t,,+2tp) —(§+t,,+tp)
t t
PR 7220

+ [Eawdy+  [EAwdy (3.35)

—+1 —+2t, +t
2 b 2 'y Tip

= Ed.w,(V, +V, +V, +V,)
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{Leages,) {Les)
M, = ."EPA‘thydy+ jEPAZWPy@
—(%+th +2t‘,) —(%*‘fb”_a)

%+t,,+tp %+th+2tp
+ [Eawydy+  [E,Aw ydy (3.36)
t t
5+t,, -2—+2t,, +ty

7 t t 3t
= Edeleli(E-l-lb +Ep)(Vl —VZ)-I-(’2~+211, +"‘21j(V3 —V4)}

Since the composite actuator/beam cross-section is symmetric with respect to the
z-axis, the axial strain at y = 0 and curvature about the z-axis are given by Equations 3.13.

Substitution of Equations 3.35 and 3.36 into Equations 3.13 gives:

_ E dyw (V, +V, +V, +V,)
(E4)

o

c

t t ¢ 3¢
E”d“w"KEH” +?p](1/1 —V2)+(5+21b +TPJ(V3 —V‘t)}

(EI)

(3.37)

K =

c

Hence, beam curvature with no axial strain at y = O can be obtained by setting V; = -V>
and V3 =-V,. Similarly, pure axial strain with no beam curvature is achieved when V; =7,
and V=V,

5. Beam Deformation Due To Single ACX QuickPack Actuator

Figure 9 shows a schematic representation of a single ACX QuickPack actuator
bonded to a section of a beam which extends in the tx-direction. A QuickPack actuator

consists of a stacked pair of piezoceramic wafers encased in a matrix material.
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Side View

Cross-Section

Figure 9. Schematic of Single ACX QuickPack Actuator Bonded to Beam

The total area stiffness and first and second moments of inertia for a beam with a
single ACX QuickPack actuator are determined by substitution of the appropriate cross-

sectional dimensions and properties into Equations 3.3 through 3.5:

L i+t,, i+t,,+t,,,
(E4) = jEwdy+ 2 [ E,w,dy + 2 [Ew.dy
i t

t
- —+t
2 2 2t

t t
—Hly EHb Hly iy +21,

* I (Ep - Em)wpdy + f (Ep - Em)wpay (3.38)

t
E+tb+tml -2—+tb +tm1+tm2+tp

=Ewt+Ewit, +E w. t + 2(EP - Em)wptp
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t t t
- —+t, 2+

(ES), = 'Zwaydy + ZIEbwbyajz + jEmwmydy
L ! !

2 2 P
t t
g St Hga 428,
+ [(E,-E,wyd+  [(E,-E,)w,yd (3.39)
t
7t tm Z Ittty

t ot t
=E,w,t, (—7: + ?”j +E wt, (% +1, + ?'”)

HE, —E, w,t,(t+21, +21,, +1,, +21,)

L L Lyt
2 2t 2t
— 2 2 2
(ED), = [Bwy’dy+ [Ew,y’dy+ [E,w,ydy
t t t
2 2 3
i+t,,+z,,,',+tJp i+t,,+t,,,1+tm2+2tp
2 2
+ I(Ep—Em)wpy dy + I(Ep—Em)wpy dy
-;—+lb+lml %+tb+tml+tm2+tp

Ewt® (t) (t) t’
= +Ewdt || —|+|—|t, +2—
12 > ”"[ 2) \2)? 3

t ot t?

+E w1, (—+th +(—+tb)tm + =

2 2 3

B 2 2
1 t

(—+tb+tml) +(—-+tb+tml+tm2+tp)
2 2

+(Ep—Em)wptp

5t,
+H t+28, +2f,, +1,, +T ‘,

(3.40)

The resultant force P, and resultant moment M, as given by Equations 3.6, 3.7 and 3.8,

depend on the input voltages V; to the inner actuator and V> to the outer actuator:
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t t
=ty +ly+t —+ ity Aty F gy +2t
2 b Thm P 2 b Timy Tim2 P

Po= [EAwd+  [EAwd
t

(3.41)
5‘”1;“”".1 —2-+tb+tml+tmz+tp
= Epars,wp(V1 + VZ)
t t
E+t,,+t,,,1+tp —2-+t,, g Hypt2t,
My= [EAwydy+  [EAwydy
t t
E+tb+t,,,l 5+tb+t,,,1+t,,,2+tp (342)

t )., [t 3t,
:Epdg,wp 5+t;,+’m1+3 o+ 5+tb+tm+tm2+7 v,

Since the composite actuator/beam cross-section is not symmetric with respect to
the z-axis, the axial strain at y = 0 and curvature about the z-axis are given by Equations
3.12. Actuator input voltages will, in general, produce both non-zero axial strain & at y =

0 and curvature x about the z-axis, with the location of the neutral axis given by Equation
3.15.

6. Beam Deformation Due To Symmetric Pair of ACX QuickPack
Actuators

Figure 9 shows a schematic representation of a symetric ACX QuickPack actuator
pair bonded to a section of a beam which extends in the +x-direction. The total area
stiffness and first and second moments of inertia for a beam with a symmetric ACX
QuickPack actuator pair are determined by substitution of the appropriate cross-sectional

dimensions and properties into Equations 3.3 through 3.5:
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Side View Cross-Section

Figure 10. Schematic of Symmetric ACX QuickPack Actuator Pair Bonded to Beam
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o

t t
~[—2~+t,,+t,,,,+t,,,2+tl,) —(5+t,,+t,,,,)

(E4). = j (E,—E,w,dy+ / f (E,- E,w,dy

t t
—(E-f-tb i Hma+ 21, —LE-H,, g+

(5) 5
+ [Ew,dy+ [Ewdy
(L) ()

t t t
- —+1, E+t,, iy

2
+iEway + [Ewdy+ [Ew,dy (3.43)
E R
L+t,, Flpy £+tb gty +28,
+ j (E,-E,)w,dy+ j (E,-E,)w,dy
%H,, o %+tb iyt
= Ewt +2E,w,t, +2E,w,t, +4E, - E,}w 1,
—(%-H,, +t,,,1+t,,,2+tp) —(%+t,,+t,,,1)
(ES), = [(E,-E,wydy+  [(E,-E,)w,ydy
—(%+t,,+t,,,,+t,,,2+2tp - ;—)-tb gty
b
+ I E. w, ydy+ IEbwbydy
-(%-Hb +t,,,) —(%H,,)
L i+t,, —t—+z‘,,+t,,l
2 2 2
J-Ewyay + IEbwbyaﬁz + jEmwmyay : (3.44)
R
£+t,,+t,,,1+tp i+t1,-!»t,,,1+t,,,2+2tJP

+ [(E,~Ewydv+  [(E,-E,w,yd

t
—+1g+1, —+ly gty 1
2 b m1 2 b ml T im2 o p

=0
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_(é-;—tb+t,,,l+t,,,2+tp) —(;—'+tb+tm[)
(E1), = [(E,-E,w,y*dy + [(E,-E,)w,yay
—(‘Zt‘+‘b+tm1+’mz+2'p —(%+t,,+r,,,,+t,)
{3+) -
t [Ewydy+ [Ew,ydy

t
(Letyetn) {(L+)
(2 b im 2 b

L £+t i+t +¢,
2 2 (3 2 b ¢m
2 2 2

t[Ewy’dy+ [Ew,y’dy+ [E,w,ydy

_t ! L

2 2 2’

t t

-2—+t,,-i-t,,,,+tlJ E+tb+t,,,1+t,,,2+21p

2 2

+ [(EB,-Ewyds  [(E,~E )y d

t t

E+t”+t"" -2-+tb+tm,+tm2+tp

Ewt® (t) (t) £’
= +2Ew,t,|| = |+ —|f, +2-
12 i ””{ 2/ \2J" 3

2 2

2E w_ t (i+tb) +(L+tbjtm+£”i~

2 2 3

2 2]
(';“Hb +tml) +(é+tb 1+t +tp) (3.45)
2(E, -E, w1, 5
+(t +2t, +2t,, +1,, + —3”—)1

r

The resultant force P, and resultant moment M), as given by Equations 3.6, 3.7 and 3.8,
depend on the input voltages V; and ¥, to the inner actuators and V5 and ¥, to the outer
actuators, where the odd numbered voltages are applied to the actuators on the +y side
and the even numbered voltages are applied to the actuators on the -y side of the beam,

respectively:
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t t
(I ()
P, = [EAwdy+  [EAwdy
t t \
- E+tb+t,,,,+t,,,2+2:p - E+t,,+1,,,l+t‘,J

§+tb+tm1+tp %+t,,+t,,,l+t,,,z+2t‘,
+ JEAwd+  [EAwdy

t t
E+tb +p '2’+tb+tm1+tm2+tp

=E dyw,(V, +V, +V, +V,)

t t
N (L)
M, = j E,Aw,ydy+ j E,Aw,ydy
('t t
—b+t,,+t,,,1+z,,,2+zzp —(E+t,,+z,,,,+tp
t t
E+t,,+t,,,1+tp E+t,,+t,,,1+t,,,2+2tp
+ [E Amwydy+  [EAw ydy
t t
E+tb+t,,,1 E+t,,-x»t,,,,+t,,,2+t_,,

t
(§+r,,+tm,+;"j(V, %)
:Epd31wp

3t
+(%+tb +t,+1, +~21)(V3 -7,)

(3.46)

(3.47)

Since the composite actuator/beam cross-section is symmetric with respect to the

Substitution of Equations 3.46 and 3.47 into Equations 3.13 gives:

_ E d,w,(V,+V, +V, +V,)

5 (EA),
0 t .
(—i+tb +1,, +—2‘i)(V1 -7,)
Epdalwp . 3
+(§+tb +1 1, +7”)(V -7,)
K= = -

(ED),
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z-axis, the axial strain at y = 0 and curvature about the z-axis are given by Equations 3.13.

(3.48)




Hence, beam curvature with no axial strain at y = 0 can be obtained by setting V; = -V,
and V; = -V,. Similarly, pure axial strain with no beam curvature is achieved when V; =V,

and V3=V,

C. ACTUATOR EFFECTIVENESS

The results Euler-Bernoulli models of actuator produced curvature for the single,
symmetric pair, single stacked and symmetric stacked pair configurations were compared
for different thicknesses of an aluminum beam. All actuator configurations were assumed
to cover the entire width of the beam and the bond between the piezoceramics and the
beam was assumed to be negligibly thin. Material properties for Navy Type II PZT were
used for the piezoceramic and a maximum applied electric field of 20 volts/mil, a typical
operating limit, was applied to all actuators. Figure 11 shows the curvature of the
composite actuator/beam as a function of the thickness of the individual piezoceramic
elements for a 0.79 mm (0.031 in) thick beam. It can be clearly seen from Figure 11 that
the symmetric actuator configurations are more effective at producing beam curvature
than those with actuators on one side of the beam. This is due to the concentration of the
piezoceramic at the outer edges of the composite beam for the symmetric configurations,
where the actuator stress contributes most effectively to a bending moment about the
central axis of the beam. An optimum piezoceramic thickness for each actuator type is
also evident. Thicker than optimum actuators contribute more to the stiffness of the
composite beam cross-section than to actuator bending moment and hence result in lower
than optimum curvature. The optimum thicknesses for the two stacked configurations
here are exactly half those of the corresponding single actuator configurations due to the
assumption of negligible bond thickness. The stacked configurations therefore require half
the input voltage of the single actuator configurations to achieve a given electric field

across the piezoceramic to produce a desired level of actuation strain.
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Beam Curvature at 20 Volts/mi
0z T T

018 -/~ DO 5T;pa.upzr_..§ ................ S ;

0.1
— — Single

-—-- {1 Stasked

o
wly
=

— 8ym. Pak

o
—
N

Sym. Stacked

Curvatura (rad/m)
=2

0.0e

. o "a, +
1 ~N L)
n.0e EESREREERE LS CEEE R EETEREE SPEPTRIEET IR R R EELCET ISR
.,
: . .

n_°4_............-..§ ................ : ........... e et aen e )

0.02 ' i ‘
Astuator Thieknoss (mm)

Figure 11. Beam Curvature vs. Piezoceramic Thickness and Actuator Type for 0.79 mm
Aluminum Beam and 20 Volts/mil Electric Field applied to Actuators

Figure 12 depicts the performance of the same actuators as in Figure 11 for an
aluminum beam with twice the thickness. The optimum thickness of the actuators for each
configuration is found to correspondingly double, however, the attainable curvature of the
1.58 mm beam is only half that attainable for the 0.79 mm beam at the 20 volts/mil electric
field limitation. This is due to the maximum actuation strain of the piezoceramic
remaining constant. The limit on actuation strain for a given piezoceramic results in an
inverse relationship between beam thickness and the curvature attainable using an actuator
of optimum thickness.

Figure 13 and Figure 14 show the same information as Figure 11 and Figure 12,
respectively, but with the actuator thickness plotted as a percentage of the thickness of the

aluminum beam. Figure 15 and Figure 16 show the effect of actuator width for a constant
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actuator thickness of 0.26 mm and beam thicknesses of 0.79 mm and 1.58 mm
respectively. Full width actuators are clearly the most effective in producing beam
curvature for all actuator configurations. The reason for this can be seen by examining the
curvature equation in Equations 3.26, or the equivalent equation for other actuator
configurations. Actuator width appears as a factor of the entire numerator but of only one
term in the denominator, given by Equation 3.23. Increasing actuator width therefore

always results in an increase in beam curvature, provided all other terms remain constant.

Beam Curvatire at 20 Volts/mi
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Figure 12. Beam Curvature vs. Piezoceramic Thickness and Actuator Type for 1.58 mm
Aluminum Beam and 20 Volts/mil Electric Field applied to Actuators
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Examination of Equation 3.26 also reveals the material properties desirable in a
piezoceramic actuator. High material modulus E,, piezoelectric coefficient ds; and
operating voltage, or equivalently operating electric field, all result in increased actuator

effectiveness. In general, the higher the product of these three properties, the more

effective the actuator.
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Figure 13. Beam Curvature vs. Piezoceramic Thickness as a Percentage of Beam
Thickness and Actuator Type for 0.79 mm Aluminum Beam and 20 Volts/mil Electric
Field applied to Actuators
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Beam Curvaturs at 20 Velte/mil
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Figure 14. Beam Curvature vs. Piezoceramic Thickness as a Percentage of Beam
Thickness and Actuator Type for 1.58 mm Aluminum Beam and 20 Volts/mil Electric
Field applied to Actuators
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Beam Curvature at 20 Yolts/mil
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Figure 15. Beam Curvature vs. Piezoceramic Actuator Width and Type for 0.79 mm
Aluminum Beam and 20 Volts/mil Electric Field applied to Actuators
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Beam Curvature at 20 Yolte/ml
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Figure 16. Beam Curvature vs. Piezoceramic Actuator Width and Type for 1.58 mm
Aluminum Beam and 20 Volts/mil Electric Field applied to Actuators
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IV. ACTUATOR PLACEMENT

A. DEFORMATION OF EULER-BERNOULLI BEAM UNDER ACTUATOR
BENDING MOMENT

1. Transverse Deflection of a Beam Segment due to an Actuator Moment

A section of laminated beam with uniform cross-sectional properties throughout its
length will deform with uniform curvature over its length when subjected to a pure

bending moment. For small displacements, defined as beam slope much less than 1, this

behavior can be approximated by:

dv, M,
& @),

(xk SxSxk+lk,%’—c°~<< 1) 4.1

where x is the coordinate along the length of the beam, x; is the x coordinate of the start of
beam segment k, /; is the x length of the beam segment, vys(x) is the transverse
displacement of the beam's neutral axis in the y-direction, M, is the bending moment

applied to beam segment & about its neutral axis and
(EN, =>EI (4.2)

is the flexural rigidity of the composite beam segment about its neutral axis. E; and I; are
the Young's modulus and moment of inertia about the beam segment neutral axis of the ith
lamina on segment £.

The transverse displacement at any point x on beam segment k can be obtained by
integrating Equation 4.1 twice over the length of the segment. Integrating once gives the

slope of the beam segment as a function of x:
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dvo(x) M,

(D),

vo'(x) =

:Vo'(xk)+ (x—xk) (xk SxSxk+lk) (4.3)

Integrating a second time gives:
[ Mk 2
vo(x) = (e, ) + v, (x J(x — x, ) + ————Z(EI) (x-x) (nsx<x,+L) (44
k

Thus, for small displacements, the transverse displacement along the length of a beam
segment is a function of the displacement and slope at the start of the beam segment, the
curvature of the beam segment due to the actuator moment and the position x-x; on the

beam segment.

2. Transverse Deflection of Complete Beam due to Actuator Moments

Figure 17. Beam with Attached Piezoceramic Actuators

Figure 17 shows a cantilever beam with n piezoceramic actuators bonded to the

beam at locations x; (i = 1,2,...,n). If the actuators are perfectly bonded to the beam over
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their entire lengths and an actuator's bending moment is proportional to its input voltage,

then each actuator will produce a beam curvature per unit voltage:

M, K,

K =—2F =
* (EI)ka Vk

(k=12,..,n) 4.5)

over its respective beam segment, where ¥} is the input voltage of actuator & and x; is the
curvature of the corresponding composite actuator/beam section. A suitable value for X
for a given actuator/beam configuration can be obtained as discussed in Chapter II.

If the deformation of the beam is static and no external loads are applied, then the
deformation of the beam is strictly a function of the actuator locations, lengths,
actuator/beam section curvatures per unit voltage and actuator input voltages. The static
deformation of the beam on actuator & can be obtained by substituting Equation 4.5 into

Equations 4.3 and 4.4, giving:

vo‘(x)=v0'(xk)+Kka(x—xk) (xk <x<x, +lk) ‘ (4.6)

vo(x)=v‘,(xk)+vo'(x,¢)(x—x,f)Jr—lZ("z—V"(x—x,c)2 (r,<xs<x,+1) @7

Similarly, since the sections of the beam between the actuators have no applied
moments, and hence zero curvature, the static deformation of the beam between actuator
k and k+1 can be obtained from Equations 4.3 and 4.4 with the moment terms set to zero.

Thus,
Vo' (x) = v,'(x, +1,) (xp +1, <x<x,,,) (4.8)
vo(x) = vo(xk + lk)+ vo'(xk + lk)[x _(xk + lk)] (xk +1 <x< xk+1) (4.9)
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Equations 4.6 through 4.9 include the terms vo(xy), vo'(xy), vo(xs+1L) and v,'(e+1y),
which depend on the effects of actuators 1 through k-7 but not actuators k+/ through n.
Thus, a complete expression for the transverse deflection of the beam as a function of x
can be obtained using Equations 4.6 through 4.9 by starting at the root of the beam (x=0)
and working outward to the tip (x=L).

Replacing the variable v, with y, the slope y” and displacement y of the beam are

both zero prior to the first actuator:

\ dy
y(x)zg;:‘) (0<xs<x)
¥(x)=0

The slope and displacement of the beam for x on the first actuator are functions of

x and the properties of the first actuator only:

}"(x) = y'(x1)+KlVl(x~xl)
= 0+K1V](x—x1)
= KlVl(x"xl)

y(x) = J"(x])"'y'(xl)(x~ x1)+

=0+0+ K12V1 (x—xl)2

KV,
= lzl(x—x])2

K;V’ (x—xl)2 > (x1 <x<x "‘11)

The slope for x between the first and second actuators is the slope achieved at the
end of the first actuator while the displacement for x in this range is the displacement at

the end of the first actuator plus the slope at the end of the first actuator times the distance

from the end of the first actuator:
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.Y'(x) = y'(x, +11)
=KV,
y(x) = y(x1 +l,)+ y'(x1 +ll)[x—(x1 +ll)]

K’V’I >+ KV [x~(x, +4)]
ll
= KlVlll[x" X __2_:1

Continuing in this manner leads to the following general slope and transverse

f (x1+11Sx£x2)

displacement relations for a beam with » attached piezoceramic actuators:

a) For x prior to the first actuator
' — 0
i) (0<x<x) (4.10)
yx)=0]

b) For x on the first actuator

y'(x) = KaVl(x”xl)

KV X, <x<x,+1 411
y(X): 121(36—3‘71)2 ( ' ! 1) ( )
o For x on actuator k
k-1
Y () =KV, (x- )+1§1K, i kaSxSxk”kj w2
V, o 1 = '
( ) +Z‘K1Vxlx(x X, __,) k=23,...,n
i=1 2
d) For x between actuator k and k+1
k
y (x) = l_ZlKiVili X, +l, <x<x,,
. ) (4.13)

k / _ i
y(x): ZKiV;‘li(x“xi "_21‘ k 172,-“,7’1 1
i=1
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e) For x between actuator n and the free end of the beam (x =L)

y(x)=D KV,
i=1

n l
y(x) = ZKin.li (x -x, - -’—)
i=1 2

(x,+1,<x<L) (4.14)

B. OPTIMIZATION PROBLEM IN KUHN-TUCKER FORM

It is desired to determine the optimum placement of piezoceramic actuators to
approximate a desired beam shape function under actuator-induced deformation.
Optimization requires a suitable cost function to serve as a measure of performance for a
given actuator configuration. The optimum actuator configuration achieves the absolute
minimum value of the cost function among all possible values of the input variables. For
piezoceramic actuators, these input variables can be expressed as actuator position, length,
input voltage, and beam curvature per unit actuator input voltage.

An appropriate cost function for measun'ng actuator performance in static

deflection of a cantilever beam is:

J= f[y(x)—yd(x)]zdx (4.15)

where x is the coordinate along the length of the beam and y(x) and y.(x) are the actual
and desired transverse beam deflections at each point along the beam, respectively, as
shown in Figure 17. Values of x range from O at the constrained end to L at the
unconstrained end of the beam. Equation 4.15 is minimized by the combination of input
variables that produces a y(x) which provides a continuous "least squares" fit to the
desired shape function over the length of the beam.

The actuator locations and lengths are constrained by:
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(4.16)

where n is the number of actuators and x; and /; are the locations and lengths of the
actuators as shown in Figure 17. Equations 4.16 ensure that all actuators are located
entirely on the beam with no overlap and that all have nonnegative length. Constraints on
the maximum actuator lengths can also be included. Furthermore, the input voltages to
the piezoceramic actuators must lie within an operating range specified by:
Vein <V, <V (i=1,2,...,7) (4.17)

where V,.» and V. are the actuator's minimum and maximum operating voltage and V; is
the input voltage to the ith actuator.

The problem of optimizing Equation 1 within the constraints of Equations 4.16 and

4.17 can be expressed in Kuhn-Tucker (KT) form [Ref 8] as: Minimize Equation 4.15

subject to:
gl(g):_xl <0
gi(g):xi_1 +1,,—x%x,<0 (iz2,3,...,n)
gn+1(Z):xn +1n -L<0 (418)

gn+l+i(z): _li <0 (l = 1,2,..,,1’1)
g2n+1+i(§)=( i_Vmin)(Vi_Vmax)SO (i:1>27"'>n)

where the vector of input variables, z, is given by
z=[xx, 0 LV (4.19)
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A KT problem is typically solved by constructing a Lagrangian, given by:
L=J (Z) + Plgl(é) + #2g2(£)+“'+/‘lmgm(£) (4.20)

and solving the system of equations:

a_a, &bE &@ %) _
P 2 + 4, Py + 4 o2 ..+, oz =0 .
421
=0 ifg (<0 |
'{>0 itg -0 ="

where m is the number of constraint equations. Equations 4.21 with all g terms set to 0
may have no solutions or one or more solutions for the values of the input variables, with
each solution corresponding to a local minimum or maximum of Equation 4.15. A local
minimum may or may not be the global minimum, if a global minimum exists. If Equation
4.15 has either no finite global minimum or a global minimum outside the constrained
range of input variables, the minimum value of Equation 1 over the allowable range of
input variables may lie on a constraint boundary. The 4, terms in Equations 4.20 and 4.21
allow for the possibility that the minimum value of the cost function in Equation 4.15 over
the bounded range of possible input variables specified by Equation 4.18 lies on one or
more constraint boundaries. The minimum value of the cost function on constraint
boundary 7 can be found by including g; as an additional variable to be solved for in the z
vector and adding the corresponding constraint equation g;=0 to the system of equations
to be solved in Equations 4.21. Differentiating Equation 4.20 with respect to the

additional variable ; can be seen to return the appropriate constraint equation.
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C. SELECTED SHAPE FUNCTIONS FOR ANALYSIS

An analytical expression for the cost function to be minimized can be obtained by
substituting Equations 4.10 through 4.14 into Equation 4.15, provided that all terms
involving the desired beam shape function y,(x) are integrable. Two suitable shape
functions were selected for evaluation of optimal actuator placement. The first, a

parabolic shape function given by:
y,(x) = Cx? 4.22)

was selected as a due to its mathematical simplicity and its applicability to common
structures such as antennas. This shape function has uniform curvature C over the length

of the beam. A second shape function given by:
(%) = C[1- cos(mx)] (4.23)

where m = #/L, was chosen to analyze the effect of non-uniform desired curvature and an

inflection point on the optimization process. This function has curvature:

y, (%)= ng cos(%) (4.24)

which is positive over the first half of the beam and negative over the second half The
inflection point for this function is at x = 0.5L, where the curvature is zero.
Substituting Equation 4.22 and Equations 4.10 through 4.14 into Equation 4.15

gives an expression for the cost function associated with the parabolic desired shape:
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7=73
. s \ \
(aZk ‘C)Z (xk +lk5) - ka +2(a2k _C)alk (xk +lkz - xk4
3
+Z< +[2(a2k _C)aOk +a1k2](xk +lk3 — xk3 L
k=1
]
+2a,a,, (xk +lk2) & +aok21k
C2 xk+15 _(:k +lk)5 —-2Cb]k xk+14 —(;ck +lk)4 )
_ 3 2
e (2B 18,2 —(;C h) 2y T _(; o) |
k=1
+b0k2(xk+1 X _lk)
e Bt o Eo(nd)
5 r-(x,+1) r—(x,+1) (42)
+(-2c,, +bxnz)$—+2bm on x2" "

+8,,(L—x,~1,)

where the coefficients a; and b; are obtained by rewriting the beam displacements in

Equations 4.10 through 4.14 as polynomials in x:

For x prior to the first actuator:

yx=0 (0<xs<x) (4.26)

For x on actuator k:

kaxSxk+lkj

k=12,...,n (4.27)

y(x) =a2kx2 +a,.x+4a,, (
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For x between actuator k and k+1:

x, +], <x<x
y(x)=b1kx+bo,c ( k k k+1)

k=12,.,n-1 (4:28)
For x between actuator 7 and the free end of the beam (x = L)
y(x) =b,x+b,, (xn +1 <x< L) (4.29)
giving:
KV,
a,, = "2“ (k=12,..,n)
r —KVix (k=1)
. -1
T VKo, + DKV (k=23,..,n)
i=1
Klexxlz_ (k = 1)
Uy =1 g o2 i (4.30)
k zk b ZK,V;I,(x, +—'J (k=23,...n)
i=1

An equation for the cost function associated with the second shape function can
similarly be obtained by substituting Equation 4.23 and 4.26 through 4.30 into Equation
4.15, giving:
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2 . L 1 .
J=C? [xl - sin(mx, )+ > am sm(ZmL)J

5 4

az;,Z (xk +lk)5 - X, 20,4, (xk +lk)4 x,
’ 4
3 3
+[2612k(a(,k _C)+alk2](xk +1k3) _x,

B

2 2

+2a,k(a - C) (xk +lk2) % +(a0k ‘C)Zlk

] +4‘:;kc [(xk +l COS(m x, +1 )) X, cos(mxk)]

+

k=1 (xk +1, )2 2 . X, 2

+2a,,C IR E— sm(m(xk +lk))“(7”'—m_
2a1k 248 coslm(, +1,) - cosfms, )]

_(_@_’;k_g[(xk +[k)sin(m(xk +lk))— X, sin(mxk )]
4 E(ﬂ)f_n_:i)q [sin(m(x L+ )) - sin(mxk )]

3 2 _ 2
bucz *ra (;Ck +lk) +2b1k(bok —C) e (;k +lk)
+(bok - C)Z(xkn — X _lk)

= 2b,C
S loodme)- oot 1)

k=1

+ gb—;’:g—[xm sin(mx,m) - (xk +1, )sin(m(xk +1, ))]

. M[sm(mxm) —sin{m(x, +1,))

m

(continued on next page)
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3 _ 3 2 2
+b1n2 L (x3n +ln) +2bln(b0n "C)L (xn +In)
+ (bOn B C)z (L X, ‘ln)
2, C
- [cos(mL) - cos(m(xn +1, ))] (4.31)

+ Zb;C [L sin(mL)— (xn +1, ) Sin(m(x" +1, ))]

. 2(b,, - c)c[

sin(mL) — sin(m(xn +1, ))]

D. ALGORITHM FOR SOLUTION OF OPTIMIZATION PROBLEM FOR
ACTUATORS WITH FIXED DIMENSIONS AND PROPERTIES

The MATLAB software package was used for development of an algorithm to
optimize actuator placement and voltage for a given shape function and fixed actuator and
beam dimensions and properties. The shape functions of Equations 4.22 and 4.23, with
Equations 4.25 and 4.31, respectively as corresponding cost functions, were used for
evaluation. Inspection of Equation 4.25, with appropriate substitutions from Equations
4.30, reveals that its terms are up to fifth order polynomials in the actuator locations x; and
lengths /; multiplied by second order polynomials in the actuator curvatures K.V,
Equation 4.31 is similar, with sine and cosine terms replacing some of the polynomial
terms. If the actuator dimensions and properties are fixed, then the lengths /; and
curvatures per unit input voltage will be constant values. Either cost function is therefore
minimized by optimizing the remaining variables x; and V;. Equivalently, if only the
actuator lengths are specified, the cost function is minimized by optimizing the actuator
locations x; and curvatures x; = K;V;, The actuator configuration and cross-sectional
properties can then be chosen to maximize the actuator curvature per unit voltage as
discussed in Chapter III.

The MATLAB Optimization Toolbox includes three functions intended for the
optimization of multivariable functions. Two functions, fminu and fmins, perform

unconstrained optimization of the input variables of a cost function, while one function,
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constr, performs optimization of the input variables subject to constraints on their values.
Fmins uses the simplex search algorithm developed by Nelder and Mead. Fminu uses the
quasi-Newton method of Broyden, Fletcher, Goldfarb and Shanno (BFGS) with a mixed
quadratic and cubic line search procedure to determine a search direction at each iteration.
Constr also uses a BFGS quasi-Newton method to solve a quadratic subproblem at each
iteration of a sequential quadratic programming routine. Grace [Ref 9] provides a
thorough description of the BFGS and sequential quadratic programming algorithms but
omits detailed discussion of the Nelder and Mead technique.

Initial attempts to optimize actuator placement and voltages simultaneously using
constr and fminu proved unsuccessful. These algorithms returned unreliable results with
minimal change in the initial actuator locations and voltages specified for each test,
regardless of the settings of the tolerances on the input variables and cost function
evaluations and other options associated with the functions. Fmins produced much better
results in general but was found to return erroneous results for some sets of initial
conditions for three or more actuators. The likelihood of erroneous results increased
directly with the number of actuators evaluated. A more robust method of optimizing
actuator locations was therefore judged to be needed.

A revised approach to the optimization problem was developed, drawing on the
work of Clark and Fuller [Ref. 10] and Wang, Burdisso and Fuller [Ref. 11] to optimize
actuator locations for structural acoustic control. The latter group noted that the
mathematical inconsistency in order of the voltages and actuator locations in their
objective function formulation requires independent solution for the voltages and
locations. Both groups therefore determined optimum actuator voltages for each set of
actuator locations evaluated in their algorithms to determine optimum actuator placement.
A similar approach can be applied to this problem by using an outer optimization
algorithm to determine the actuator locations which minimize Equation 4.25 or 4.31 with
an embedded algorithm to determine the optimum actuator input voltages for each set of
actuator positions evaluated. The cost function for the outer algorithm thus becomes a

fifth order polynomial in the actuator locations x;, with sine and cosine terms if Equation
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4.31 is used, while the cost function for the embedded voltage optimization algorithm
becomes a second order polynomial in the actuator input voltages V..

A two-stage solution algorithm to determine the optimum actuator locations and
voltages for a given set of actuator and beam dimensions and properties was implemented
as described above using MATLAB. The algorithm was tested using either constr, fminu
or fmins to perform the required optimization. Both constr and Jfminu were again found to
return unreliable results with almost no change in the specified initial conditions but the
Jmins simplex search routine was found to be highly reliable, converging to the same
results for a given number of actuators and set of actuator and beam dimensions and
properties, over a wide range of specified initial actuator positions. This is consistent with
the observations of Parkinson and Hutchinson [Refs. 12, 13], who noted that the Nelder
and Mead Simplex (NMS) algorithm has proven to be robust, although less efficient than
some unconstrained optimization algorithms. A block diagram of the algorithm
incorporating fmins is shown in Figure 18. The outer stage of the algorithm uses Jfmins to
perform a simplex search to determine the actuator positions, starting from an initial
estimate, which minimize the cost function to a set tolerance. The inner stage of the
algorithm uses fimins to determine the optimum actuator input voltages for each set of
actuator positions evaluated by the outer stage. The effect of actuator input voltage is
therefore completely transparent to the outer stage, while the actuator locations are fixed
for each evaluation of the inner stage.

The use of the unconstrained optimization algorithm fmins to solve the constrained
actuator location and voltage optimization problems is acceptable provided that the
optimum solution is at the global minimum of the cost function and does not violate any of
the constraints. Since the integrand of Equation 4.15 is always non-negative, the value of
the cost function will also be non-negative and the cost function will have a global
minimum. The algorithm presented here is therefore suitable for shape functions which do
not result in actuator overlap and which require actuator input voltages within the
allowable range. Complex desired shape functions with significant curvature variation

over distances on the order of an actuator length or less might result in solutions with
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actuator overlap, requiring that the NMS routine be modified to include constraints or
replaced with another suitable constrained optimization algorithm for both voltage and

position optimization.

Select Initial Estimate of
Optimum Actuator Positions

Select Initial Estimate of

Optimum Actuator Voltages
Determine Optimum Voltages
Determine Optimum Actuator for Each Set of Positions
Locations using Nelder and Evaluated using Embedded
Mead Simplex Algorithm Nelder and Mead Simplex
Algorithm
Output
Results

Figure 18. Actuator Placement Optimization Algorithm

E. VALIDATION OF OPTIMIZATION ALGORITHM

1. Results for Parabolic Shape Function

The optimization algorithm was implemented using the MATLAB program
actplace.m and its associated subroutines, which are presented in the appendix. The
program was tasked with determining the optimum locations for between one and five
actuators on a one meter long cantilever beam to best approximate a desired parabolic
beam shape with a tip displacement equal to 0.1% of the beam length. The beam was

specified to have the properties of 7075-T6 aluminum, a length of 1 meter, a width of 5.08
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cm (2.00 in.) and a thickness of 1.575 mm (0.062 in.). The beam curvature per unit
actuator input voltage was calculated for a symmetrically mounted pair of 0.26 mm (10
mil) thick Navy Type II piezoceramic actuators covering 75% of the width of the beam.
Each actuator length was fixed at 10% of the overall beam length. The algorithm was
tested with at least four sets of arbitrarily selected initial actuator locations for each
number of actuators to ensure convergence to the same optimum values. The initial
configurations tested included all actuators clustered at the root of the beam, all actuators
clustered at the center of the beam and actuators distributed over the length of the beam.
An additional test was performed with the initial actuator locations within a few percent of
beam length of the optimum locations found on previous trials for comparison of the
number of floating point operations required to reach convergence. Initial actuator
voltages were the optimum voltages for the initial actuator locations for each case,
determined using finins, except where noted.

The results for each number of actuators are tabulated with respect to each set of
initial conditions in Table 2 through Table 6. The optimization aigorithm proved to have
minimal sensitivity to the initial actuator locations specified for up to five actuators, with
two exceptions denoted by asterisks in Table 5 and Table 6. Grouping the initial locations
for four actuators adjacent to one another at the center of the beam and using optimum
voltages for this initial configuration as an initial estimate for all voltage evaluations
prevented the inner voltage optimization algorithm from converging within the set
maximum of 10,000 iterations at some point during the optimization process. Using the
same actuator locations with initial voltage estimates of 0 produced erroneous results with
some actuator overlap, as shown in the Run 2 column of Table 5. Similarly, grouping the
initial locations for five actuators adjacent to one another at the root of the beam produced
erroneous results with the first actuator overhanging the fixed end of the beam, as shown
in the Run 1 column of Table 6. For both of these cases, slightly changing the initial
conditions to allow 1 to 2% of beam length spacing between the initial actuator positions
produced results consistent with those for the remaining sets of initial conditions tested, as

shown in the Run 5 columns of the respective tables. The optimum actuator positions
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obtained in the remaining cases for each number of actuators differed by at most 107,
which was the set tolerance on the actuator locations for termination of the fmins function.
The optimum deformed beam shape is plotted versus the desired parabolic shape for each
- number of actuators in Figure 19 through Figure 23.

The results of the actuator voltage optimization algorithm were compared to the
results of exhaustive searches of all possible combinations of discrete sets of actuator
voltages, for the one, two and three actuator cases. The actuator voltages were varied
discretely over specified ranges for actuator locations fixed at the optimum locations
found by the plabement optimization algorithm. Figure 24 through Figure 27 show plots
of the variation of error with actuator input voltage. For all cases, the error due to the
voltages obtained from the optimization was. less than the smallest error obtained by the
discrete search. Additionally, the voltages obtained from the optimization algorithm
coincide with the locations of the minimum error in the corresponding plots.

The results of the actuator placement optimization algorithms were similarly
compared to the results of exhaustive searches of all possible combinations of discrete sets
of actuator locations for the one, two and three actuator cases. The actuator locations
were varied discretely over specified ranges and the optimum actuator input voltages were
determined for each combination of actuator locations using the voltage optimization
algorithm. Figure 28 through Figure 31 show plots of the variation of error with actuator
location. As for the voltages, the error due to the actuator locations obtained from the
optimization was less than the smallest error obtained by the discrete search and the
locations obtained from the optimization algorithm coincide with the locations of the
minimum error in the corresponding plots. Table 7 shows the results for three actuators
which can be compared to the results of the optimal placement algorithm in Table 4.

The comparison of the slopes of Figure 25 through Figure 27 and Figure 29
through Figure 31 illustrates the relative importance of each of the actuators in
determining the error between the actual and desired beam shapes. The location and input
voltage, or equivalently curvature, of actuator 1, the actuator closest to the cantilevered

end of the beam have the most significant effect. Similarly, the location and input voltage
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of actuator 2 have a greater impact than those of actuator 3. This is consistent with the
fact that each actuator affects the shape of the beam from its location to the beam’s free
end but has no effect on the shape of the beam between the cantilevered end and its
location. Actuator 1 therefore affects the greatest portion of the beam’s length, followed

by actuator 2, then 3, etc.

2. Results for Second Shape Function

Following evaluation of the optimization algorithm’s performance with the
parabolic shape function, the algorithm was tasked with determining the optimum location
for between one and four actuators to best approximate the beam shape given by Equation
4.23 with a beam tip displacement again equal to 0.1% of the beam length. The beam and
actuators were given the same dimensions and properties as in the previous tests. The
algorithm was tested with at least four sets of initial actuator locations for each number of
actuators to check convergence to the same optimum values. The initial configurations
tested again included all actuators clustered at the root of the beam, all actuators clustered
at the center of the beam, actuators distributed over the length of the beam and initial
locations within a few percent of beam length of the optimum locations found on previous
trials. Initial actuator voltages were the optimum voltages for the initial actuator locations
for each case.

The results of the tests for the shape function of Equation 4.23 are presented in
Figure 32 through Figure 36 and Table 8 through Table 11. The optimization algorithm
showed greater sensitivity to initial conditions for this shape function than for the
parabola, particularly for the four actuator test, but again converged to essentially the
same results for a variety of sets of initial conditions for each number of actuators.
Several sets of initial conditions prevented the inner voltage optimization algorithm from
converging within the set maximum of 10,000 iterations at some point during the
optimization process. Grouping the initial actuator positions at the root of the beam

resulted in the algorithm converging on local minima of the cost function for the two and

59




four actuator cases, as shown in the Run 1 column of the respective tables. While the
result of the two actuator case for these initial conditions, with the first actuator
overhanging the fixed end of the beam, is obviously erroneous, the result of the four
actuator case is a valid local minimum. Comparison of the actuator locations which result
in the global minimum of the cost function in Figure 35 and the actuator locations
resulting in the local minimum in Figure 36 illustrates this.

The curvature of the desired shape function, given by Equation 4.24, is
decreasingly positive from the root to the midpoint of the beam and then increasingly
negative from the midpoint to the free end of the beam. It can thus be qualitatively seen
that actuators must be located in the regions of high desired curvature near the ends of the
beam to most closely approximate the desired shape. Similarly, actuators in the low
curvature region near the midpoint of the beam provide relatively little benefit in reducing
the cost function. The combination of three actuators producing successively lower
curvatures near the root and one actuator producing a high curvature in the opposite
direction near the free end of the beam in Figure 36 provides a relatively good
approximation of the shape function over its high-curvature portion near the root of the
beam but a poorer approximation of the shape function over its high-curvature portion
near the free end. In contrast, the combination of two actuators near the root and two
actuators near the free end of the beam in Figure 35 provides a slightly poorer
approximation of the shape function over its high-curvature portion near the root of the
beam but a much better approximation of the shape function over its high-curvature
portion near the free end, resulting in a lower overall value of the cost function than the
arrangement in Figure 36. Grouping the initial actuator positions near the root of the
beam prevented the optimization algorithm from moving more than one actuator past the
inflection point in the desired shape function at x = 0.5L. However, the initial conditions
for runs 4 through 6 in Table 11, which start two actuators on each side of the inflection

point, allow the optimization algorithm to achieve the correct optimum positions.
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3. General Observations

The two shape functions considered here illustrate the importance of properly
selecting initial conditions for the optimization algorithm. Allowing some space between
initial actuator locations was proven to be beneficial, but not always required to obtain
convergence. The presence of inflection points or significant variations in the curvature of
the desired shape function can result in actuator locations producing a local minimum in
the error cost function and must therefore be considered in selecting initial conditions.
Knowledge of the approximate locations of the optimum actuator positions should be used
if possible, and multiple sets of initial conditions should be evaluated to ensure the
minimum obtained is the global minimum. Exhaustive searches of discrete sets of actuator
locations can be helpful in selecting initial conditions, but such searches become

increasingly computationally intensive as the number of actuators is increased.
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Run Number 1 2 3 4
Initial Actuator 0 02 0.6 0.25
Location (m)

Initial Actuator 25.23 36.71 104.59 40.74
Voltage (V)

Optimum Actuator 0.2419 0.2420 0.2419 0.2419
Location (m)

Optimum Actuator 40.05 40.05 40.05 40.05
Voltage (V)

Error (10”) 1.335 1.335 1.335 1.335
Operations (10°) 3.08 1.53 2.93 1.10

Table 2. Optimization Algorithm Results for One 10% Length Actuator for Parabolic

Desired Shape
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Figure 20. Optimal Locations for Two 10% Length Actuators for Parabolic Desired
Shape
Run Number 1 2 3 4
Initial Actuator 0.0 04 0.25 0.1
Locations (m) 0.1 0.5 0.65 0.5
Initial Actuator -26.64 94.79 37.66 20.85
Voltages (V) 61.55 -50.78 12.97 26.95
Optimum Actuator 0.1220 0.1220 0.1220 0.1220
Locations (m) 0.5394 0.5394 0.5394 0.5394
Optimum Actuator 23.50 23.50 23.50 23.50
Voltages (V) 24.85 24.85 24.85 24.85
Error (10™) 1.366 1.366 1.366 1.366
Operations (10%) 2.88 1.72 1.55 0.83
Table 3. Optimization Algorithm Results for Two 10% Length Actuators for Parabolic
Desired Shape
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Run Number 1 2 3 4 5 6
Initial Actuator 0.0 0.35 0.20 0.1 0.05 0.075
Locations (m) 0.1 0.45 0.45 0.4 0.35 0.370
0.2 0.55 0.70 0.7 0.65 0.665
Initial Actuator 16.61 100.09 31.45 19.40 14.69 16.89
Voltages (V) -40.88 -99.82 4.58 17.62 19.48 18.18
62.52 50.20 19.22 17.94 18.51 18.25
Optimum 0.0728 0.0728 0.0728 0.0728 0.0728 0.0728
Actuator 0.3678 0.3678 0.3678 0.3678 0.3678 0.3678
Locations (m) 0.6641 0.6641 0.6642 0.6641 0.6642 0.6641
Optimum 16.67 16.67 16.67 16.67 16.67 16.67
Actuator 18.32 18.32 18.32 18.32 18.32 18.32
Voltages (V) 18.30 18.30 18.30 18.30 18.30 18.30
Error (10™) 2.779 2.779 2.779 2.779 2.779 2.779
Operations 20.3 8.63 8.39 4.48 5.48 3.17
(109
Table 4. Optimization Algorithm Results for Three 10% Length Actuators for Parabolic
Desired Shape
Run Number 1 2% 3 4 5
Initial Actuator 0.0 0.3 0.1 0.05 0.28
Locations (m) 0.1 04 03 0.25 0.39
0.2 0.5 0.6 0.50 0.51
0.3 0.6 0.8 0.75 0.62
Initial Actuator -22.33 0 17.51 12.58 64.31
Voltages (V) 70.51 0 12.75 13.23 -44 .41
-47.54 0 17.92 16.22 15.55
38.53 0 8.98 14.35 16.00
Optimum Actuator 0.0462 0.0794 0.0462 0.0462 0.0462
Locations (m) 0.2742 0.3700 0.2743 0.2742 0.2743
0.5038 0.6141 0.5039 0.5038 0.5039
0.7334 0.7697 0.7335 0.7334 0.7335
Optimum Actuator 12.95 17.35 12.95 12.94 12.95
Voltages (V) 14.19 16.87 14.20 14.19 14.20
14.20 12.17 14.19 14.20 14.20
: 14.18 9.74 14.18 14.18 14.18
Error (10™) 7.528 16.48 7.528 7.528 7.528
Operations (10") 7.88 7.83 2.69 1.78 5.27
Table 5. Optimization Algorithm Results for Four 10% Length Actuators for Parabolic
Desired Shape

65




, zin® Actual vs. Deslred Beam Shapes

R amhhm va'ues. fo" ‘ 'ﬁmato'é .............. : ..............

L xi e .aé.*sz;.m. -+ 'i’i' =10 05 V ............... ..............

[=]
®

: : : : — Aaual
I !2‘=‘ﬂ§274‘31h'f"'fé‘=‘|i:2"-‘"'§""'"""“"i .............. © Deslrad

)
o
w

S x3r=-;503‘91\1-?-’-‘$2~=‘14:2-V---; .............. ...............

Heam Displacemant Y (m

[ =] o
E ]
H 1
Tk
a

PO T R ©
B &
¢ 3
el

A
: It
. #
R
: <
I

= ]
@
T

=]
]
T
‘
:
.
:
:
:
'
.
’
H
:
:
'
'
.
-
:

otk---eeee- : .......

X {m}
Figure 22. Optimal Locations for Four 10% Length Actuators for Parabolic Desired
Shape

66




3

¥ 10

Actual vs. Deslred Beam Shapes

Beam Diplacement Y (m]
o bt o o o o
[~ ] P n [ ] b =

=]
)

o1

— Antial
Desired

X {m}
Figure 23. Optimal Locations for Five 10% Length Actuators for Parabolic Desired
Shape

67




Run Number 1* 2 3 4 5
Initial Actuator 0.0 0.25 0.05 0.05 0.00
Locations (m) 0.1 0.35 0.25 0.20 0.11
0.2 0.45 0.45 0.40 0.22
0.3 0.55 0.65 0.60 0.33
0.4 0.65 0.85 0.80 0.44
Initial Actuator -1.54 27.22 11.59 11.25 11.33
Voltages (V) 31.37 12.93 16.55 6.56 -2.36
-30.73 13.58 4.06 25.93 3.04
26.74 -16.96 23.07 -3.48 17.09
17.24 8.83 -7.16 12.04 14.88
Optimum Actuator -0.0100 | 0.0298 0.0298 0.0298 0.0298
Locations (m) 0.1531 0.2155 0.2155 0.2155 0.2156
0.3548 0.4031 0.4031 0.4031 0.4031
0.5575 0.5907 0.5906 0.5907 0.5906
0.7610 0.7782 0.7782 0.7782 0.7782
Optimum Actuator 6.39 10.62 10.62 |- 10.62 10.62
Voltages (V) 12.38 11.60 11.60 11.60 11.60
12.51 11.60 11.60 11.60 11.59
12.56 11.60 11.60 11.59 11.59
12.57 11.58 11.58 11.58 11.58
Error (10™%) 3.688 2.310 2310 2.310 2.310
Operations (107) 15.7 14.5 7.52 6.80 24.5
Table 6. Optimization Algorithm Results for Five 10% Length Actuators for Parabolic
Desired Shape
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Figure 24. Variation of Error with Input Voltage for One Actuator at Optimum Location

for Parabolic Desired Shape
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Emer vs. Actuator Input Yohagos fer 2 Actuators

Run 1
xi0”

Actuator Locatdons: 0122 m 05384 m

Voltage 2 (v} Voltage 1 {V}

Figure 25. Variation of Error with Input Voltages for Two Actuators at Optimum
Locations for Parabolic Desired Shape
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xi1a” Error vs. Actuator 1 8 2 Yoltage at Opimum Actuater 3 Voltage

3\ Run 1

b Actuator Locatons: 00728 m 03878 m Q.6841m

Voltage 2 {V} 40 38 30

Voltage 1 {V}

Figure 26. Variation of Error with Actuator 1 and 2 Input Voltages for Three Actuators
at Optimum Locations and Optimum Actuator 3 Input Voltage for Parabolic Desired
Shape
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Voltage 3 {V) 40 35

Volage 2 (V)

Figure 27. Variation of Error with Actuator 2 and 3 Input Voltages for Three Actuators
at Optimum Locations and Optimum Actuator 1 Input Voltage for Parabolic Desired
Shape
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Figure 28. Variation of Error with Actuator Location for One Actuator for Parabolic
Desired Shape
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Error vs. Actuator Locations for 2 Actuaters
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Figure 29. Variation bf Error with Actuator Location for Two Actuators for Parabolic
Desired Shape
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Run Number

2 3 4 5 6
Actuator 0.0- 0.0- 0.00- 0.000- 0.05- 0.055-
Location 0.7 0.4 0.20 0.100 0.10 0.095
Ranges (m) 0.1- 0.2- 0.25- 0.325- 0.35- 0.355-
0.8 0.6 0.45 0.425 0.40 0.395
0.2- 0.5- 0.55- 0.625- 0.65- 0.655-
0.9 0.9 0.75 0.725 0.70 0.695
Spacing 0.1 0.05 0.025 0.0125 0.00625 0.005
Between
Discrete
Actuator
Locations (m)
Discrete 0.1 0.05 0.075 0.075 0.07500 0.075
Actuator 04 0.35 0.375 0.375 0.36875 0.370
Locations for 0.7 0.65 0.675 0.675 0.66625 0.665
Minimum Error
(m)
Optimum 1940 | 1588 | 16.96 16.96 16.87 16.89
Actuator 17.62 | 1948 | 18.68 18.68 18.06 18.18
Voltages (V) 17.94 | 1850 | 18.13 18.13 18.28 18.25
Error (x 10" | 3.674 | 3210 | 2.806 2.806 2.786 2.783

Table 7. Results of Discrete Actuator Placement Algorithm for Three Actuators for

Parabolic Desired Shape
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Error vs. Actater 1 & 2 Lozaton at Opimum Actuator 2 Locaton

Run 2

x 10
Actuator Locatons: 0. Wm 0&Em

a
Actuator 1 {m) 0.2 Actuater 2 {m)

Figure 30. Variation of Error with Actuator 1 and 2 Location for Three Actuators with
Actuator 3 at Optimum Location for Parabolic Desired Shape
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Figure 31. Variation of Error with Actuator 2 and 3 Location for Three Actuators with
Actuator 1 at Optimum Location for Parabolic Desired Shape
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Figure 32. Optimal Location for One 10% Length Actuator for Equation 4.23 Desired
Shape
| Run Number 1 2 3 4
Initial Actuator 0 0.2 0.6 0.1
Location (m)
Initial Actuator 3529 49.93 126.64 41.74
Voltage (V)

Optimum Actuator 0.0631 0.0631 0.0632 0.0631
Location (m)
Optimum Actuator 39.19 39.19 39.19 39.19

Voltage (V)
Error (10™) 1.243 1.243 1.243 1.243
Operations (10°) 4.47 4.22 5.90 2.86

Table 8. Optimization Algorithm Results for One 10% Length Actuator for Equation
4.23 Desired Shape
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Figure 33. Optimal Locations for Two 10% Length Actuators for Equation 4.23 Desired
Shape
Run Number 1* 2 3 4 5
Initial Actuator 0.0 0.4 0.25 0.1 0.1
Locations (m) 0.1 0.5 0.65 0.25 0.75
Initial Actuator 13.64 214.07 67.89 50.72 4421
Voltages (V) 25.70 -190.42 -54.75 -12.17 -31.68
Optimum Actuator -0.0100 | 0.0942 0.0942 0.0941 0.0942
Locations (m) 0.0989 0.7441 0.7441 0.7441 0.7441
Optimum Actuator | 12.08 43.70 43.70 43.70 43.70
Voltages (V) 27.27 -29.32 -29.31 -29.31 -29.30
Error (107%) 12.25 1.698 1.698 1.698 1.698
Operations (10°) 2.28 3.96 2.96 3.41 1.81

Table 9. Optimization Algorithm Results for Two 10% Length Actuators for Equation
4.23 Desired Shape
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Figure 34. Optimal Locations for Three 10% Length Actuators for Equation 4.23
Desired Shape
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Run Number 1 2 3* 4 5
Initial Actuator 0.0 0.35 0.20 0.1 0.05
Locations (m) 0.1 0.45 0.45 04 0.20
0.2 0.55 0.70 0.7 0.70
Initial Actuator 21.44 195.57 66.51 43.49 27.29
Voltages (V) 1132 | -18343 | -2636 3.27 18.43
6.28 18.63 -19.35 2843 | -26.67
Optimum 0.0268 | 0.0268 | DidNot | 0.0268 | 0.0267
Actuator 0.2133 | 0.2133 | Converge | 0.2133 | 02132
Locations (m) 0.7184 | 0.7184 0.7184 | 0.7184
Optimum 24.60 24.60 24.61 24.59
Actuator 21.18 21.18 21.17 21.19
Voltages (V) 2942 | -29.42 2942 | -2941
Error (10" 3.153 3.153 3.153 3.153
Operations (10") 2.45 297 1.51 0.84

Table 10. Optimization Algorithm Results for Three 10% Length Actuators for Equation
4.23 Desired Shape

Run Number 1* 2% 3* 4 5 6

Initial Actuator 0.0 0.3 0.1 0.1 0.0 0.05
Locations (m) 0.1 0.4 03 03 0.2 0.25
02 0.5 0.6 0.5 0.7 0.65
0.3 0.6 0.8 0.7 0.9 0.85
Initial Actuator 17.07 151.41 42.46 41.55 19.74 30.18
Voltages (V) 2.89 -109.40 4.64 7.65 26.31 17.04
42.39 -12.45 -11.57 -6.15 -27.09 -19.37
-24.74 1.26 -26.61 -22.63 3.80 -21.98
Optimum 0.0041 | Did Not | Did Not | 0.0303 0.0303 0.0303
Actuator 0.1199 | Converge | Converge | 0.2273 0.2273 0.2273
Locations (m) 0.2463 0.6514 0.6513 0.6513
0.7161 0.8153 0.8152 0.8152
Optimum 16.73 25.76 25.76 25.76
Actuator 15.69 20.92 20.93 20.92
Voltages (V) 13.57 -16.05 -16.04 -16.04
-29.47 -21.81 -21.81 -21.81
Error (10 27.88 8.540 8.540 8.540
Operations 10.7 6.41 5.85 3.38
(10)

Table 11. Optimization Algorithm Results for Four 10% Length Actuators for Equation
4.23 Desired Shape
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Figure 35. Optimal Locations for Four 10% Length Actuators for Equation 4.23
Desired Shape
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F.  EFFECT OF NUMBER OF ACTUATORS FOR A GIVEN TOTAL
ACTUATOR LENGTH

The optimization algorithm was run for a total length of actuators equal to 50% of
the beam length divided into one, two, three, four or five actuators to analyze the effect of
dividing a given total actuator length into increasing numbers of smaller actuators.
algorithm was tasked with determining the optimum location for the actuators on a 0.7875
mm (0.031 in.) thick 7075-T6 aluminum cantilever beam to best approximate a desired
parabolic beam shape with a tip displacement equal to 0.1% of the beam length. The
beam curvature per unit actuator input voltage was calculated for a symmetrically

mounted pair of 0.26 mm (10 mil) thick Navy Type II piezoceramic actuators covering
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75% of the width of the beam. The results for each number of actuators are tabulated in
Table 12 and plotted in Figure 37 through Figure 41. These results demonstrate that
increasing the number of actuators making up the total actuator length contributes
substantially to minimizing the error in approximating the desired shape. Doubling the
number of actuators from one to two and from two to four each resulted in about an order

of magnitude decrease in the error cost function.

Number of 1 2 3 4 5
Actuators
Actuator 0.5 0.25 0.1667 0.125 0.1
Length(s) (m)
Optimum 0.0852 0.0600 0.0450 0.0359 0.0298
Actuator 0.4684 0.3426 0.2646 0.2155
Location(s) (m) 0.6432 0.4955 0.4031
0.7265 0.5906
0.7782
Optimum 3.429 3.824 3.993 4.087 4.147
Actuator 4.159 4.355 4.461 4.528
Voltage(s) (V) 4.350 4.462 4.529
4.456 4.529
4.522
Error (x 102 408.9 5438 14.15 5166 | 2310
Table 12. Opftimization Algorithm Results for 50% Total Actuator Length for Parabolic
Desired Shape
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V. EXPERIMENTAL ANALYSIS

Experimental analysis was conducted in two parts. The first part consisted of
comparison of the performance of several actuator configurations in producing beam
curvature with the predictions from the corresponding Euler-Bernoulli models. The
Euler-Bernoulli predictions neglected the effects of transverse stresses produced by the
piezoceramic, assumed a linear strain distribution across the thickness of the composite
actuator/beam and assumed a linear relationship between beam curvature and actuator
input voltage. The second set of experiments examined the deformation of a beam due to
four single actuators in the optimal locations to best approximate a parabolic displacement

profile.

A. COMPARISON OF ACTUATOR CONFIGURATIONS

1. Physical Configuration

A schematic of the equipment setup for the experiment to compare the
effectiveness of actuator configurations is shown in Figure 42. Piezoceramic actuators
were bonded to a 0.031 in. (0.79 mm) thick 7075-T6 aluminum beam which was
cantilevered such that its length was horizontal and width was vertical to allow bending of
the beam to take place in the horizontal plane. The single actuator, symmetric pair and
stacked pair configurations shown in Figure 5, Figure 6 and Figure 7, respectively, were
each tested on separate beams. Each beam had an overall length of 24 in., 2 in. of which
was held in the clamp, and a width of 0.875 in. All actuators were 2.5 in. long, 0.75 in.
wide and 0.26 mm thick Navy Type II piezoceramic.

A XANALOG nonlinear dynamic systems modeling, simulation and real-time
controls testing system was used to control actuator input and record experimental data.
The XANALOG is a PC-based system incorporating an internal digital signal processor

controlled by NL-SIM software running in a Windows environment. NL-SIM provides a

91




graphical interface which allows a control system model to be constructed using block
diagrams and then compiled and operated in real time. System inputs and outputs can be
displayed in both digital and graphical formats while the system is running and recorded to

data files for post-experiment processing.

Signal
Conditioner

h

Strain

Clamp
‘-’" Gage Aluminum Beam

Amplifier
(15x)
?
AD| (DA | Laser
T ¥ Displacement
Sensor
XANALOG

Figure 42. Experimental Setup for Comparison of Actuator Configurations

Beam tip displacement was measured at a distance of 20.125 in. from the center of
each actuator using an NAiS ANL1651AC infrared laser analog displacement sensor with
an output of 0.1 volts per millimeter of displacement. Beam surface strain was also
measured directly opposite the center of the single and stacked pair actuator
configurations in the beam length and width directions using Measurements Group Inc.
CEA-13-125WT-350 bi-directional strain gages with a 2.16 gage factor. Each gage was
connected to a Measurements Group Model 2120A Strain Gage Conditioner powered by
a Model 2110A Power Supply. The Model 2120A output gains were set to 1732 to
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provide an output of 4 volts per 1000 microstrain measured by each strain gage. Analog
to digital conversion of the laser and strain gage conditioner outputs was performed by an
eight-channel CIO-DAS16/330 A/D board and digital to analog conversion of the actuator
command signal from the XANALOG system was performed by a six-channel CIO-
DDAO6 D/A board. Both boards were manufactured by Computer Boards, Inc. The +10
volt analog output of the DDA06 was amplified by a 15:1 analog amplifier to provide a
+150 volt range of input to each actuator.

The command signal generator shown in Figure 43 was constructed using the NL-
SIM software. The gain of 1.66667 was selected to allow integer command inputs to
produce corresponding multiples of 25 volts input to the piezoceramic actuator when
amplified by the analog amplifier. The second order filter shown was included to provide
a gradual response to changes in the command input in order to prevent excitation of
vibration in the beam. The filter’s damping factor, £, was set to a value of 1 for critical
damping and the filter’s natural frequency, w,, was set to 0.1047 rad/s, corresponding to a
value of 1/60 Hz. The response of the filter allowed the XANALOG output to the analog
amplifier to reach steady state to four significant figures approximately 1.5 minutes after a

change in the commanded input was entered.

Command w2 Gain To 15:1
Input - - - 1.66667 Analog
(0,1,2,3,4,5,6) 5" +2¢m,5+w, Amplifier

Figure 43. Block Diagram of XANALOG Actuator Command Signal Generator
Implementation for Single Actuator Tests

2. Experimental Procedure

All of the experimental equipment was powered for at least 30 minutes prior to
taking measurements to allow steady state conditions to be reached. The XANALOG

system was configured to sample commanded actuator input and laser displacement sensor

93




and strain gage output at one second intervals to allow recorded data to be averaged in
order to minimize the effects of noise in the sensor outputs. The laser and strain gage
conditioner outputs were adjusted to indicate an average zero value as measured by the
XANALOG system prior to the start of each measurement run. Each measurement run
consisted of recording sensor outputs at actuator inputs of 0, 25, 50, 75, 100, 125, 150
and again O volts. Each actuator input was allowed to remain steady for 60 seconds to
provide 60 sensor output data points for each actuator input to be averaged. The next
voltage level was commanded immediately after each 60 second measurement and allowed
two minutes to reach steady state before the next 60 second measurement was initiated.
At least three measurement runs were conducted for each experiment to verify
repeatability of the results. Data for each measurement run was saved to a MATLAB
.MAT data file for processing and plotting. Measurements were taken for the single
actuator acting in both compression and tension to compare the effectiveness of
unsymmetric actuators for these two cases. Measurements for the stacked actuator pair
were taken for the actuator acting in compression, while measurements for the symmetric

actuator pair were taken with one actuator acting in tension and the other in compression.

3. Experimental Results

Measurement data for the single actuator beam is presented in Table 13 and
plotted in Figure 44 for the actuator acting in compression and Table 14 and Figure 45 for
the actuator acting in tension. Data for the symmetric actuator and stacked actuator pair
experiments are presented in Table 15 and Figure 46 and Table 16 and Figure 47,
respectively. Positive strain indicates tensile strain for the single actuator acting in tension
and compressive strain for all other experiments. All runs indicated in the tables and
figures were conducted consecutively with less than five minutes between the completion
of one run and the start of the next. The first run for all experiments except the single
actuator acting in compression was the first use of that actuator on the day of the

experiment. The first measurement run for the single actuator acting in compression was
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conducted immediately after preliminary testing of the experimental equipment which used
the same actuator.

Significant hysteresis, or residual strain after the removal of applied voltage from
the actuator, was apparent on the first run for all but the single actuator compression
experiment. Udd [Ref. 14, p. 503] notes that hysteresis occurs in piezoceramic materials
as the result of “energy dissipation due to internal sliding events in the polycrystaline
piezoelectric body” and typically ranges from 0.1 to 10% of the strain due to an applied
electric field prior to the removal of that field. Residual beam tip displacements of 31%,
23% and 36% of the displacement at maximum input voltage were noted here for the
single, symmetric and stacked actuator beams respectively. The hysteresis effect is much
less apparent in the following measurement runs for each actuator since the zero-
displacement reference was adjusted at the start of each run. Measurements for the single
actuator acting in compression and runs 2 through 4 of the other actuator experiments are
therefore displacements and strains above any hysteresis level in the material at the start of
the run. The displacement measurements for these runs demonstrated excellent
repeatability for all of the actuators. The repeatability of strain measurements for all but
the single actuator beam was also excellent. Strain measurements for the single actuator
showed somewhat more variation from run to run but still reflected the same general trend
as the other measurements.

The dashed lines in Figure 44 through Figure 47 depict the linear variation of beam
tip displacement and beam surface strain predicted by the Euler-Bernoulli model, given by

Equation 4.14 for one actuator:

L.
y(x,V):KlVll]‘(Jvc—x1 —Elj (x1 +1,<x< L) (5.1)

I
where (x— X, ——21—) is the distance between the center of the actuator and the

measurement point at the beam tip. It can be seen from the figures that the Euler-
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Bernoulli model provides a good approximation of the actual behavior of each
actuator/beam combination at low actuator input voltage but differs increasingly from the
actual behavior as voltage is increased. The actual relationship between beam tip
displacement and actuator input voltage can be seen to be nonlinear. This is consistent
with the fact that the published piezoelectric coefficient, ds;, of the piezoceramic
represents a linear approximation of the material behavior over a specified operating
range. The dotted lines in Figure 44 through Figure 47 represent second-order least

squares curve fits of the form:
yWV)=cyV? +cV +c, (5.2)

to the observed displacements as a function of voltage. Coefficients determined for these
curve fits and predicted values of c; from Equation 5.1 are given in Table 17. It should be
noted that the values obtained for ¢, are negligibly small in magnitude. An expression for
a second-order curve fit of actuator curvature as a function of actuator input voltage can

be obtained by dividing Equation 5.2 by the actuator length /, and the measurement

I .
distance (x -x, - 5‘) and omitting the negligible constant term:

VitcelV
k() =— A =k kY (5.3)
ll(x—x1 ——])

Values obtained for the £, and %; coefficients and the predicted curvature per unit voltage
are given in Table 18.

The percentage of actual longitudinal strain in relation to the predicted strain was
roughly 80% of the percentage of actual beam tip displacement in relation to the predicted
displacement for the unsymmetric actuator configurations and roughly 140% for the

symmetric actuator configuration. These percentages are too great to be explained by
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measurement inaccuracies and variation of the beam and actuator material dimensions,
which were determined to be within 2% of nominal values. Since strain was measured at
the surface of the aluminum beam for the unsymmetric configurations and at the surface of
the piezoceramic for the symmetric configuration, these results suggest that the strain
distribution was not truly linear through the composite beam cross-section as shown in
Figure 4. Rather, the strain at the aluminum beam surface was less than predicted by the
" assumed linear strain distribution but greater than predicted at the piezoceramic surface.
The beam tip displacement measurements nonetheless provide a measure of the overall
effect of the strain distribution over the entire actuator section of the beam at producing
curvature of the beam’s neutral axis.

Measured transverse strain tended to exceed the measured longitudinal strain by
between 10% and 20%. The longitudinal strain had been expected to be significantly
greater than the transverse strain due to the significantly larger moment of inertia of the
beam cross-section about its longitudinal axis than about its transverse axis. The larger
longitudinal moment of inertia should result in significantly less longitudinal curvature, and
hence transverse strain, produced by the actuator. The strain gage conditioners for the
longitudinal and transverse strain gages were swapped to eliminate the possibility of
measurement equipment contributing to this resuit but found not to be a causing factor.
The magnitude of the transverse strain measurements indicate that significant curvature
about the beam’s longitudinal axis does in fact occur at least locally near the center of the

actuator.
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Run Predicted 1 2 3
Tip Displacement -
mm (% of predicted)
25V 0.51 0.57 (112) 0.57 (112) 0.57 (113)
50V 1.02 1.20 (118) 1.18 (116) 1.19 (116)
75V 153 1.92 (125) 1.89 (124) 1.90 (124)
100V 2.04 2.65 (130) 2.65 (130) 2.65 (130)
125V 2.58 3.47 (134) 3.47 (134) 3.46 (134)
150V 3.06 4.38 (143) 4.37 (143) 432 (141)
ov 0.00 0.14 0.08 0.07
Longitudinal Strain -
pe (% of predicted)
25V 7.8 6.7 (85) 9.4 (120) 8.6 (110)
50V 15.5 13.0 (84) 17.9 (115) 15.1 (98)
5V 233 222 (95) 282 (121) 24.9 (107)
100V 31.1 33.3 (107) 37.5 (120) 34.6 (111)
125V 38.8 43.5(112) 475 (122) 459 (118)
150V 46.6 56.6 (121) 593 (127) 57.3 (123)
ov 0.0 20 54 03
Transverse Strain -pie
25V 8.6 10.3 93
50V 17.9 204 17.7
75V 28.7 32.3 293
100V 41.7 435 41.1
125V 54.0 56.0 542
150V 69.3 71.1 68.9
ov 1.4 4.9 0.0

in Compression

98

Table 13. Beam Tip Displacement and Strain Measurements for Single Actuator Acting
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Run Predicted 1 2 3 4
Tip Displacement -
mm (% of predicted)
25V 0.51 0.87(171) | 0.56(110) | 0.58 (115) | 0.58 (113)
50V 1.02 1.87(183) | 1.23(121) | 1.23(120) | 1.22(119)
5V 1.53 292(191) | 1.95(27) | 1.94(127) | 1.94(127)
100V 2.04 4.03(198) | 2.72(134) | 2.71 (133) | 2.70 (133)
125V 258 5.18(201) | 3.55(137) | 3.53(137) | 3.54(137)
150V 3.06 6.33(207) | 4.50(147) | 4.45(145) | 4.42(149)
ov 0.00 1.94 0.14 0.09 0.09
Longitudinal Strain -
pe (% of predicted)
25V 7.8 5.2 (67) 6.6 (85) 7.1 (91) 7.8 (100)
50V 15.5 11.4(74) | 13.8(89) 17.2 (111) | 16.7 (108)
5V 233 19.3 (83) 232 (100) | 26.0(112) | 26.2(113)
100 V 31.1 30.5 (98) 33.1(106) | 35.8(115) | 35.8(115)
125V 388 452 (116) | 429 (110) | 46.3(119) | 46.8 (120)
150V 46.6 592 (127) | 553 (119) | 58.2(125) | 57.5(123)
ov 0.0 1.0 -1.1 13 20
Transverse Strain -pe
25V 14.8 8.9 92 9.1
50V 29.7 18.3 202 18.8
BV 423 29.8 30.6 30.1
100 V 63.5 41.6 43.0 419
125V 80.9 543 54.7 54.4
150V 97.9 68.6 69.0 66.9
ov 30.7 22 25 2.0

Table 14. Beam Tip Displacement and Strain Measurements for Single Actuator Acting

in Tension
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Run Predicted 1 2 3 4
Tip Displacement -
mm (% of predicted)
25V 0.71 0.87(122) | 0.83(117) | 0.81(114) | 0.82(115)
50V 1.43 1.96 (137) | 1.81(127) | 1.81(126) | 1.80(126)
5V 2.14 331(155) | 297 (139) | 2.98(139) | 2.98 (139)
100V 2.86 5.00(175) | 4.20(147) | 4.18(146) | 4.13 (144)
125V 3.57 6.71 (188) | 5.37(150) | 5.28 (148) | 5.23 (146)
150 vV 428 8.46 (198) | 6.80(158) | 6.67 (156) | 6.57 (153)
oV 0.00 1.93 0.37 0.28 0.21
Longitudinal Strain -
pe (% of predicted)
25V 14.4 262 (182) | 23.4(163) | 24.7(172) | 223 (155
50V 28.8 59.3(206) | 51.6(179) | 51.0(177) | 49.3(171)
75V 43.1 100.0 232) | 80.1(186) | 81.1(188) | 79.4 (184)
100 V 57.5 1449 (252) | 114.8 (200) | 113.5(197) { 111.7 (194)
125V 71.9 196.4 (273) | 151.6 (211) | 149.6 (208) | 147.1 (205)
150V 86.3 2522 (292) | 196.9 (228) | 192.7 (223) | 188.2 (218)
oV 0.0 68.6 132 104 75
Transverse Strain -pe
25V 28.0 247 26.1 25.0
50V 61.6 549 54.6 533
75V 102.6 85.9 87.1 85.6
100V 148.9 122.8 122.2 120.7
125V 201.7 162.3 160.8 159.2
150V 260.6 211.1 207.0 202.8
ov 594 11.6 10.3 75

Table 15. Beam Tip Displacement and Strain Measurements for Symmetric Actuator Pair
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Run Predicted 1 2 3 4
Tip Displacement -
mm (% of predicted)
25V 0.56 1.03 (184) | 0.57(102) | 0.58 (104) | 0.57(102)
50V 1.12 223(199) | 1.25(112) | 126 (113) | 1.26(112)
75V 1.69 3.43(203) | 2.05(122) | 2.02(120) | 2.01(119)
100V 225 474 (211) | 295131) | 2.90(129) | 2.88 (128)
125V 2.81 6.17 (220) | 3.96(141) | 3.87(138) | 3.81(136)
150V 3.37 7.70 228) | 5.18 (154) | 4.99(147) | 4.94(147)
ov 2.79 0.35 0.19 0.16
Longitudinal Strain -
pe (% of predicted)
25V 8.5 14.1 (166) 8.2(97) 6.2 (73) 7.2 (70)
50V 17.0 29.0 (171) 16.3 (96) 14.4 (85) 17.5 (85)
5V 245 45.0 (184) | 262 (107) | 24.7(101) | 28.0(95)
100 V 33.9 65.8 (194) | 37.0(109) | 34.6(102) | 40.4 (100)
125 v 424 83.2(196) | 49.2(116) | 459(108) | 54.7(108)
150 V 50.9 102.7 (202) | 63.9(126) | 59.8 (118) | 70.4(115)
ov 434 5.7 238 1.5
Transverse Strain -pe
25V 18.1 94 7.8 7.2
50V 36.9 19.2 175 17.5
5V 56.4 30.6 28.8 28.0
100V 76.3 435 41.2 404
125V 97.8 585 55.2 54.7
150V 122.0 76.4 71.8 70.4
ov 512 6.4 29 15

Table 16. Beam Tip Displacement and Strain Measurements for Stacked Actuator Pair
Acting in Compression
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Beam Predicted c; Co i V)
(107 mm/V) | (10° mm/V?) | (107 mm/V) (mm)
Single - Compression 2.04 5.05 2.15 0.00
Single - Tension 2.04 5.15 2.20 0.00
Symmetric Pair 2.86 6.79 3.46 -0.04
Stacked Pair 2.25 8.72 2.03 0.01

Table 17. Coefficients of Curve Fits for Observed Beam Tip Displacement as a Function

of Actuator Input Voltage

Beam Predicted k; =K, ko ki

(10” rad/m/V) (10° radm/V?) | (107 rad/m/V)
Single - Compression 6.28 1.56 6.61
Single - Tension 6.28 1.58 6.77
Symmetric Pair 8.80 2.09 10.66
Stacked Pair 6.93 2.69 6.26

Table 18. Coefficients of Curve Fits for Observed Actuator Curvature as a Function of
Actuator Input Voltage

B. BEAM SHAPE CONTROL WITH FOUR ACTUATORS

1. Physical Configuration

A schematic of the equipment setup for the four-actuator shape control experiment
to compare the effectiveness of actuator configurations is shown in Figure 48. Eight
piezoceramic actuator patches were bonded in four groups of two to one side of a 0.031
in. (0.79 mm) thick 7075-T6 aluminum beam which was cantilevered such that its length

was horizontal and width was vertical to allow bending of the beam to take place in the
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horizontal plane. The beam was also supported at approximately two-thirds of its length
by an air pad riding on a granite table. The beam had an overall length of 45 in., 2 in. of
which was held in the clamp, and a width of 1.625 in. All actuator patches were 2.5 in.
long, 1.50 in wide and 0.26 mm thick Navy Type II piezoceramic, hence each of the four
actuator groups had a total length of 5 in. The actuators were placed at locations on the
beam shown in Table 19 which were determined by the optimization algorithm to best
approximate a parabolic deflected beam shape with four 5 in. long actuators on a 43 in.
long beam. The XANALOG system was again used to control actuator input and record
experimental data and the ANL1651AC laser displacement sensor was used to measure
displacement at selected points along the length of the beam. Beam surface strain was
also measured directly opposite the center of the actuator patch nearer to the cantile\}ered
end of the beam in each of the four actuator groups using a Measurements Group Inc.
CEA-13-125WT-350 bi-directional strain gage opposite the first actuator and a CEA-13-
125UW-350 unidirectional strain gage opposite the other three actuators. Strain gage
output was obtained with a Gould Model 56-1301-00 DC/Bridge/Transducer Signal
Conditioner for each gage. DAS16/330 and DDAO06 boards were used for A/D and D/A
conversion, respectively. Each £10 volt analog output channel of the DDA06 was
amplified by a 15:1 analog amplifier to provide a +150 volt range of input to each

actuator.

Actuator Distance from Percentage of Actuator 3
Cantilevered End Curvature for Parabolic
(in/cm) Shape Approximation
1 1.70/4.31 91.4
2 11.52/29.26 100.0
3 21.43/54.43 100.0
4 31.34/79.60 99.9

Table 19. Actuator Locations and Curvature Ratios for Parabolic Shape Approximation
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Figure 48. Setup of Four Actuator Shape Control Experiment

2. Experimental Procedure

A series of measurements was initially taken to characterize the relationship
between actuator curvature and input voltage for the single actuator configuration on the
beam used for this set of experiments. Beam tip displacement measurements were taken
with voltage applied to the first actuator only and then with voltage applied to the second
actuator only using the procedures described for the previous set of experiments. The
beam tip displacement measurement point was 38 in. from the center of the first actuator
and 28.13 in. from the center of the second actuator.

Two shape control experiments were then performed. Each experiment consisted
of applying voltages predicted to produce the optimum approximation of a parabolic

deformation profile along the beam’s length from its initial undeformed shape.  Voltages
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for each experiment were calculated to produce curvature of the four actuators in the
proportions listed in Table 19. Identical voltages were applied to actuators 2 through 4
since there was negligible difference between the curvatures required from these actuators.
Corresponding input voltages for actuator 1 were determined for the first experiment by
assuming a linear relationship between curvature and voltage as developed in Chapter II.
Actuator 1 voltages for the second experiment were determined by solving Equation 5.3
for the curvature produced by each actuator 2-4 input voltage and then solving Equation
5.3 for the voltage to produce actuator 1 curvature equal to 91.4% of the actuator 2-4
curvature. Coefficients & and k; for Equation 5.3 of 5.19x10® rad/m/V? and 6.26x10™
rad/m/V, respectively, were obtained from a curve fit of beam tip displacement to actuator
1 input voltage as described in the following Experimental Results section.

Beam displacement was measured using the laser displacement sensor at locations
of 18 in., 30 in. and 42.22 in. from the cantilevered end of the beam for each of the two
experiments. It should be noted that the laser measurement axis was oriented
perpendicular to the longitudinal axis of the undeformed beam. Increasing beam
displacement therefore resulted in the displacement measurement points slightly further
down the length of the beam than the nominal measurement locations. However, the small
magnitude of the measured displacements relative to the length of the beam for these
experiments made this effect insignificant. _

Three sets of measurements were taken for each of the two experiments at each
measurement point. Each measurement run consisted of recording sensor outputs at
actuator inputs given for the input stages in Table 20 and Table 21 for the first and second
experiment, respectively. FEach actuator input was allowed to remain steady for 60
seconds to provide 60 sensor output data points for each actuator input to be averaged.
The next input voltage stage was commanded immediately after each 60 second
measurement and allowed two minutes to reach steady state before the next 60 second
measurement was initiated. Data for each measurement run was saved to a MATLAB
MAT data file for processing and plotting. All measurements were taken with the

actuators acting in compression. The actuators were cycled through the input voltages
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corresponding to one measurement run prior to the recording of data to minimize the

effects of hysteresis on the repeatability of the measurements.

Input Stage Actuator 1 Actuator 23,4
Input Voltage (V) Input Voltage (V)
1 0 0
2 45.7 50
3 914 100
4 137.2 150
5 0 0

Table 20. Linear Model Actuator Input Voltages for Shape Control Experiment 1

Input Stage Actuator 1 Actuator 2,34
Input Voltage (V) Input Voltage (V)
1 0 0
2 46.5 50
3 93.6 100
4 141.1 150
5 0 0

Table 21. Nonlinear Model Actuator Input Voltages for Shape Control Experiment 2

3. Experimental Results

Displacement and strain measurement data for beam deformation due to the first

actuator is presented in Table 22 and plotted in Figure 50. Data for beam deformation due
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to the second actuator is presented Table 23 and Figure 52. Positive strain values indicate
compressive strain. All runs indicated in the tables and figures were conducted
consecutively with less than five minutes between the completion of one run and the start
of the next. The first run for each actuator was the first use of that actuator on the day of
the experiment. Some hysteresis was observed on all measurement runs but most apparent
on the first run for each actuator, with residual beam tip displacements of 16% and 24% of
the displacement at maximum input voltage occurring on the first run for the first and
second actuator, respectively. Repeatability of the displacement measurements for both
actuators and strain measurements for the first actuator was good for runs 2 through 4,
but the strain measurements for the second actuator were not as reliable. Strain
measurements for runs 1 and 3 of the second actuator were substantially lower than
corresponding measurements for other runs of the first and second actuator. The final
zero input strain measurements for both of these runs indicated residual tensile rather than
compressive strain, as denoted by the asterisks in Tqble 23. The combination of low
measurement values and final tensile strain measurements suggest that either a shift in the
strain gage conditioner zero strain output voltage occurred shortly after the start of each
of these runs or the bond between the actuator 2 strain gage and the beam may have been
poor, leading to inconsistent results.

The dashed lines in Figure 50 and Figure 52 represent the relationship between
actuator input voltage and beam tip displacement predicted by the linear Euler-Bernoulli
model, while the dotted lines represent second order least squares curve fits of the data
from runs 2 through 4 for each actuator. Coefficients of Equation 5.2 for each of the
curves are listed in Table 24 and the corresponding Equation 5.3 coefficients obtained are
listed in Table 25. The &, and £; coefficients obtained for the two actuators agreed to
within 6% and 2%, respectively.

It can be seen from the figures that the Euler-Bernoulli model again provides a
reasonable approximation of the behavior of the beam as a function of input voltage, as
was observed for the previous beams tested. However, unlike the previous experiments,

the Euler-Bernoulli model overpredicted the tip displacement of the 1.625 in. wide beam
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for actuator input voltages below about 75 volts and underpredicted the tip displacements
at higher voltages. Comparison of the percentages of predicted displacement obtained for
the 1.625 in. wide beam in Table 22 and Table 23 with the corresponding percentages of
predicted displacement obtained for the 0.875 in. wide beam in Table 13 and Table 14
reveals that the percentage of predicted displacement obtained was always less for the
wider beam. The reason for this is that the actuator produces curvature of the beam about
both its transverse and longitudinal axes, a fact supported by the significant transverse
strain measurements obtained. Curvature about the longitudinal axis increases the
moment of inertia of the beam’s cross-section, as shown in Figure 51, resulting in a
greater resistance of the beam to bending about its transverse axis. The increase in
moment of inertia is more significant for the wider beam than for the narrower beam.

The results of shape control experiment 1 are tabulated in Table 26 and plotted in
Figure 52 and Figure 53. The “linear model predicted” column of Table 26 and the
dashed lines on the figures represent the desired displacement of the beam along its length
to approximate a parabolic shape predicted by the Euler-Bemoulli model of actuator
curvature and Equations 4.10 through 4.14. The “nonlinear model predicted” column in
the table and dotted lines on the figures represent the displacement of the beam predicted
by Equations 4.10 through 4.14 with the curvature terms K.V; replaced by Equation 5.3
with the empirical coefficients &, and £; equal to those obtained from the experiment to
characterize the first actuator given in Table 25. The measured displacements displayed
excellent repeatability and can be seen to agree much more closely with the beam shape
profile predicted using the nonlinear empirical model of actuator curvature than for the
profile predicted by the linear model. As for the single actuator tests, the linear model
overestimates the actuator performance for the low input voltages and underestimates
actuator performance at higher voltages.

The results of shape control experiment 2 are presented in Table 27, Figure 54 and
Figure 55. The “nonlinear model predicted” column in the table and dotted lines on the
figures represent the desired displacement of the beam to approximate a parabolic shape

determined using Equations 4.10 through 4.14 with the curvature terms K;V; replaced by
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Equation 5.3, with the empirical coefficients &, and £; equal to those for the first actuator
in Table 25. The “linear model predicted” column in the table and dashed lines on the
figures represent the displacement of the beam predicted by the linear Euler-Bernoulli
model of actuator curvature and Equations 4.10 through 4.14 for the specified input
voltages. The measured displacements at the 18 in. and 30 in. measurement points
displayed excellent repeatability, but the displacements at the 42.22 in. measurement point
showed somewhat more variation. The latter measurements were the first series taken for
this experiment and therefore the most affected by hysteresis. Residual displacements of
about 6% of the displacement at maximum input voltage were observed for runs 1 and 2
at the 42.22 in. measurement point, but less than 2% residual displacement was observed
on run 3 and for the measurements at the other measurement points. With the exception
of runs 1 and 2 at the 42.22 in. measurement point, the measured displacements displayed
much better agreement with the desired beam shape profile predicted using the nonlinear
empirical model of actuator curvature than with the profile predicted by the linear model.
The results of the shape control experiments demonstrate the importance of
considering the nonlinear behavior of the piezoceramic in determining the appropriate
actuator inputs for precision shape control applications. The significant effects of
hysteresis observed indicate that this effect must also be considered. Actual shape control
applications should incorporate some form of feedback of the beam’s shape to ensure that

the desired deformation profile is attained.

113




Run Predicted 1 2 3 4
Tip Displacement -
mm (% of predicted)
25V 1.98 227 (115) 1.13 (57) 1.33 (67) 1.26 (64)
50V 3.96 4.60 (116) 3.20 (81) 3.49 (88) 3.52 (89)
5V 5.94 7.33 (123) | 5.97 (100) 5.71 (96) 5.69 (96)
100V 7.92 10.12 (128) | 8.89(112) | 8.71(110) | 8.19(103)
125V 9.90 1333 (135) | 11.55(117) | 11.81(119) | 10.84 (110)
150 v 11.88 17.54 (148) | 15.21 (128) { 15.59 (131) | 14.73 (124)
oV 0.00 2.78 093 1.29 0.19
Longitudinal Strain -
pe (% of predicted)
25V 8.0 7.2 (90) 5.5(69) 5.4 (68) 6.5 (82)
50V 16.0 14.5 (91) 13.7 (85) 12.7 (80) 13.3 (83)
75V 240 234 (97) 21.2 (88) 21.2 (89) 21.5 (90)
100V 32.0 32.1 (100) 30.3 (95) 29.4 (92) 30.4 (95)
125V 40.0 422 (106) | 40.1(100) 39.2 (98) 39599
150V 48.0 54.1 (113) | 51.5(106) | 50.3(105) | 49.8(104)
ov 0.0 4.6 1.8 24 09
Transverse Strain -pe
25V 8.2 8.2 8.0 8.1
50V 17.6 17.1 17.0 16.3
5V 275 26.8 26.8 26.5
100V 38.8 375 373 36.6
125V 51.6 49.7 49.8 48.7
150V 67.0 63.7 63.4 60.8
ov 5.7 34 3.2 -0.6

Table 22. Beam Tip Displacement and Strain Measurements for First Actuator Acting in
Compression
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Run Predicted 1 2 3 4
Tip Displacement -
mm (% of predicted)
25V 1.47 1.29 (88) 1.31 (89) 1.12 (76) 1.27 (86)
50V 293 3.06 (104) 2.71 (93) 2.67 (91 2.76 (94)
5V 4.40 5.45(124) | 4.54(103) | 4.38(100) | 4.45(101)
100V 5.86 8.08 (138) | 6.44(110) | 6.41(109) | 6.22(106)
125V 733 11.22 (153) | 8.88(121) | 8.47(116) | 8.81 (120)
150V 8.79 15.05 (171) | 11.81 (134) | 11.40 (130) | 11.62 (132)
ov 0.00 3.57 0.81 0.31 0.85
Longitudinal Strain -
pe (% of predicted)
25V 8.0 3341 5.7(72) 4.9 (62) 5.9(74)
50V 16.0 7.9 (49) 11.8 (74) 10.3 (64) 12.2 (76)
5V 24.0 16.6 (69) 18.9 (79) 16.5 (69) 19.6 (82)
100V 32.0 25.6 (80) 27.2 (85) 23.6 (79) 27.0 (84)
125V 40.0 341(85) | 36.9(92) | 312(78) | 36.4(91)
150V 48.0 44.7 (93) 47.3 (99) 40.2 (34) 45.6 (95)
ov 0.0 -3.6* 0.8 -5.5% 0.8

Table 23. Beam Tip Displacement and Strain Measurements for Second Actuator Acting
in Compression
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Actuator Predicted c; Co C C2
102 mm/V) | (10* mm/V?) | (107 mm/V) (mm)

First 7.92 3.18 5.38 -0.10

Second 5.86 248 3.91 0.06

Table 24. Coefficients of Curve Fits for Observed Beam Tip Displacement as a Function

of Actuator Input Voltage

Actuator Predicted k; =K ko ky

(10" rad/m/V) (10° radm/V?) | (107 rad/m/V)
First 6.46 2.59 4.39
Second 6.46 2.74 431

Table 25. Coefficients of Curve Fits for Observed Actuator Curvature as a Function of

Actuator Input Voltage

Figure 51. Graphic Depiction of Deformation of Beam Cross-Section due to
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Beam Displacement at Linear Nonlinear Run 1 Run 2 Run 3
Measurement Locations - mm Model Model
Predicted | Predicted
45.7/50/50/50 Volts Input
x=18.0in 1.73 1.50 1.47 1.25 1.32
x=30.01in 4.76 4.14 3.97 391 4.00
x=422mn 933 8.16 8.45 8.20 8.12
91.4/100/100/100 Volts Input
x=18.0mn 3.46 3.65 3.57 3.40 3.42
x=30.01in 9.51 10.11 9.86 9.88 9.91
x=422in 18.67 19.94 20.63 20.21 20.36
137.2/150/150/150
Volts Input
x=18.01in 5.19 6.45 6.03 5.88 5.86
x=30.0n 14.27 17.91 17.20 17.07 17.07
x=422im 28.02 35.35 35.18 34.73 34.82

Table 26. Beam Displacement Measurements for Shape Control Experiment 1 (Linear

Model Voltages)
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Figure 52. Beam Displacement Measurements for Shape Control Experiment 1 (Linear
Model Voltages) (1,2 of 3)
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Figure 53. Beam Displacement Measurements for Shape Control Experiment 1 (Linear
Model Voltages) (3 of 3)
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Beam Displacement at Linear Nonlinear Run 1 Run 2 Run 3
Measurement Locations - mm Model Model
Predicted | Predicted
46.5/50/50/50 Volts Input
x=18.01n 1.75 1.52 137 125 1.30
x=300mn . 4.80 4.19 4.10 3.85 3.87
x=4221n 9.40 822 8.99 9.46 8.26
93.6/100/100/100 Volts Input
x=18.0m 352 3.74 3.60 3.48 3.49
x=30.01n 9.63 10.28 10.10 9.85 9.66
x=4221n 18.85 20.18 22.18 22.04 20.27
141.1/150/150/150
Volts Input
x=180m 5.30 6.65 6.23 6.16 6.17
x=30.0n 14.48 18.29 17.76 17.54 17.08
x=4221n 2833 35.91 37.98 37.54 35.45

Table 27. Beam Displacement Measurements for Shape Control Experiement 2
(Nonlinear Model Voltages)
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Figure 54. Beam Displacement Measurements for Shape Control Experiment 2
(Nonlinear Model Voltages) (1,2 of 3)
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Figure 55. Beam Displacement Measurements for Shape Control Experiment 2
(Nonlinear Model Voltages) (3 of 3)
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VL. CONCLUSIONS

Piezoceramic actuators have been shown to provide an effective means of
controlling the shape of a thin flexible beamlike structure. Experimental analysis has
demonstrated that the Euler-Bernoulli model provides a good measure of the relative
effectiveness of various actuator configurations and a reasonable model of actuator
performance at low input voltage. However, the true nonlinear behavior of piezoceramic
actuators and the effects of hysteresis and transverse stresses not accounted for by the
Euler-Bernoulli model have been shown to have significant ramifications for the use of
piezoceramics in shape control. Hysteresis resulted in residual beam deformation in excess
of 20% of full deformation after the removal of the initial actuator input voltage for the
Navy Type II piezoceramics tested, but following displacement measurements were found
to be highly repeatable. Nonlinear voltage-strain behavior of the piezoceramic produced
significantly higher displacements than predicted by the Euler-Bernoulli model at higher
actuator input voltages. Transverse stresses were found to result in reduced effectiveness
for a given thickness of actuator on wider beams due to the resulting increase in the
moment of inertia of the beam cross-section. All of these effects result in variation of the
relationship between actuator curvature and input voltage from the linear behavior
predicted by the Euler-Bernoulli model. Precision shape control applications must
therefore consider these effects and should employ a control system incorporating some
form of strain and/or position feedback to ensure the desired deformation of the beam is
achieved.

The amount of beam deformation available from a piezoceramic actuator has been
shown to depend on the dimensions and material properties of the structure and
piezoceramic. High piezoceramic elastic modulus, piezoelectric coefficient and operating
voltage are all desired actuator properties. The optimum total actuator thickness for a
given beam/actuator configuration has been shown to be equal to a fixed percentage of the
beam thickness, while the total beam curvature attainable for the optimum beam/actuator

thickness ratio has been shown to be inversely related to the thickness of the beam.
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The location of actuators on a beam structure is crucial to determining how closely
a desired deformation profile can be approximated. Simultaneous optimization of the
locations and input voltages of a fixed set of actuators to achieve a desired beam
deformation profile proved to be unreliable due to the differences in the order of the
actuator location and voltage terms in the optimization cost function. Using embedded
Nelder and Mead simplex algorithms to separately optimize actuator locations and input
voltages was found to produce much more reliable results, converging to the same
optimum solution for a variety of initial conditions. Optimization of locations for different
numbers of actuators making up a fixed total actuator length has shown that dividing a
given actuator length into multiple small actuators allows a desired beam shape to be
approximated more closely than can be achieved with a lesser number of longer actuators.

Certain sets of initial conditions were found to cause the optimization algorithm to
fail to converge or converge to an erroneous result. The algorithm was also found to be
susceptible to converging to a local minimum of the cost function, when one existed and
initial conditions near the local minimum were selected. Consideration must therefore be
given to the presence of inflection points in the desired shape function, which can result in
local minima of the cost function, when selecting initial actuator locations for the
optimization algorithm. Knowledge of the approximate values of the optimum actuator
locations should be used in selecting initial conditions whenever possible. Multiple runs of
the optimization program should be performed using different sets of initial conditions to
ensure that the globally optimum actuator locations are attained.

Recommendations for further research include improving the mathematical model
of the beam to consider transverse effects, incorporating constraints and techniques to
avoid local minima in the optimization algorithm and exploring the use of feedback to
control the shape of the beam. A plate theory model can be used to consider the effects of
the curvature about the beam’s longitudinal axis caused by the actuator acting in both the
longitudinal and transverse directions for beam’s with high width-to-thickness ratios.
Modifying the optimization algorithm to include constraints would allow for the possibility

of desired shape functions which can be most closely approximated by placing actuators
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end to end or by actuators providing the maximum possible curvature. Techniques such
as genetic algorithms or simulated annealing could also be included in the optimization
algorithm to improve the probability of attaining the global minimum rather than a local
minimum of the cost function. Multiple strain and/or displacement sensors could be
utilized to provide feedback of the beam’s shape to control inputs to the piezoceramic
actuators. Sensors such as the laser displacement sensor used in the experiments
conducted for this thesis and state-of-the-art fiber optic strain sensors are strong

candidates for this application.
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APPENDIX

% PROGRAM TO COMPARE PERFORMANCE OF PIEZOCERAMIC ACTUATOR
% CONFIGURATIONS

%

% This program calculates and plots the following data:

% 1) Beam curvature per unit voltage

% 2) Beam curvature at 20 Volts/mil of piezo thickness

% 3) Beam surface strain per unit voltage (Side of beam

%  opposite actuator for unsymmetric configurations)

% 4) Neutral axis distance from center of beam

% versus actuator thickness or actuator width for piezoceramic
% actuators bonded to a cantilever beam, given input properties
% of the beam, actuators and the bond between the actuator and
% the beam.

%

% The following actuator configurations are evaluated:

% 1) A single actuator bonded to one side of the beam

% 2) A single actuator bonded to each side of the beam

% 3) A dual (stacked) actuator bonded to one side of the beam
% 4) A dual (stacked) actuator bonded to each side of the beam

% Set number of points for plots
Numpts = 100;

% Set properties of beam
% Material name
Beammatl ='7075-T6 Aluminum';
% Width (m)
w=0.0381; % 1.5 inches
% Thickness
t=0.001575;
% Elastic modulus (N/m”"2)
E =7.2e10;

% Set properties of PZT actuator

% Material name
Piezonam = ‘DOD Type I PZT",

% Constant width (m) for plots vs. actuator thickness
wp =0.0381; % 1.5 inches

% Width range (m) for plots vs. actuator width
wprange = linspace(0.1,1.0,Numpts)*w;

% Constant thickness (m) for plots vs. actuator width
tp = 0.00026;
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% Thickness range (m) for plots vs. actuator thickness
tprange = linspace(0.0001,0.002,Numpts);

% Elastic modulus (N/m"2)
Ep=6.1el0;

% Piezoelectric coefficient (m/V)
d31=1.71e-10; % DOD Type Il PZT

% Set properties of bond
% Width (m)
wb = wp;
% Thickness (m)
tb=0;
% Elastic modulus (N/m”2)
Eb = 1.78¢9;

% Set electric field limitation of piezoceramic (volts/mil)
Volt_mil = 20; % Volts/mil

% Calculate electric field limitation of piezoceramic (volts/m)
V_tlimit = Volt_mil/0.0000254; % Volts/m = Volts/mil/(0.0000254m/mil)

% Allow plots to be generated vs actuator width or thickness
Plottype = input('Generate plots vs actuator thickness (t) or width (w)? ','s");

% Allow actuator thickness to be plotted as % of beam thickness
% or actual thickness for plots vs actuator thickness

if Plottype ~—= 'w'

Axistype = input('Plot actuator thickness as % of beam thickness (p) or actual thickness
@? s
end

% Create actuator width or thickness range in accordance
% with plot type
if Plottype — 'w'
w = w*ones(1,Numpts);
Wp = wprange;
wb = wp;,
else
t = t*ones(1,Numpts);
tb = tb*ones(1,Numpts);
tp = tprange,
end

% Calculate parameters for Crawley/Anderson formulation
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% Single Actuator

EAl = E*w.*t + Eb*wb.*tb + Ep*wp.*tp;

ES1 = Eb*wb.*tb. *(t/2+tb/2) + Ep*wp. *tp. *(t/2+tb-+tp/2);

EIl = E*w.*t.73/12 + Eb*wb. *tb. *((1/2)./2 + (t/2).*tb + tb.~2/3) + ...
Ep*wp*tp. *((t/2+tb)."2 + (t/2+tb). *tp + tp.~2/3);

P1 =Ep*d31*wp;

M1 = Ep*d31*wp.*(t/2 + tb + tp/2),

EpsO_1 = (P1.*EI1-M1.*ES1)./(EA1.*EI1-ES1.72);

K_V1=MI1/EIl - ES1./EIl. *(P1.*EIl - M1.*ES1)./(EA1.*EIl - ES1./2);

y0_1=EpsO_1./K VI,

% Symmetric Pair of Actuators

EA2 = E*w.*t + 2*Eb*wb.*tb + 2*Ep*wp.*tp;,

EI2 = E*w.*t.73/12 + 2*Eb*wb.*tb. *((t/2)."2 + (1/2).*tb + tb./2/3) + ...
2*¥Ep*wp.*tp.*((t/2+tb).”2 + (/2+tb).*tp + tp./2/3);

M2 = 2*Ep*d31*wp.*(t/2 + tb + tp/2);

K V2 =M2/EI2;

% Stacked Pair of Actuators

EA12 = E*w.*t + 2*Eb*wb.*tb + 2*Ep*wp.*tp;

ES12 = Eb*wb. *tb. *(t+2*tb + tp) + Ep*wp. *tp. *(t+3 *tb+2*tp);

EI12 = E*w.*t.73/12 + Eb*wb. *tb.*((1/2)./2 + (t/2+tb+tp). /2 + ...
(t+5/3*tb+tp). *tb) + Ep*wp. *tp. *((t/2+tb)."2 + ...
(t/2+2%tb+tp).~2 + (t+3*tb+5/3 *tp). *tp);

P12 =2*Ep*d31*wp;

M12 = Ep*d31*wp.*(t/2 + tb + tp/2 + t/2 + 2*tb + 3/2*tp),

EpsO_12 = (P12.*EI12-M12.*ES12) /(EA12.*EI12-ES12./2),

K_V12=MI2/EI12 - ES12./EI12.*(P12.*EI12 - M12.*ES12)./ ...

(EA12.*EI12 - ES12.2)
y0_12=EpsO_12/K_V12;

% Symmetric Pair of Stacked Actuators

EA22 = E*w.*t + 4*Eb*wb.*tb + 4*Ep*wp.*tp;

EI22 = E*w.*t.73/12 + 2*Eb*wb.*tb. *((t/2)."2 + (t/2+tb+tp).~2 + ...
(t+5/3*tb+tp). ¥tb) + 2*Ep*wp. *tp *((t/2+tb) /2 + ...
(t/2+2%tb+tp).~2 + (t+3*tb+5/3*tp). *tp),

M22 = 2*¥Ep*d31*wp.*(t/2 + tb + tp/2 + t/2 + 2*tb + 3/2*tp),

K V22 =M22./EI22,

% Calculate strain per unit actuator input voltage at beam surface
% for each actuator configuration

StrainV1 =EpsO_1+K _V1.*t/2; % Single Actuator

StrainV2 =K _V2.*t/2; % Symmetric Pair of Actuators
StrainV12 = EpsO_12+K V12 .*t/2; % Stacked Pair of Actuators
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StrainV22 =K V22 *t/2; % Symmetric Pair of Stacked Actuators

% Plot results
figure
if Plottype == 'w'
plot(wp./w*100,K_V1,b--',wp./w*100K_V12,'m-" wp./w*100 K V2'r-' ...
wp./w*100,K V22'g")
text(0.15,0.6,[num2str(tp*1000) ' mm Thick Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],'Units', Normalized')
xlabel('Actuator Width (%)")
elseif Axistype ="p'
plot(tp./t*100,K_V1,b--'tp./t*100,K_V12,'m-"tp./t*100,K V2'r-, ...
tp./t*100,K V22'g")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...
"' mm Bond Thickness'],'Units', Normalized')
xlabel('Actuator Thickness (% of Beam Thickness)')
else
plot(tp*1000,K_V1,'b--',tp*1000,K_V12,'m-. tp*1000.K_V2,r-', ...
tp*1000,K_V22.'g.")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/ num2str(tb(1)*1000) ...
" mm Bond Thickness'],'Units', Normalized')
xlabel(‘Actuator Thickness (mm)'")
end
ylabel('(rad/m/V)")
title('Beam Curvature per Unit Voltage')
legend('Single’,'1 Stacked','Sym. Pair','Sym. Stacked',-1)
text(0.15,0.9,Piezonam, Units', Normalized')
text(0.15,0.8,['Ep = ' num2str(Ep) ' N/m”2 d31 ="' num2str(d31) ' m/V'}, ...
"Units','Normalized')
text(0.15,0.7,[num2str(t(1)*1000) ' mm Thick ' Beammatl ' Beam'], Units', ...
"Normalized')
grid

figure
if Plottype = 'w'
plot(wp./w*100,V_tlimit*tp. *K_V1,'b--,wp./w*100,V_tlimit*tp.*K V12 'm-., ...
wp./w¥100,V_tlimit*tp.*K V2 'r-' wp./w*100,V_tlimit*tp.*K_V22'g")
text(0.15,0.6,[num2str(tp*1000) ' mm Thick Actuator/ num2str(tb(1)*1000) ...
' mm Bond Thickness'],'Units’,'Normalized')
xlabel('Actuator Width (%)")
elseif Axistype =='p'
plot(tp./t*100,V_tlimit*tp.*K_V1,'b--'tp./t*100,V _tlimit*tp.*K V12'm-', ...
tp./t*100,V_tlimit*tp. *K_ V2 'r-"tp./t*100,V_tlimit*tp. *K V22'g.")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...
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" mm Bond Thickness'],'Units',' Normalized')
xlabel('Actuator Thickness (% of Beam Thickness)')
else
plot(tp*1000,V_tlimit*tp.*K_V1,'b-',tp*1000,V_tlimit*tp.*K_V12,'m-, ...
tp*1000,V_tlimit*tp. ¥K_V2,'r-',tp*1000,V_tlimit*tp *K_V22,'g.")
tex(0.15,0.6,[num2str(wp/w*100) ‘% Width Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],'Units’, Normalized')
xlabel('Actuator Thickness (mm)')
end
ylabel('Curvature (rad/m)")
title(['Beam Curvature at ' num2str(Volt_mil) ' Volts/mil'])
legend(*Single’,'l Stacked','Sym. Pair','Sym. Stacked',-1)
text(0.15,0.9,Piezonam, 'Units', Normalized')
text(0.15,0.8,['Ep = ' num2str(Ep) ' N/m"2 d31 ='num2str(d31) ' m/V'], ...
"Units', Normalized')
text(0.15,0.7,[num2str(t(1)*1000) ' mm Thick ' Beammatl ' Beam'],'Units’, ...
‘Normalized')
grid

figure
if Plottype =='w'
plot(wp./w*100,StrainV1*1e6,b--' wp./w*100,StrainV12*1e6,'m-.", ...
wp./w*100,StrainV2*1e6,'r-',wp./w*100,StrainV22*1e6,'g.")
text(0.15,0.6,[num2str(tp*1000) ' mm Thick Actuator/' num2str(tb(1)*1000) ...
" mm Bond Thickness'],'Units', Normalized')
xlabel('Actuator Width (%)")
elseif Axistype = 'p'
plot(tp./t*100,StrainV1*1e6,'b--'tp./t*100,StrainV12*1e6,'m-., ...
tp./t*100,StrainV2*1e6,'r-'tp./t*100,StrainV22*1e6,'g ")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],'Units','Normalized')
xlabel('Actuator Thickness (% of Beam Thickness)")
else
plot(tp*1000,StrainV1*1e6,'b--',tp*1000,StrainV12*1e6,'m-., ...
tp*1000,StrainV2*1e6,'r-',tp*1000,StrainV22*1e6,'g.")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],"Units', Normalized')
xlabel('Actuator Thickness (mm)")
end :
ylabel('Strain/Voltage (microstrain/V)') i
title("Surface Axial Strain per Unit Actuator Voltage') ;
legend('Single','l Stacked','Sym. Pair','Sym. Stacked',-1) ‘
text(0.15,0.9,Piezonam, Units','Normalized')
text(0.15,0.8,['Ep = ' num2str(Ep) ' N/m"2 d31="'num2str(d31) 'm/V'], ...
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"Units','Normalized')

text(0.15,0.7,[num2str(t(1)*1000) ' mm Thick ' Beammatl ' Beam'],'Units’, ...
"Normalized')

gnd

figure
if Plottype = 'w'
plot(wp./w*100,y0_1*1000,'b--',wp./w*100,y0 12*1000,'m-.")
text(0.15,0.6,[num2str(tp*1000) ' mm Thick Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],'Units', Normalized')
xlabel('Actuator Width (%))
ylabel('y0 (mm)')
elseif Axistype ="'p
plot(tp./t*100,y0_1./t*100,'b--"tp./t*100,y0 12./t*100,'m-.")
text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...
' mm Bond Thickness'],"Units', Normalized")
xlabel('Actuator Thickness (% of Beam Thickness)')
ylabel('y0 (% of Beam Thickness)')
else :
plot(tp*1000,y0_1*1000,'b--',tp*1000,y0_12*1000,'m-.")

text(0.15,0.6,[num2str(wp/w*100) '% Width Actuator/' num2str(tb(1)*1000) ...

' mm Bond Thickness'],'Units', Normalized")
xlabel('Actuator Thickness (mm)')
ylabel('y0 (mm)")
end
title('Neutral Axis Distance from Center of Beam')
legend('Single','1 Stacked',-1)
text(0.15,0.9,Piezonam, Units', Normalized')
text(0.15,0.8,['Ep ="' num2str(Ep) ' N/m"2 d31 ='num2str(d31) ' m/V'], ...
"Units', Normalized")
text(0.15,0.7, [num2str(t(1)*1000) ' mm Thick ' Beammatl ' Beam'], Units', ...
"Normalized')
grid
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% PROGRAM TO DETERMINE OPTIMUM ACTUATOR LOCATIONS
%

% This program determines the optimum actuator locations and input -

% voltages to achieve the minimum error between the actuator deformed

% beam shape and a desired beam shape function for a cantilever

% beam with piezoceramic actuators of specified length, width, thickness
% and material properties bonded to both sides of the beam.

% Set desired shape function and coefficients
Shapfunc =1 %y = C*x"2
% Shapfunc =2 % y = C*(1-cos(mx))

C =0.001;
% C = 0.0005;
m = pi;

% Set beam properties

L=1, % Beam length (m)

w =0.0508; % Beam width (m)

% t=0.001575; % Beam thickness (m)
t=0.001575/2 % Beam thickness (m)

E =7.2¢10; % Beam modulus of elasticity (N/m"2)
% Set piezoceramic actuator properties

% Navy Type I PZT

n=4 % Number of actuators

la=0.1*ones(n,1); % Actuator lengths (m)

wp =0.0381; % Piezoceramic actuator width (m)

tp = 0.00027, % Piezoceramic actuator thickness (m)
Ep = 6.1e10; % Piezoceramic actuator modulus of elasticity (N/m”2)
d31=1.71e-10; % Piezoelectric constant (m/V)

Vmax =150, % Maximum actuator input voltage (V)
Vmin = -150; % Minimum actuator input voltage (V)

% Enter properties of bond between piezoceramic actuator and beam

wb = wp; % Bond width (m) (equal to actuator width)

th=0; % Bond thickness (m)

Eb =1.78¢9; % Bond modulus of elasticity (N/m”"2)

% Calculate properties of beam cross-section

area = w.*t; % Beam cross-sectional area (m\2)

areab = wb*tb; % Bond cross-sectional area (m”"2)

areap = wp*tp; % Piezoceramic actuator cross-sectional area (m”2)

moi = w.*t."3/12; % Beam cross-section moment of inertia (m”4)
% Bond cross-section moment of inertia (m"4)
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moib = wb*tb*(t"2/2 + t*tb + 2*tb"2/3);

% Piezoceramic actuator cross-section moment of inertia (m”4)

moip = wp*tp*((t+2*tb)"2/2 + (t+2*tb)*tp + 2*tp"2/3);

EI = E*moi+Eb*moib+Ep*moip, % Beam stiffness

K = Ep*d31*wp*(t+2*tb+tp)/EI, % (Moment per unit voltage)/(Beam stiffness)
K =K*ones(n,1);

% Set options for unconstrained voltage optimization algorithm
Options = foptions';
Options(14) =2000; % Maximum number of iterations (0 -> 100*n)

% Set initial actuator locations for optimization algorithm
x0=[0.050.250.50.75]" % 4 Actuators

% Determine optimum voltage for initial actuator positions
if Shapfunc ==
V0 = fmins(‘beamerVu',zeros(n,1),Options,[],x0,1a,K,C,L,n)
% VO = zeros(n,1)
else
V0 = fmins('bercosVu',zeros(n, 1),Options,[],x0,1a,K,C,m, L n)
end

% Calculate error cost function for initial actuator positions
if Shapfunc =1
JO = beamerVu(V0,x0,1a,K,C,L,n)
else
JO = bercosVu(V0,x0,1a,K,C;m,Ln)
end '

% Determine optimum actuator locations
if Shapfunc ==1
flops(0) % Reset floating point operations counter
Optx = fmins(‘beamerxu’,x0,0ptions,[],V0,la,K,C L .n, Options)
Ops = flops % Output number of floating point operations
else
flops(0) % Reset floating point operations counter
% Unconstrained locations '
Optx = fmins('bercosxu’,x0,0ptions,[],V0,la,K,C,m,L,n,Options)
Ops = flops % Output number of floating point operations
end

% Determine optimum input voltages for optimum actuator locations
if Shapfunc =1
OptV = fmins('beamerVu',V0,Options,[],0ptx,l1a,K,C,L,n)
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else
OptV = fmins(‘bercosVu',VO0,Options,[],0ptx,la,K,C,m,L n)
end

% Calculate error cost function for optimum actuator locations
if Shapfunc =1
J =beamerVu(OptV,Optx,la,K,C,L,n)
else
J = bercosVu(OptV,Optx,1a,K,C m,L,n)
end

% Plot results
% Set plot x range along beam length
x = linspace(0,L,100);
% Calculate beam displacement for optimum actuator locations and voltages
y = beamdisp(x,0ptx,0OptV la,n K), _
% Calculate beam displacement at actuator actuator endpoints
yact = beamdisp([Optx;Optx+la],Optx,OptV la,n,K),
% Calculate desired beam displacement along beam length
if Shapfunc =1
yf=C*x."2;
else
yf = C*(ones(size(x))-cos(m*x));
end
figure
plot(x,y, 1-,x,yf,'g.",[Optx;Optx-+la},yact,'t*')
legend('Actual',' Desired',-1)
grid
title('Actual vs. Desired Beam Shapes')
xlabel('X (m)")
ylabel('Beam Displacement Y (m)")
ifn=1
text(0.1,0.9,['Optimum Values for 1 Actuator'],'Units', Normalized')
else
text(0.1,0.9,['Optimum Values for ' int2str(n) ' Actuators'],"Units', ...

'Normalized')
end
ifn=1
text(0.1,0.8;['x1 ="' num2str(Optx(1)) 'm / V1 ="' num2str(OptV(1)) ...
' V'],'Units', Normalized')
text(0.1,0.7,['Error = ' num2str(J)],'Units', Normalized')
elseif n==2
text(0.1,0.8,['x1 ="' num2str(Optx(1)) 'm / V1 =" num2str(OptV(1)) ...
' V'],'Units', Normalized')
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text(0.1,0.7,['x2 = ' num2str(Optx(2)) ' m / V2 ="' num2str(OptV(2)) ...

' V'],"Units','Normalized')
text(0.1,0.6,['Error = ' num2str(J)], 'Units', Normalized')
elseif n =73

text(0.1,0.8,['x1 = ' num2str(Optx(1)) 'm / V1 =" num2str(OptV(1)) ...

' V'],'Units', Normalized')

text(0.1,0.7,['x2 = ' num2str(Optx(2)) 'm / V2 ="' num2str(OptV(2)) ...

''V'],"Units', Normalized")

text(0.1,0.6,['x3 = ' num2str(Optx(3)) ' m / V3 ="' num2str(OptV(3)) ...

' V'],'Units', Normalized')
text(0.1,0.5,['Error = ' num2str(J)], "Units', Normalized')
elseif n =4

text(0.1,0.8,['x1 = ' num2str(Optx(1)) 'm / V1 ="' num2str(OptV(1)) ...

' V'],"Units', Normalized')

text(0.1,0.7,['x2 ="' num2str(Optx(2)) ' m / V2 =" num2str(OptV(2)) ...

' V'],'Units','Normalized')

text(0.1,0.6,['x3 ="' num2str(Optx(3)) ' m / V3 ="' num2str(OptV(3)) ...

' V'},'"Units’, Normalized")

text(0.1,0.5,['x4 = ' num2str(Optx(4)) ' m / V4 ="' num2str(OptV(4)) ...

' V'],'Units','Normalized")
text(0.1,0.4,['Error = ' num2str(J)],'Units’, Normalized')
else % (n=15)

text(0.1,0.8,['x1 = ' num2str(Optx(1)) ' m / V1 ="num2str(OptV(1)) ...

' V'],'Units', Normalized')

text(0.1,0.7,['x2 ="' num2str(Optx(2)) ' m / V2 ="' num2str(OptV(2)) ...

' V'],'Units', Normalized')

text(0.1,0.6,['x3 ="' num2str(Optx(3)) ' m / V3 ="' num2str(OptV(3)) ...

' V'],"Units', Normalized')

text(0.1,0.5,['x4 = ' num2str(Optx(4)) ' m / V4 ="' num2str(OptV(4)) ...

' V'],'Units', Normalized')

text(0.1,0.4,['x5 = ' num2str(Optx(5)) ' m / V5 ="' num2str(OptV(5)) ...

' V'],'Units','Normalized')
text(0.1,0.3,['Error ="' num2str(J)], Units', Normalized')
end

% Allow data to be saved

Savedata = input('Save data? (y/n) ','s');

if Savedata ='"y'
Savefile = input('Enter filename (without .MAT extension) ','s");
eval(['save ' Savefile])

end
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% FUNCTION TO DETERMINE ERROR BETWEEN ACTUAL BEAM SHAPE AND
% DESIRED PARABOLIC SHAPE FOR UNCONSTRAINED ACTUATOR
% LOCATION OPTIMIZATION

%

% function f = beamerxu(x,V0,la,K,C L.n,Options)

%

% This function calculates the value of the cost function 'f

% for a cantilever beam of length 'L’ with 'n' attached

% piezoceramic actuators at locations 'x' with lengths 'la' and

% curvature per unit input voltage 'K' and a desired parabolic

% beam shape function y = C*x"2.

function f'= beamerxu(x,V0,la,K,C,L,n,Options)

% Determine optimum actuator input voltages for input actuator
% locations 'x'
V = fmins('beamerVu',V0,Options,[],x,la,K,C,L,n);

% Calculate summations for use in calculating beam shape

% polynomial coefficients

sumKVI1 = zeros(n,1);

sumKVixl = zeros(n,1);

fori=1:n
sumKVI(i) = sum(K(1:1).*V(1:i).*la(1:1)); % Sum of Ki*Vi*li
sumKVIxi(i) = sum(K(1:1). *V(1:1). ¥la(1:i). *(x(1:1)+a(1:i)/2));

% Sum of Ki*Vi*li*(xi+i/2)
end

% Calculate beam shape polynomial coefficients
a2 =K.*V/2;

al =-K.*V *x;

al(2:n) = al(2:n) + sumKVI(1:n-1);

a0 =K.*V *x "2/2;

a0(2:n) = a0(2:n) - sumKVIxl(1:n-1);

bl = sumKVI;

b0 = -sumK Vixl;

% Create nx1 vector containing value of 'C'
Cvect = C*ones(n,1);

% Calculate value of cost function
f=C"2*x(1)"5/5;

f=f+ sum((a2-Cvect)."2.*((xHa)."5 - x.75))/5;
f=f+ sum((a2-Cvect).*al *((x+la)."4 - x.74))/2;

2
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f=f+ sum((2*(a2-Cvect).*a0+al."2).*((x+a)."3 - x."3))/3;

f=f+ sum(al.*a0.*((x+la)."2 - x."2)),

f=f+ sum(a0.72.*1a),

f=f+ C"2*sum(x(2:n)."5 - (x(1:n-1)+a(1:n-1)).75)/5;

f=f- C*sum(b1(1:n-1).*(x(2:n).”4 - (x(1:n-1)Ha(1:n-1)).74))/2;

f=f+ sum((-2*C*b0(1:n-1)+b1(1:n-1)/2). *(x(2:n)."3 - ...
(x(1:n-1)+Ha(1:n-1))."3))/3;

f=f+ sum(b1(1:n-1).*b0(1:n-1).*(x(2:n).”2 - (x(1:n-1)+la(1:n-1))."2));

f=f+ sum(b0(1:n-1)."2.*(x(2:n) - x(1:n-1)-la(1:n-1)));

f=f+ C"2*(L"5-(x(n)+a(n))"5)/5,

f=f- C*bl(n)*(L™-(x(n)+la(n))"4)/2;

f=f+ (-22*C*b0(n)+b1(n)"2)*(L"3-(x(n)Ha(n))"3)/3;

f= £+ b1(n)*b0(n)*(L"2-(x(n)+Ha(n))"2);

f=f+ bo(n)"2*(L-x(n)-la(n));

% FUNCTION TO DETERMINE ERROR BETWEEN ACTUAL BEAM SHAPE AND
% DESIRED PARABOLIC SHAPE FOR UNCONSTRAINED ACTUATOR
% VOLTAGE OPTIMIZATION

%

% function f = BeamerVu(V,x,1a,K,C L n)

%

% This function calculates the values of the cost function 'f

% for a cantilever beam of

% length 'L' with ‘n' attached piezoceramic actuators and a

% desired parabolic beam shape function y = C*x"2, where the

% elements of the input vector 'V' are the actuator input

% voltages, the elements of 'x' are the distances

% of the actuators from the root of the beam, and the

% elements of 'la’ are the actuator lengths.

function f = BeamerVu(V,x,1a,K,C,L,n)

% x = Actuator locations (m)
% V = Actuator voltages (V)
% la = Actuator lengths (m)

% Calculate summations for use in calculating beam shape

% polynomial coefficients

sumKV1 = zeros(n,1);

sumKVIxl = zeros(n,1);

fori=1n
sumKVI@) = sum(K(1:i).*V(1:i).*la(1:))); % Sum of Ki*Vi*h
sumK VIxl(i) = sum(K(1:1). ¥*V(1:1).*la(1:1).*(x(1:1)+la(1:1)/2));
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% Sum of Ki*Vi*li*(xitli/2)
end

% Calculate beam shape polynomial coefficients
a2 =K.*V/2,

al =-K*V. *x;

al(2:n) = al(2:n) + sumKVI(1:n-1);

a0 =K. *V. *x."2/2;

a0(2:n) = a0(2:n) - sumKVIxi(1:n-1);

b1l = sumKVl;

b0 = -sumKVIxl;

% Create nx1 vector containing value of 'C'
Cvect = C*ones(n,1);

% Calculate value of cost function

f=Cr2*x(1)"5/5;

f=f+ sum((a2-Cvect).”2.*((x+la)."5 - x."5))/5,

f=f+ sum((a2-Cvect).*al. *((x+la).”4 - x."4))/2;

f=f+ sum((2*(a2-Cvect).*a0+al."2).*((x+a).”3 - x."3))/3;

f=f+ sum(al.*a0.*((x+la)."2 - x."2));

f=f+ sum(a0."2.*1a),

f=f+ C"2*sum(x(2:n)."5 - (x(1:n-1)+a(1:n-1)).”5)/5;

f=f- C*sum(b1(1:n-1).*(x(2:n)."4 - (x(1:n-1)+a(1:n-1))."4))/2;

f=f+ sum((-2*C*b0(1:n-1)+b1(1:n-1)."2) *(x(2:n)."3 - ... -
(x(1:n-1)+a(1:n-1))."3))/3;

f=f+ sum(b1(1:n-1).¥b0(1:n-1).*(x(2:n)."2 - (x(1:n-1)+la(1:n-1))."2)),

f=f+ sum(b0(1:n-1)."2.*(x(2:n) - x(1:n-1)-la(1:n-1)));

f=f+ C2*¥([LN5-(x(n)+Ha(n))"5)/5;

f=f- C*b1(n)*(L"4-(x(n)Ha(n))"4)/2;

f=f+ (-2*C*b0(n)+b1(n)"2)*(L"3-(x(n)+a(n))"3)/3,

f =+ bl(n)*bO(n)*(L"2-(x(n)+la(n))"2),

f= £+ b0(n)"2*(L-x(n)-la(n)),
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% FUNCTION TO DETERMINE ERROR BETWEEN ACTUAL BEAM SHAPE AND
% DESIRED C*(1-cos(mx)) SHAPE FOR UNCONSTRAINED ACTUATOR
% LOCATION OPTIMIZATION

%

% function f'= bercosxu(x,V0,la,K,C,m,L,n,Options)

%

% This function calculates the value of the cost function 'f

% for a cantilever beam of length 'L' with 'n' attached

% piezoceramic actuators at locations 'x’ with lengths 'la’ and

% curvature per unit input voltage 'K' and a desired sinusoidal

% beam shape function y = C*(1-cos(mx)).

function f= bercosxu(x,V0,la,K,C,m,L,n,Options)

% Determine optimum actuator input voltages for input actuator
% locations 'x'
V = fmins(‘bercosVu',V0,Options,[],x,1a,K,C,m,L,n);

% Calculate summations for use in calculating beam shape

% polynomial coefficients

sumKV1 = zeros(n, 1);

sumKVIxl = zeros(n,1);

fori=1:mn
sumKVI(i) = sum(K(1:1).¥*V(1:i).*la(1:1)); % Sum of Ki*Vi*li
sumK VIxl(i) = sum(K(1:1).*V(1:1). *la(1:1). *(x(1:1)+a(1:1)/2));

% Sum of Ki*Vi*li*(xi+li/2)
end

% Calculate beam shape polynomial coefficients
a2 = K.*V/2;

al = -K.*V.*x;

al(2:n) = al(2:n) + sumKVIl(1:n-1);

a0 =K. *V.*x."2/2;

a0(2:n) = a0(2:n) - sumKVIxi(1:n-1);

bl = sumKVI,

b0 = -sumKVIxl;

% Create nx1 vector containing value of 'C'
Cvect = C*ones(n, 1),

% Calculate value of cost function
f=C"2*(x(1)-2/m*sin(m*x(1)) + L/2 + 1/4/m*sin(2*m*L));
f=f+ sum(a2./2.*((x+a)."5 - x."5))/5;

f=f+ sum(a2.*al. *((x+la)."4 - x."4))/2,
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f=f+ sum((2*a2.*(a0-Cvect)+al."2). *((x+Ha).”3 - x."3))/3;

f=f+ sum(al.*(a0-Cvect). *((x+la)."2 - x.~2));

f=f+ sum((a0-Cvect).”2.*1a),

f=f+2*C*sum(a2. *(2/m"2*((x+la). *cos(m*(x+la))-x. *cos(m*x))));

f=f+ 2*C*sum(a2.*(((x+a)."2/m-2/m"3*ones(n, 1)). *sin(m*(x-+la))- ...
(x."2/m-2/m"3*ones(n,1)).*sin(m*x)));

f=f+2*C*sum(al.*((cos(m*(x+a))-cos(m*x))/m"2 + ...
((xtla).*sin(m*(x+Ha))-x. *sin(m*x))/m));

f=f+ 2/m*C*sum((a0-Cvect). *(sin(m*(x-+la))-sin(m*x)));

f=1+sum(b1(1:n-1)."2.*(x(2:n)."3 - (x(1:n-1)Ha(1:n-1)).73))/3;

f=f+ sum(b1(1:n-1).*(b0(1:n-1)-Cvect(1:n-1)).*(x(2:n)."2 - ...
(x(1:n-1)Ha(1:n-1)).72)),

f=f+ sum((b0(1:n-1)-Cvect(1:n-1))."2.*(x(2:n) - x(1:n-1)-la(1:n-1)));

f=f+2*C*sum(b1(1:n-1).*(cos(m*x(2:n))-cos(m*(x(1:n-1)Ha(1:n-1)))))/m"2;

f=f+2*C*sum(b1(1:n-1).*(x(2:n). *sin(m*x(2:n))-(x(1:n-1)+a(1:n-1)).* ...
sin(m*(x(1:n-1)+a(1:n-1)))))/m;

f=f+ 2*C/m*sum((b0(1:n-1)-Cvect(1:n-1)). *(sin(m*x(2:n))- ...
sin(m*(x(1:n-1)+a(1:n-1)))));

f=1+bl(n)."2.*(L."3 - (x(n)+la(n))."3)/3;

f=f+b1(n).*(b0(n)-C).*(L."2 - (x(n)+la(n)).”2);

f=f+ (b0(n)-C).”2.*(L - x(n)-la(n));

f=f+ 2*C*bl(n). *(cos(m*L)-cos(m*(x(n)+la(n))))/m"2;

f=f+ 2*C*b1(n).*(L.*sin(m*L)-(x(n)+a(n)). *sin(m* (x(n)+la(n))))/m;

f= £+ 2*C/m*(b0(n)-C).*(sin(m*L)-sin(m*(x(n)+a(n))));

% FUNCTION TO DETERMINE ERROR BETWEEN ACTUAL BEAM SHAPE AND
% DESIRED C*(1-cos(mx)) SHAPE FOR UNCONSTRAINED ACTUATOR
% VOLTAGE OPTIMIZATION

%

% function f = bercosVu(x,V0,la,K,C,m,L,n,Options)

%

% This function calculates the value of the cost function 'f

% for a cantilever beam of length 'L' with 'n' attached

% piezoceramic actuators at locations 'x' with lengths 'la’ and

% curvature per unit input voltage 'K' and a desired sinusoidal

% beam shape function y = C*(1-cos(mx)).

function = bercosVu(V,x,la,K,C,m,L n,Options)
% x = Actuator locations (m)

% V = Actuator voltages (V)
% la = Actuator lengths (m)
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% Calculate summations for use in calculating beam shape

% polynomial coefficients

sumKVI1 = zeros(n,1);

sumKVIxl = zeros(n,1);

fori=1n
sumKVI(i) = sum(K(1:1).*V(1:1).*la(1:i)); % Sum of Ki*Vi*li
sumKVIxl(i) = sum(K(1:1). ¥*V(1:1). *la(1:1). *(x(1:1)+Ha(1:1)/2));

% Sum of Ki*Vi*li*(xitli/2)
end

% Calculate beam shape polynomial coefficients
a2 =K *V/2;

al = -K.*V.*x;

al(2:n) = al(2:n) + sumKVI(1:n-1);

a0 =K. *V . *x."2/2;

a0(2:n) = a0(2:n) - sumKVIxl(1:n-1);

bl = sumKVI;

b0 = -sumKVIxl;

% Create nx1 vector containing value of 'C'
Cvect = C*ones(n,1);

% Calculate value of cost function

f= C"2*(x(1)-2/m*sin(m*x(1)) + L/2 + 1/4/m*sin(2*m*L));

f=f+ sum(a2.”2 *((x+a)."5 - x."5))/5;

f=f+ sum(a2 *al.*((x+la)."4 - x."4))/2;

f=f+ sum((2*a2.*(a0-Cvect)+al.”2).*((x+la)."3 - x."3))/3;

f=f+ sum(al.*(a0-Cvect).*((x+la)."2 - x."2));

f=f+ sum((a0-Cvect)."2.*1a);

f=f+ 2*C*sum(a2.*(2/m"2*((x+la). *cos(m*(x+la))-x. *cos(m*x))));

f=f+ 2*C*sum(a2.*(((x+la).”2/m-2/m"3*ones(n,1)).*sin(m*(x+la))- ...
(x.°2/m-2/m"3*ones(n, 1)). *sin(m*x)));

f=f+ 2*C*sum(al.*((cos(m*(x+la))-cos(m*x))/m"2 + ...
((xtla).*sin(m*(x-+Ha))-x. *sin(m*x))/m)),

f=f+ 2/m*C*sum((a0-Cvect).*(sin(m*(x-+a))-sin(m*x)));

f=f+ sum(b1(1:n-1)."2.*(x(2:n)."3 - (x(1:n-1)Ha(1:n-1)).”3))/3;

f=f+ sum(b1(1:n-1).*(bO(1:n-1)-Cvect(1:n-1)).*(x(2:n)."2 - ...
(x(1:n-1)+a(1:n-1)).72));

f=f+ sum((b0(1:n-1)-Cvect(1:n-1)).”2.*(x(2:n) - x(1:n-1)-la(1:n-1)));

f=f+ 2*C*sum(b1(1:n-1).*(cos(m*x(2:n))-cos(m*(x(1:n-1)+la(1:n-1)))))/m"2;

f=f+2*C*sum(b1(1:n-1).*(x(2:n).*sin(m*x(2:n))-(x(1:n-1)Ha(1:n-1)).* ...
sin(m*(x(1:n-1)+a(1:n-1)))))/m,

f=f+ 2*C/m*sum((b0(1:n-1)-Cvect(1:n-1)).*(sin(m*x(2:n))- ...
sin(m*(x(1:n-1)+la(1:n-1)))));
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f=f+bl(n)."2.*(L."3 - (x(n)Ha(n))."3)/3;
f=f+bl(n).*(b0(n)-C).*(L."2 - (x(n)+Ha(n))."2);

f= £+ (b0(n)-C).”2.*(L - x(n)-la(n));

f= £+ 2*C*b1(n).*(cos(m*L)-cos(m*(x(n)+la(n))))/m"2;

f=f+ 2*C*b1(n). *(L.*sin(m*L)-(x(n)*Ha(n)). *sin(m*(x(n)-+la(n))))/m;
f= £+ 2*C/m*(b0(n)-C).*(sin(m*L)-sin(m*(x(n)+a(n))));

% FUNCTION TO DETERMINE THE DEFLECTED SHAPE OF A CANTILEVER
% BEAM DUE TO ATTACHED PIEZOCERAMIC ACTUATORS
%

% function y = beamdisp(x,xa,v,la,n,K)

%

% This function returns a vector of transverse displacements, y,

% of a cantilever beam with 'n' attached piezoceramic actuators,

% given the starting locations of the actuators, 'xa’, the lengths

% of the actuators, 'la’, the actuator input voltages, 'v', and the

% vector 'K' containing the actuator curvatures per unit voltage.

% 'x'is a vector containing a range of axial distances from the

% root of the beam at which 'y' is to be evaluated and 'xa’, 'v'

% and 'la' are all nx1 vectors.

function y = beamdisp(x,xa,v,la,n,K)
y = zeros(size(x)),
for m = 1:length(x)
if x(m) <=xa(1) % x prior to start of actuator
y(m) =0,
elseif xa(1) < x(m) & x(m) <= xa(1)+la(1)
y(m) = K(1)*v(1)/2*(x(m)-xa(1))"2;
elseif x(m) <= xa(n)+a(n)
fork=1n
if xa(k) <= x(m) & x(m) <= xa(k)+la(k)
y(m) = K(k)*v(k)/2*(x(m)-xa(k))"2+sum(K(1:k-1). *v(1:k-1).* ...
la(1:k-1).*(x(m)*ones(size(xa(1:k-1)))-xa(1:k-1)-la(1:k-1)/2));
elseif k<n
if xa(k)+a(k) <= x(m) & x(m) <= xa(k+1)
y(m) = sum(K(1:k).*v(1:k).*la(1:k).*(x(m)*ones(size(xa(1:k)))- ...
xa(1:k)-la(1:k)/2)),
end
end
end
else
y(m) = sum(K(1:n).*v(1:n).*la(1:n).*(x(m)*ones(size(xa(1:n)))- ...
xa(1:n)-1a(1:n)/2));

145




end
end

% PROGRAM TO DETERMINE OPTIMUM ACTUATOR LOCATIONS
% FROM A GIVEN DISCRETE SET OF POSSIBLE LOCATIONS

%

% This program determines the optimum actuator location and input

% voltage from a specified discrete range of possible actuator

% locations to achieve the minimum error between the actuator deformed
% beam shape and a desired parabolic shape function for a cantilever

% beam with piezoceramic actuators bonded to both sides of the beam.

% 1, 2 or 3 actuators can be specified

% Coefficient of desired parabolic shape function

C=0.001;

% Enter beam properties

L=1; % Beam length (m)

w = 0.0508; % Beam width (m)

t=0.001575; % Beam thickness (m)

E =7.2¢10, % Beam modulus of elasticity (N/m"2)
% Enter piezoceramic actuator properties

% Navy Type I PZT

n=73, % Number of actuators
la=0.1*ones(n,1); % Actuator lengths (m)

wp = 0.0381; % Piezoceramic actuator width (m)

tp = 0.00027, % Piezoceramic actuator thickness (m)
Ep =6.1¢el0; % Piezoceramic actuator modulus of elasticity (N/m"2)

d31=1.71e-10; % Piezoelectric constant (m/V)

% Enter properties of bond between piezoceramic actuator and beam

wb = wp; % Bond width (m) (equal to actuator width)

tb=0; % Bond thickness (m)

Eb =1.78e9; % Bond modulus of elasticity (N/m”2)

% Calculate properties of beam cross-section

area = w.*t; % Beam cross-sectional area (m”"2)

areab = wb*tb; % Bond cross-sectional area (m”2)

areap = wp*tp; % Piezoceramic actuator cross-sectional area (m”2)

moi = w.*t."3/12; % Beam cross-section moment of inertia (m"4)
% Bond cross-section moment of inertia (m"4)
moib = wb*tb*(t"\2/2 + t*tb + 2%tb"2/3);
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% Piezoceramic actuator cross-section moment of inertia (m”4)

moip = wp*tp*((t+2*tb)"2/2 + (t+2*tb)*tp + 2*tp”2/3);

EI = E*moi+Eb*moib+Ep*moip; % Beam stiffness

K =Ep*d31*wp*(t+2*tb+tp)/EL, % (Moment per unit voltage)/(Beam stiffness)
K =K*ones(n,1);

% Set run number, minimum and maximum locations for actuators
% and spacing between actuator locations in range of positions
% evaluated between minimum and maximum locations for each actuator

Run =6; % Run number

Savefile = NTII3 6';

xmin = [0.055 0.355 0.655]; % Run 6 (0.005 spacing)
xmax = [0.095 0.395 0.695]; % Run 6 (0.005 spacing)

Spacing = [0.005 0.005 0.005]; % Run 6

% Set initial voltages for unconstrained voltage optimization algorithm
VO = zeros(n,1);

% Set options for unconstrained voltage optimization algorithm
Options = foptions';
Options(14) = 2000; % Maximum number of iterations (0 -> 100*n)

% Divide each actuator location range into up to 9 equally spaced
% possible locations separated by the interval set in 'Spacmg
ifn=1 % 1 Actuator
xrange = [xmin: Spacing:xmax};
elseifn==2 % 2 Actuators
xrange = [xmin(1):Spacing(1):xmax(1);xmin(2): Spacing(2):xmax(2)];
else % 3 Actuators
xrange = [xmin(1): Spacing(1):xmax(1);xmin(2): Spacing(2):xmax(2); ...
xmin(3): Spacing(3):xmax(3)];
end

% Evaluate optimum actuator voltages and beam shape error
% for each combination of actuator locations
x = zeros(n,1);
Maxindex = length(xrange);
ifn=1 % 1 Actuator
Ermatrix = zeros(Maxindex, 1),
Voltagel = zeros(Maxindex, 1),
for k = 1:Maxindex
fprintf{["\nk =" int2str(k) "\n'])
x = xrange(k);
V = fmins("beamerVu',VO0,Options,[],x,1a,K,C,L n);
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Voltagel(k) =V;
Ermatrix(k) = beamerVu(V x,la,K,C,L,n);
ifk~=1
if Ermatrix(k) < Minerror
Optloc =k;
OptV =1V,
Minerror = Ermatrix(k)
end
else
Optloc = 1;
OptvV=YV,
Minerror = Ermatrix(k)
end
end
clear k
Optx = xrange(Optloc)
OptV
Minerror

elseif n =2 % 2 Actuators
Ermatrix = zeros(10);
Voltagel = zeros(10);
Voltage2 = zeros(10);,
Voltsum = zeros(10);
for ) = 1:Maxindex
x(1) = xrange(1,j);
for k = 1:Maxindex
fprintf{[\njk ="' int2str(j) ' ' int2str(k) \n'7)
x(2) = xrange(2,k);
if (x(1)+Ha(1)<=x(2))
V = fmins('beamerVu',V0,Options,[],x,1a,K,C L n);
Voltagel(j,k) = V(1);
Voltage2(j,k) = V(2),
Ermatrix(j,k) = beamerVu(V x,1a,K,C,L,n),
ifjtk ~=2
if Ermatrix(j,k) < Minerror
Optloc = [j k];
OptV =V;
Minerror = Ermatrix(j,k)
end
else
Optloc =1 1];
OptV =V,
Minerror = Ermatrix(j,k)
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end
else
Voltagel(j,k) = 0;
Voltage2(j,k) = 0;
Ermatrix(j,k) = 0,
end
end
end
clearj k
Optx = [xrange(1,0ptloc(1));xrange(2,0ptloc(2))]
OptV
Minerror
Voltsum = Voltagel+Voltage2;

else % 3 Actuators
Ermatrix = zeros(100,10);
Voltagel = zeros(100,10);,
Voltage2 = zeros(100,10);
Voltage3 = zeros(100,10),
Voltsum = zeros(100,10);
for 1 = 1:Maxindex
x(1) = xrange(1,1),
for } = 1:Maxindex
X(2) = xrange(2,));
for k = 1:Maxindex
fprintf{[\nijk ="' int2str(i) ' ' int2str(j) ' ' int2str(k) "\n'])
x(3) = xrange(3,k);
if (x(1)Ha(1)<=x(2)) & (x(2)+a(2)<=x(3))
V = fmins('beamerVu',V0,0ptions,[],x,1a,K,C,L.n),
Voltage1(10*(i-1)+j,k) = V(1);
Voltage2(10*(i-1)+,k) = V(2),
Voltage3(10*(i-1)+j,k) = V(3);
Ermatrix(10*(i-1)+j,k) = beamerVu(V,x,la,K,C,L,n);
ifitjtk ~=3
if Ermatrix(10*(i-1)+j,k) < Minerror
Optloc =[ij k];
OptvV =YV,
Minerror = Ermatrix(10*(i-1)+j,k)
end
else
Optloc=[111];
OptV =YV,
Minerror = Ermatrix(10*(i-1)+j,k)
end




else
Voltage1(10*(i-1)+3,k) = 0;
Voltage2(10*(i-1)+3,k) = 0;
Voltage3(10*(-1)+,k) = 0;
Ermatrix(10*(i-1)+j,k) = 0,
end
end
end
end
clearijk
Optx = [xrange(1,0ptloc(1));xrange(2,0ptloc(2));xrange(3,0ptloc(3))]
OptV
Minerror
Voltsum = Voltagel+Voltage2+Voltage3;
end

% Plot results
x = linspace(0,1,100);
y = beamdisp(x,0ptx,0ptV.la,n,K), % Fixed length actuators
yact = beamdisp([Optx;Optx+la],Optx,OptV, la,n,K);
yf=C*x."2;
figure
plot(x,y, -, x,yf,'g. . [Optx;Optx-+la},yact,'r*")
legend('Actual', Desired',-1)
grid
title('Actual vs. Desired Beam Shapes')
xlabel('X (m)")
ylabel('Beam Displacement Y (m)')
ifn=1
text(0.1,0.9,['Run ' int2str(Run) ' Optimum Values for 1 Actuator:'], ...
"Units', Normalized')
text(0.1,0.8,['x1 ="' num2str(Optx(1)) 'm / V1 ="' num2str(OptV(1)) ...
' V'],'Units’, Normalized')
text(0.1,0.7,[Error = ' num2str(Minerror,4)],'Units', Normalized')
elseif n =2
text(0.1,0.9,['Run ' int2str(Run) ' Optimum Values for 2 Actuators:'], ...

"Units', Normalized')

text(0.1,0.8,['x1 ="' num2str(Optx(1)) 'm / V1 =" num2str(OptV(1)) ...
' V'],"Units','Normalized')

text(0.1,0.7,['x2 ="' num2str(Optx(2)) 'm / V1 ="' num2str(OptV(2)) ...
' V'],'Units', Normalized')

text(0.1,0.6,['Error = ' num2str(Minerror,4)],'Units', Normalized')
elseif n==3
text(0.1,0.9,[Run ' int2str(Run) ' Optimum Values for 3 Actuators:"], ...
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"Units', Normalized')
text(0.1,0.8,['x1 =" num2str(Optx(1)) ' m / V1 =" num2str(OptV(1)) ...

' V'],'"Units','Normalized")

text(0.1,0.7,['x2 =" num2str(Optx(2)) ' m / V1 =" num2str(OptV(2)) ...
' V'],"Units', Normalized')

text(0.1,0.6,['x3 ="' num2str(Optx(3)) 'm / V1 =" num2str(OptV(3)) ...
' V'],"Units',' Normalized')

text(0.1,0.5,['Error = ' num2str(Minerror,4)], Units', Normalized")

end

% Save data to MAT file
eval(['save ' Savefile])

% PROGRAM TO DETERMINE OPTIMUM ACTUATOR INPUT VOLTAGES
% FROM A GIVEN DISCRETE SET OF POSSIBLE VOLTAGES

%

% This program determines the optimum actuator input voltages

% from a specified discrete range of possible actuator

% voltages to achieve the minimum error between the actuator deformed

% beam shape and a desired parabolic shape function for a cantilever

% beam with piezoceramic actuators bonded to both sides of the beam.

% 1, 2 or 3 actuators can be specified

% Coefficient of desired parabolic shape function

C=0.001;

% Enter beam properties

L=1; % Beam length (m)

w = 0.0508; % Beam width (m)

t =0.001575; % Beam thickness (m)

E =7.2el10; % Beam modulus of elasticity (N/m”2)
% Enter piezoceramic actuator properties

% Navy Type I PZT

n=3; % Number of actuators

la=0.1*ones(n,1); % Actuator lengths (m)

wp = 0.0381; % Piezoceramic actuator width (m)

tp = 0.00027; % Piezoceramic actuator thickness (m)
Ep =6.1¢l0; % Piezoceramic actuator modulus of elasticity (N/m”"2)
d31=1.71e-10; % Piezoelectric constant (m/V)

Vmax = 150; % Maximum actuator input voltage (V)
Vmin = -150; % Minimum actuator input voltage (V)
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% Enter properties of bond between piezoceramic actuator and beam

wb = wp; % Bond width (m) (equal to actuator width)

tb=0; % Bond thickness (m)

Eb=1.78e9, % Bond modulus of elasticity (N/m”"2)

% Calculate properties of beam cross-section

area = w.*t, % Beam cross-sectional area (m”2)

areab = wb*tb; % Bond cross-sectional area (m”2)

areap = wp*tp; % Piezoceramic actuator cross-sectional area (m”2)

moi =w.*t."3/12; % Beam cross-section moment of inertia (m"4)

% Bond cross-section moment of inertia (m”"4)

moib = wb*tb*(1"2/2 + t*tb + 2*tb"2/3);,

% Piezoceramic actuator cross-section moment of inertia (m”"4)

moip = wp*tp*((t+2*tb)"2/2 + (t+2*tb)*tp + 2*tp"2/3);

EI = E*moi+Eb*moib+Ep*moip;, % Beam stiffness

K = Ep*d31*wp*(t+2*tb+tp)/EIl, % (Moment per unit voltage)/(Beam stiffness)
K = K*ones(n,1);

% Set run number, minimum and maximum voltages for actuators
% and increment between actuator voltages in range of positions
% evaluated between minimum and maximum locations for each actuator

Run=1; % Run number

Savefile = NTII1_1V",

Vmin = [10]; % Run 1 (5 V increment)
Vmax = [50]; % Run 1 (5 V increment)
Incremnt = [5]; % Run'1

% Set actuator locations
fn==

x = 0.2420;
elseif n ==

x = [0.1220;0.5394];
else

x = [0.0728;0.3678;0.6641];
end

% Set initial voltages for unconstrained voltage optimization algorithm
VO = zeros(n,1);

% Set options for unconstrained voltage optimization algorithm

Options = foptions',
Options(14) = 2000; % Maximum number of iterations (0 -> 100*n)

% Divide each actuator voltage range into up to 9 equally spaced
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% possible locations separated by the interval set in 'Spacing'
ifn==1 % 1 Actuator
Vrange = [Vmin: Incremnt: Vmax];
elseifn=2 % 2 Actuators
Vrange = [ Vmin(1):Incremnt(1): Vmax(1); Vmin(2):Incremnt(2): Vmax(2)];

else % 3 Actuators

Vrange =
[Vmin(1):Incremnt(1): Vmax(1); Vmin(2): Incremnt(2): Vmax(2), Vmin(3):Incremnt(3): Vma
x(3)J;
end

% Evaluate optimum actuator voltages and beam shape error
% for each combination of actuator locations
Maxindex = length(Vrange);
ifn==1 % 1 Actuator
Ermatrix = zeros(Maxindex, 1),
Voltagel = zeros(Maxindex, 1),
for k = 1:Maxindex
fprintf{["\nk ="' int2str(k) \n'])
V = Vrange(k),
Ermatrix(k) = beamerVu(V,x,1a,K,C,L,n);
ifk~=1
if Ermatrix(k) < Minerror
OptvV=V;
Minerror = Ermatrix(k)
end
else
OptV =V,
Minerror = Ermatrix(k)
end
end
clear k
OptV
Minerror

elseifn =2 % 2 Actuators
Ermatrix = zeros(10);
for j = 1:Maxindex
for k = 1:Maxindex
fprintf{["\njk =" int2str(j) ' ' int2str(k) "\n'])
V = [Vrange(1,j);Vrange(2,k)];
Ermatrix(j,k) = beamerVu(V,x,1a,K,C,L,n);
ifjtk ~=2
if Ermatrix(j,k) < Minerror
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OptV=YV;
Minerror = Ermatrix(j,k)
end
else
OptV=YV;,
Minerror = Ermatrix(j,k)
end
end
end
clearj k
OptV
Minerror

else % 3 Actuators
Ermatrix = zeros(100,10);
for 1 = 1:Maxindex
for j = 1:Maxindex
for k = 1:Maxindex
fprintf(["\nijk =" int2str(i) ' ' int2str(j) ' ' int2str(k) \n'])
V =[Vrange(1,1); Vrange(2,j); Vrange(3,k)];
Ermatrix(10*(i-1)+j,k) = beamerVu(V x,1a,K,C,L n);
ifitjtk ~=3
if Ermatrix(10*(i-1)+j,k) < Minerror
OptV =V,
Optindex =[] kJ;
Minerror = Ermatrix(10*(i-1)+j,k)
end
else
OptV =V,
Optindex = [1j k];
Minerror = Ermatrix(10*(i-1)+j,k)
end
end
end
end
clearijk
OptV
Minerror.
end

% Plot results

ifn=1 % 1 Actuator
% Plot variation in shape error vs. actuator voltage
figure
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plot(Vrange Ermatrix)

title('Error vs. Actuator Input Voltage for 1 Actuator')

xlabel('Actuator Voltage (V)"

ylabel('Error')

text(0.15,0.95,[Run ' int2str(Run)), Units', Normalized')

text(0.15,0.85,[' Actuator Location: ' num2str(x) ' m'],'Units', Normalized')
grid

elseifn=2 % 2 Actuators
% Plot variation in shape error vs. actuator positions
figure
meshz(Vrange(2,:), Vrange(1,:),Ermatrix(1:Maxindex, 1:Maxindex))
title(‘Error vs. Actuator Input Voltages for 2 Actuators')
xlabel('Voltage 2 (V)"
ylabel('Voltage 1 (V)"
text(0.15,0.95,['Run ' int2str(Run)],'Units', Normalized')
text(0.15,0.85,['Actuator Locations: ' num2str(x(1))'m ' ...

num2str(x(2)) ' m'},'Units', Normalized")

else % 3 Actuators
% Plot variation in shape error for Actuator 1 fixed
% at optimum location
figure
meshz(Vrange(3,:), Vrange(2,:), Ermatrix(10*(Optindex(1)-1)+1: ...
10*(Optindex(1)-1)+Maxindex, 1:Maxindex))
title(Error vs. Actuator 2 & 3 Voltage at Optimum Actuator 1 Voltage')
xlabel('Voltage 3 (V)")
ylabel('Voltage 2 (V)"
text(0.15,0.95,['Run ' int2str(Run)], 'Units', Normalized')
text(0.15,0.85,['Actuator Locations: ' num2str(x(1)) 'm ' ...
mum2str(x(2)) ' m ' num2str(x(3)) ' m'],'Units', Normalized')

% Plot variation in shape error for Actuator 2 fixed

% at optimum location

figure

meshz(Vrange(3,:), Vrange(1,:),Ermatrix(10*[0:Maxindex-1]+ ...
Optindex(2)*ones(1,Maxindex), 1:Maxindex))

title('Error vs. Actuator 1 & 3 Voltage at Optimum Actuator 2 Voltage')

xlabel('Voltage 3 (V)")

ylabel('Voltage 1 (V)"

text(0.15,0.95,[Run ' int2str(Run)], Units', Normalized')

text(0.15,0.85,['Actuator Locations: ' num2str(x(1)) 'm ' ...
num2str(x(2)) 'm ' num2str(x(3)) ' m'],'Units', Normalized')
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% Plot variation in shape error for Actuator 3 fixed

% at optimum location

figure

Ermesh = reshape(Ermatrix(:,Optindex(3)),10,10)

meshz(Vrange(2,:), Vrange(1,:),Ermesh(1:Maxindex, 1:Maxindex))

title('Error vs. Actuator 1 & 2 Voltage at Optimum Actuator 3 Voltage')

xlabel("Voltage 2 (V)"

ylabel('Voltage 1 (V)"

text(0.15,0.95,[Run ' int2str(Run)], Units', Normalized')

text(0.15,0.85,['Actuator Locations: ' num2str(x(1)) 'm ' ...

num2str(x(2)) ' m ' num2str(x(3)) ' m'},'Units','Normalized')

end

% Save data to MAT file
eval(['save ' Savefile])
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