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ABSTRACT

This work studies the use of a wave absorbing control law for wvibration
suppression of flexible spacecraft structures. A major advantage of this method is that it
does not involve truncation into a finite dimensional mathematical model. A closed loop
scattering matrix was derived which gives the relationship between incoming waves,
outgoing waves, sensor, and actuator. The control law was determined by minimizing the
H-infinity norm of this matrix. The control law was applied to the Naval Postgraduate
School's Flexible Spacecraft Simulator (FSS) for vibration suppression. The simulator's
flexible beam was controlled using piezoelectric ceramic wafers as sensors and actuators.
The H-infinity wave absorbing controller contributed significant damping to the structure,
especially at the first mode of 1 Hz. Therefore, wave absorbing control and piezoceramic

sensors and actuators offer a viable approach for vibration suppression of space structures.
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1. INTRODUCTION

A. BACKGROUND

Recent trends in spacecraft design have led to larger and more flexible structures.
Large structures such as Space Station Freedom pose interesting new problems in
structural dynamics and control. In addition, modern sensor equipment has become more
and more accurate, making it highly sensitive to structural vibration. For example, an
antenna or optical sensor, requiring a high degree of pointing accuracy may be mounted
on a flexible structure connected to the spacecraft bus. The antenna will be subjected to
vibration from the spacecraft bus due to slew maneuvers, momentum wheel vibration, and
thruster firing. Passive vibration isolation can absorb some of the energy. However,
modern payloads have led to a requirement for active vibration control and isolation.

There have been two major approaches to vibration control of flexible structures.
The first, and more conventional approach, is based on modal control of the structure such
as described by Newman [Ref. 1]. This approach usually suffers from modeling errors and
state estimation. The use of modal model based control laws has been an area of intense
research during the last decade. The second approach describes the structural response in
terms of an elastic disturbance which travels through the structure.[Ref. 2] In this
approach, compensators are designed to reduce the effects of incoming waves on outgoing

waves. The advantages of the wave absorbing approach are:

eRelatively simple to implement
*Broadband control

eDoes not require finite element analysis or modal model




B. FOCUS OF THESIS

This thesis concentrates on three areas. First, a wave absorbing controller will be
derived using an H-infinity approach similar to one used by Matsuda and Fuji [Ref 3].
Second, the control law will be simulated using a finite element model of the beam to be
studied. The transfer function of the open loop system will be found using modal
truncation, then the loop will be closed with the H infinity controller. Last, the control
law will be implemented on the Naval Postgraduate School's Flexible Spacecraft Simulator
(FSS). The control law will be applied by a real time control system using Matrix, ™,
System Build™, and AC-100 by Integrated Systems Incorporated (ISI). The results of

the experiment will be compared the analytical computer simulation.




II. THEORETICAL ANALYSIS

A. WAVE ABSORBING CONTROL

This thesis approaches active control of the Flexible Spacecraft Simulator (FSS)
using a wave absorbing control theory. The response of the beam is viewed as a travelling
elastic disturbance due to a locally applied force. This approach has been developed by a
number of sources such as von Flotow and Shafer [Ref. 4], MacMartin and Hall [Ref. 5],
Matsuda and Fuji [Ref. 3] and Fuji et al. [Ref. 6].

1. Dynamic Model

The FSS setup is shown in Figure 1. The base of the flexible beam is fixed to the
center body with the other end of the beam free. Using the Euler-Bernoulli beam theory

the dynamics of a flexible beam are given by the following partial differential equation:

EIZ2+pAZt =0 @2.1)

sensor/actuator

Figure 1. FSS Beam Model




The boundary conditions are :

Clamped end: w(0,8)=0, w(0,H)=0 (2.2)
Actuator moment: ET f;‘;(o, N=M, (2.3)

where w(x, 1) is the lateral displacement, A is the bending moment, EI is the bending
rigidity, and pA is the mass per unit length. The moment and shear force at the free
end are zero, but will not be necessary for the derivation. As can be seen in equation

(2.3), the control forces can be accounted for via the boundary conditions, which
allows the force term on the right hand side of equation (2.1) to be taken as zero.
a. Laplace Transform Solution to Beam Equation

The partial differential equation (2.1) can be analyzed using the

Laplace transform. The initial conditions, w(x, 0) and w(x, 0) are assumed to be zero.
The nonzero values of w(x, 0) and w(x, 0) obviously do not make a difference in the

final result.

Liw(x, )] = W(x,s) = f;c w(x, e dt (2.9)
LIZ2] = s2(x, 5) @.5)
LIZ%) = [; Ste~tdi = L W(x, 5) (2.6)

The fourth order partial derivative becomes an ordinary derivative since time is

"frozen" in the s domain. This reduces the Euler-Bernoulli beam equation to:

d* Wix,s
a’-—wf—f‘-) + 2 W(x,5)=0 @2.7)

where
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b. State Space Representation

(2.8)

The analysis of equation (2.7) can be simplified by using state

space methods. A state vector containing the cross sectional properties of the beam is

introduced.
4 w
0
Y = y2 = 9 a
Y3 EI
a
Ya E[Q
where,
W= sw is the lateral velocity
0= S%‘f is the angular velocity

M = EI* s the internal bending moment

Q = EI“% s the internal shear moment

(2.9)

The state vector (2.9) can be used to transform equation (2.7) to a set of

first order state equations in terms of x in the form:

dy
4 - ay

Let us introduce p = 3 and proceed as follows.

dy>

dx

<L}

dw _ A __
d)r—dxme_y2

0w M s
—de—deg—AE,-—ayz—pyz

(2.10)

(2.11)

(2.12)




dx " Eldr " EIZ )4

dys _a diwy _ diw
= (EF D) =a

. . . . d
Using the dynamic system equation (2.7) we can detemine —f— as

d*w 52
—_— = ——W
dx? a?

Therefore

dV4

& = TPSW=—pW=py

This leads to the state equation:

[ 0100
a | 00po0
dr _ Y=AY
a1 0001

 —p 000 |

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

The solution of the ordinary differential equation shown above is given

Y(x) = e**¥(0)
= Ue™U-'Y(0)

(2.18)

where A is found by similarity transformation of 4. This can be done by solving the

following eigenvalue problem.

UAN =AU

(2.19)




g s
S
Gy
o
S

(2.20)

AOM (2.21)

where the eigenvalues are

1+1

A= 1_', (2.22)
-1+

-1 -1

As can be seen from equations (2.18-22), the solution yields imaginary
solutions. A more useful solution can be transforming the matrix A or its diagonal
transformation to real Jordan canonical form. [Ref 3] As discussed in the next section
this will also yield a state vector in terms of travelling waves instead of cross sectional
variables.

c State Vector in Terms of Travelling Waves

The state vector Y from the previous section is defined in terms of

the cross sectional variables of the beam. As stated at the beginning of this chapter, we

desire to study the disturbances in the beam in terms of travelling waves. The matrix A

can be transformed to real Jordan canonical form by the matrix K . [Ref. 7, pp 144,145]




S -
2300
1
= =00
K= (2) (2) L (2.23)
2 2
1
i 00 5 3 ]
The new matrix A can then be formed by the similarity transformation
A=(K'UYAUK) =P AP (2.24)

where

' 2p 0 J2p o0

pr p PP (2.25)

0 J2p 0 -V2p

| -P PP P

(1]
2
1to

P=UK-=

N | —
1t9
[
B[]

w

Using this transformati~n the state vector can be changed to
Y="PV (2.26)

where the new state vector }” contains the amplitudes of the travelling wave modes.

V= (2.27)

This notation is similar to that used in liturature used in microwave circuits. [Ref 4, pg.
674] At any point along the beam the motion can be described by four modes, two

incoming and two outgoing waves as shown in Figure 2.




Figure 2. Travelling Wave Modes

The new state vector varies with postion along the beam according to the

new state equation

110 O
dl = 14 110 0
&gy = |2
@ 2100-1 1
1 00-1 -1

Equation (2.28) has a solution of the form

V(x) = e 1/(0)

1x

The matrix ¢ can be represented by

where A 1 and ;12 are the block diagonals of A

V (2.28)

(2.29)

(2.30)




Next the inverse Laplace transform (with respect to x)
e =L [(s]-A)"] (2.31)

is used to find the exponentials along the diagonal of equation (2.30). Let ¢ = E ,

then

(sI—A1)=[S_C ¢ } (2.32)
c S

(s1-A))" = — {S—)" "J (2.33)

(s—¢) L

By taking the inverse Laplace transform using equation (2.31) the first diagonal

element of equation (2.30) is found.

e e*coscx  e“fsincx
eh¥ = (2.34)
_pCX a1 o cx

e“sincx ecoscx

The second diagonal element can be found in a similar fashion leading to the solution

e*coscx ersincx 0 0
—e“*sincx e“*coscx 0 0
x) = e en (0) (2.35)
0 0 e~ “*coscx e “*simncx
0 0 —e~“sinex e “*coscex

To determine the wave amplitudes for the pinned and free end of the beam in Figure

2. the solution is determined for x /. This leads to the same solution as determined

by Matsuda and Fuji. [Ref. 3]

10




a e*coscx e“*sincx 0 0 a
a |y —e*sincx e“*coscx 0 0 a |
L)= ex ex 0) (2.36)
b 0 0 e *coscx e “*sincx b
by 0 0 —-e~*sincex e"*cos cx b,

d Boundary Conditions
The boundary conditions are given by equations (2.2) and (2.3). The

boundary conditions can be transformed to the new coordinates by equation (2.25).

W

10001 © 0

[00%0]% ={Mc} 37
50

which can be rewritten as

2p 0 2p 0 |[a
1000 |\ p* p° -P° pP° || {0}
- = 2.38
{00%'0}@ 0 2p 0 -2p || b Y
__p§ p§ p§ p? i b2
or
a)
%ﬁp 0 .21_‘/'2_,7 0 as _{ 0 } (2.39)
0 Zhp o -Z2p | b M. '
b

This equation can be solved for the outgoing wave amplitudes [b, , b,] as a function of

the incoming wave modes [ a,,a,] and the control moment M.

11




b -10 0o |,
{b; }=[ 01 ]{ Z; }+ T (wMe (2.40)
P

2. Control Law
a. System Equation in Four Block Form

The wave equations derived in Section 1 can be written as a

standard four block form in robust control theory. The equations are as follows.
b =Sa+ Bu (2.41)

y=Ta+Gu (2.42)

where the matrix S, which in this special case is called the scattering matrix contains

the reflection coefficients. The standard four block form is written as

b S B ||a .
HEEH M

The block diagram for this system is shown in Figure 3.

/

. a b
S ' B
’ T1G y = angular
u=Mg¢ velocity

Figure 3. System Block Diagram

12




The controller inputs are of the form

u=Ky (2.44)
7Me = K6

Combining compensator K with the output equation given by (2.42) gives

u=KTa+KGu (2.45)
or

u=HTa (2.46)
where

H=K(-GK)! (2.47)
or, in other words,

K =H(I+HG)™! (2.48)

The closed loop system between a and b can be determined by combining equation (2.46)

with (2.41)

b=8Sa+BHTa=(S+BHT)a (2.49)
or
b=_S.a (2.50)

where S, is the closed loop scattering matrix.

For the system derived in Section 1, the four block form equation can be

determined from the transformation (2.26) and equation (2.40).

W 2p 0 2p 0 a,
0 N A A S
a =\5 : 2.51
RO I A IS &0
FQ _-—pi p? p? p§ ] b2




The input equation (2.44) can be determined by using the second and third row equations

in (2.51) above.
y_1.2 1.3 1.3, 13
=.prai +5ypias — p2b1 +3p2ba (2.52)
“M. = J2 pay — 42 pb (2.53)

The above two equations are combined producing

-

6 =pia, +p2a;s - (g) M. (2.54)

Equations (2 40) and (2.54) form an equation appropriate for a control system design.

, (10 0 | .,

1 . !

by b=| O 1 -J2p Ly @ (2.55)
A 3 3 2

o) |t (2)° |l M

The first row of this equation can be dropped since b, cannot be physically controlled by
M. This wave mode is called a "far field" mode since it represents a mode transmitted

along the beam's axis for a long distance. Therefore, the closed loop system S, can be

determined.
sa=[01 1+ () 11
=[-xr-x] (2.56)
where
A= ﬁHp_% (2.57)

14




b. H infinity Compensator Design

In order to minimize the effect of the incoming waves on the outgoing
waves, it is desirable to choose a compensator K for which the "magnitude" of the closed
loop scattering matrix is minimized. This is motivated by drawing energy out of the
system at the junction point where the actuator is located.

The magnitude of a matrix can be measured by its norm. One type of

matrix norm is the H infinity norm which is given by

IScill.. = sup(S[Sc(/®)]) (2.58)
G is the largest singular value. The singular values can be found by
Gi(Se) = JMi(S5S) (2.59)

where S:,, is the complex conjugate of S, and A; are the eigenvalues of the matrix in

parentheses. The eigenvalues are found by

vk (v ~X(=/ : ;
S8y { | _)(((-’_2) }[ ~X(m) 1-X(w) ] (2.60)

l A-XGeX(Tw)  Xee)l-Xow)] | e
Xjo)[1 - X(j@)] A~ [1 - X(=)][1 - X(®)]
Solving the determinant above leads to

52 = % =2 X(w) - 1 [ X(5m) -1 |+ 1 (2.62)

The smallest solution for equation (2.62) occurs at X(s) = -21- which gives G = —12: Now

equation (2.57) can be solved for A.

15




)% (2.63)

Using equation (2.48) K can be determined as
= zr— (g)l (2.64)
3.2 A *

As seen in equation (2.44) K gives the relationship between the angular

velocity,é, and the actuator moment, M_. However, the sensor for the FSS beam gives
the angle O for an output. Thus it is desired to find a transfer function from 0 to M, This

transfer function can be found by taking the Laplace transform of (2.44).
M (s) = Ks6(s) (2.65)

Combination of this equation with (2.8) and (2.64) yields

()= = 2 ‘E”f("“" : J5 (2.66)

This transfer function was derived for a beam clamped at the base and free
at the end The transfer function above was also derived for a pinned-free beam by
Matsuda and Fuji [Ref 3] using the H-infinity approach. A similar tranfer function was
found by MacMartin and Hall [Ref 5] by minimizing the H infinity norm of the power
flow into the system. MacMartin and Hali .iso point out that this solution extracts half of
the power at all frequencies. This is in contrast to other controllers which are more
effective at a given mode, but cannot add significant damping at all of the modes at the
same time.

The control law given in (2.66) is effectively a "half differentiator”. It is

similar to velocity feedback with a forty five instead of a ninety degree phase lead. In
order to implement this control law the function /s must be estimated by a rational

16




transfer function. As shown by MacMartin and Hall [Ref. 5], this irrational function can
be approximated over a wide frequency range by a finite number of zeros and poles spaced

logrithmically along the negative real axis. Figure 4 shows the Bode plot for four zeros

and four poles.

(s+1o-4) (s+10-3) (s+10°) (s+103)

S = 2.67
IS = o) o) o) (ot (267)
0
@
©
£ -50
3} L4
O /—,—-——
.—-_—///"
——///
-100 2 R 0 1 2
10 10 10 10 10
Frequency (rad/sec)
Pulynomial Estimate of sqrt(s)
100
/ B N L L4 B L4
e o
h=)
[+3}
2]
©
£
0. -100
-2007; y 0 1 2
10 10 10 10 10

Frequency (rad/sec)

Figure 4. Rational Estimate of /s
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B. SENSOR AND ACTUATOR

The sensors and actuators for the FSS beam are nearly collocated at the base and
can be seen in Figure 5. Both the sensor and actuator are made of piezoelectric ceramic.
As seen in the figure, the piezoelectric wafers are stacked. This allows for high sensitivity

from the sensor and more actuator power in a small area.

m

Z | AR,

-

T, R R X

7/8"
N
N
N
3 N A //
RN % /
§£ I
[ 2.3

Figure 5. First Beam Element with Sensor Actuator Pair

1. Piezoelectric Material

Piezoelectric ceramics have many advantages as actuators and sensors. Table 1
shows the advantages of using piezoelectric materials in structural vibration control.
[ Ref 8]

The usefulness of piezoelectric ceramics in vibration control is derived from their

ability to convert electrical energy into mechanical energy and vice versa. When a force is

18




applied to the material, it creates a voltage proportional to the applied force. Conversly,

when an electric potential is applied across the ceramic, it creates mechanical strain.

Sensor Actuator

high stiffness

high strain sensitivity

low noise sufficient stress to control vibrations

low-moderate tempurature sensitivity  |good linearity
easily implemented low power consumption

easily implemented

Table 1. Advantages of Piezoelectric Ceramics

2. Sensor

It can be shown that a piezoelectric material produces voltage proportional to

strain when force is applied. [Ref. 9] This voltage is given by the equation

V.=t, (—b:;%) (1 - Ve, (2.68)

The maternial constants for the Navy Type II PZT, which is used in this study, are given in

Table 2.

Constant

Description

Units

Value

d3l

Lateral Strain
Young's Modulus
Poissons Ratio
Abs Permittivity

Sensor Thickness

Beam Thickness

Sensor Area

m/V or Coul/N
Pascal (N/m?)
n/a
Farad/m or N/V*

19

1.8e-10
6.30e10
0.35
1.5¢-8
2 x 1.905e-4
1.588e-3
4.83%9¢-4

Table 2. Material Constants for Navy Type I1 PZT




The strain developed at the cross section of the beam at a distance 4 from the midplane of

the beam is

£r = —h gx“ (2.69)
Combine this equation with (2.68) to get
Vi(x) = k%;ﬁ (2.70)
where
Ed
k=~ht;—>+(1-v) (2.71)

Since the sensor is distributed along the beam, however, the measured sensor output is

the average voltage over the length, L, of the wafer.

V, = IE j_’:z*‘ V(x)dx (2.72)
k Xp+l o w
=0 Shdx

V=40 (2.73)

Thus, the voltage output of the sensor is directly proportional to the effective bending
angle over the sensor element. The value of -Lk- for the FSS beam is -1.378 x 10
rad/volt.

3. Actuator

The actuator produces a moment proportional to the voltage across its terminals.

The electric field across the wafer is related to the voltage by

20




=L (2.74)

=1

A lateral strain is induced by this electric field and is given by

e=d® (2.75)

Furthermore, the stress in the piezoelectric wafer 1s

Nk
1l
o3
9]

Lal

(2.76)

where A_is the wafer cross section. If b is the width of the actuator, then equations (2.74)

to (2.76) can be combined to find the force along the midplane of the actuator.
F.=bEdyV (2.77)

Since there is a piezoelectric stack on each side of the beam, the moment developed by the

actuator 1s

M = 2bEds3(“52)V (2.78)

Using b = 1.905 cm. and values from Table 2 this equation becomes
M = (0167554 (2.79)

Thus, the actuator produces a moment which is proportional to the voltage applied across

its terminals.

21
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III. STRUCTURAL RESPONSE SIMULATION

The open loop transfer function was determined by a modal model which was
generated by truncating a desired number of modes. The open loop transfer function, G(s),
and the H-infinity controller, H(s), were then discretized and formed into the closed loop

system as shown in Figure 6.

-

@fercnce Mc(2) Beam theta(z)
input Modal Model >
+ G(2)

H-infinity
Controller ¢
H(z)

Figure 6. System Block Diagram

A. OPEN LOOP TRANSFER FUNCTION
The beam dynamics were determined by a modal model. The equation of motion

for a lumped parameter model is given by the matrix equation

Mg+ Ci+ Kq = F() 3.1)

where

M is the mass matrix

23




C is the damping matrix
K 1s the stiffness matrix

g is the vector of generalized coordinates

The beam is modeled with eight finite elements as shown in Figure 7. The mass
and stiffness matrices were constructed using the finite element method. [Ref 10, pp.
300-328] Element mass and stiffness matrices were calculated and combined to form the
global mass and stiffness matrices for equation (3.1). These matrices can be seen in the
program BEAM M in the Appendix A. It should be noted that the vertical dispacements

and rotation at the base are equal to zero due to clamped boundary conditions.

element lengths
e(l1) =0.114m lumped mass (0.467 kg)

e(2-7)=0.0635 m
e(8) =0.145m

(e

Figure 7. Finite Element Model

24




The generalized coordinate vector can be decoupled into modal coordinates. [Ref 11,

pp.104-107]

Wi
0,
®

q0=1 . t=0on0=2om0 (32)

[ ]
wg

03

The vector 1(f) contains the modal coordinates, and the modal matrix @ contains the
system eigenvectors normalized with respect to the mass matrix. The number of modes,

n, for the lumped parameter model is equal to the number of generalized coordinates. A
reasonable solution can be found by truncating the number of modes into a physically
meaningful number. For example, three modes are often adequate to describe the
longitudinal vibration of a simple cantilevered beam [Ref. 11, pp. 292-293]

Equation (3.2) is substituted for the generalized coordinates in equation (3.1) and

premultiplied by d7 to get the equation of motion in terms of the modal coordinates.
i+ Aty + Axm = F() (3.3)

The first coefficient matrix is the modal damping matrix.

[ 2013, 000 0
0 e00 0
Ae=0TCD = 0 O0e0 0 (3.4)
0 00 0
| 0 000 2p|(,‘(31(, i
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The modal stiffness matrix is

s 000 0
0 © 00 0
Ak=®TKd=| 0 0 «0 0 (3-5)
0 0 Oe O
| 0 0 00 @i
and the modal force vector is
O 3
M.,
0
Fity=0TF@ny=d’] * | (3.6)
@
®
0
0

Note that since the actuator is mounted on the first element, the external moment, M_, is

applied to the second coordinate, g(2) =0 .
The modal matix equation (3.3) can be separated into its individual equations in
the form
. - 2 7 :
W+ 2piwin, + ©;ni =f iu(?) i~ 1,2,...n 3.7)
The Laplace transform of this equation is.

$2N, + 52pwmimi(s) + w?nf(S) :7" UA(s) (3.8)

which leads to the transfer function for n,(s) and {/(s) as follows

26




ni(s) _ fi

- 2
Us)  s242pwms+0 ;

(3.9)

Equation (3.9) gives the transfer function from the input, Ufs), to the i-th modal
coordinate,1);, where 7 = 1,2,..16.
Now, the system transfer function for a physical coordinate can be determined.

The output equation for a single input, multiple output system is

() = Ciq() (3.10)

As discussed in Chapter II, the piezoelectric sensor mounted on the first element measures

the angle 6| . Thus the output equation becomes

Y)=61()=[010ee0 Ja) (3.11)
01(2) = q2(0) (3.12)

This equation leads to a single input, single output system Using the transformation to

modal coordinates given by equation (3.2), the output equation becomes
n
0:1(7) = 21 b2,mi(1) (3.13)
1=

where ¢, denotes elements of second row of ®. Convert this equation to the s domain

using the Laplace transform. Therefore,
n
01(s) = 2 $2.Mi(s) (3.14)
i=

Combining this equation with (3.9), and the fact that the input Ufs) -M,(s), yields the open

loop transfer function.
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01(s) & b2,

Mc(s) — 2] s%+2pmis+o’

G(s) = (3.15)

As seen in Figure 8, one way to view equation (3.15) is » single transfer functions

combined in parallel. This can be easily implemented using the Matlab™ Control Systems

Toolbox "parallel. m" command.

-

Figure 8. Open Loop Transfer Function

B. DISCRETE TRANSFER FUNCTIONS
Each transfer function was tranformed to the z (discrete) domain before forming
the closed loop system. The relationship between the s (continuous) and z (discrete), is

=e*7 (3.16)

-
Lt

where T is the sampling period and § = —a + j© /"
The open loop transfer function, determined by equation (3.15) was converted to a

discrete transfer function using a Tustin transformation. The Tustin transformation shown

below is the Pade approximation to the exponential (3.16). [Ref. 12, pp. 253-282]
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(3.17)

The Tustin transformation maintains the frequency response of the continuous system
while preserving the mapping of the s-plane into the z-plane.

The transfer function for the estimated H-infinity controller was transformed to the
z domain by the matched pole zero technique. Recall from Chapter II that the H-infinity
controller was irrational and was estimated using zeros and poles spaced logrithmically

along the negative real axis. These zeros and poles can be mapped directly to the z

domain by replacing each zero or pole term § + a with its discrete equivalent, Z — e
The gain for the discrete transfer function is chosen so that G| =1 = G(s)l =0
[Ref. 12, pp.304-305] Using Matlab™ the equivalent form of equation (2.64) is

(z+1.000000)(z+.99995)(z+.995012)(z+.60653 1)
(z+.999995)(z+.999500)(z+.95 1229)(z+.006738)

G(z) =k (3.18)
C. CLOSED LOOP SYSTEM

Control of the beam was simulated by closing the loop using H infinity controller,

(‘/T ) and derivative (s). Also, a second order filter was incorporated to study the effects
of filtering the sensor output in the system. The closed loop transfer function was
determined using the feedback command in Matlab™
D. SIMULATION RESULTS

The open and closed loop Bode plots for the H-infinity controller are shown in
Figure 9. The plot shows a reduction in magnitude over a broad frequency range as

expected.
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Discrete Bode Piot: Open and Closed Loop (Ts=0.01 sec)
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Discrete Bode Plot: Open and Closed Loop (Ts=0.01 sec)
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A
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2
10
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Figure 9. Open and Closed Loop Bode Plots
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Figure 10. Forced Response
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The Bode plot becomes inaccurate at frequencies above the Nyquist rate of 314 radians

per second due to the system being discrete with a sampling period of 0.01 seconds.
Figure 10 shows the time response to a sinusoidal input of 1 Hz which is the first

natural frequency of the beam. This plot shows a dramatic reduction in the amplitude of

the closed loop system for the first two modes (1 and 17 Hz).
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IV. EXPERIMENTAL ANALYSIS

A. SET UP

The wave absorbing controller was implemented on the Flexible Spacecraft
Simulator at the Naval Postgraduate School. Figure 11 shows an overall picture of the

system.

Figure 11. Flexible Spacecraft Simulator

The spacecraft simulator consists of a center body which floats over a granite table
on air pads and rotates around an air bearing. A momentum wheel is mounted on the body
to allow for slew maneuvers and in this experiment is used as a disturbance source. The

flexible beam is attached to the center body as shown in Figure 12.
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Figure 12. Flexible Beam
The beam is controlled by a piezoelectric sensor-actuator pair mounted at the base of the

beam as seen in Figure 13. The dimensions of the sensor and actuator are shown in Figure

5, Chapter I1.

Figure 13. Sensor and Actuator

The digital control system was implemented using Matrix,™, System Build™, and
AC-100™ control hardware. The control law was designed using block diagrams in
System Build™ The system was then compiled, linked and loaded into the AC-100™ a

real time controller. Figure 14 shows the control software block diagram.
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Figure 14 Control System Block Diagram
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The AC-100™ has an output of plus or minus 10 Volts. This signal was amplified
by two Kepco™ amplifiers connected in series. This allowed a range of plus or minus 75
Volts for the piezoelectric actuator input.

The momentum wheel was used as a disturbance force and is controlled by voltage
with 1 Volt per 300 RPM. In order to provide a disturbance torque at a desired frequency
the momentum wheel was spun up to a set RPM, then the wheel RPM was modulated at
the desired frequency. The control blocks for the momentum wheel are also shown in
Figure 14.

B. EXPERIMENTAL RESULTS

1. Initial Tests

The initial choice for the digital sampling rate was 100 Hz. Sampling rates of 50,
200, and 400 Hz. were also used. The 100 and 200 Hz sampling rates appeared to be a
reasonable choice.

The main difficulty at the initial stages of the experiment was high frequency noise
coming from the sensor Whenever there was a large jump in the sensor signal between
samples, the output to the actuator would have a large jump in voltage, causing the
actuator to click. These voltage jumps, possibly as high as 150 Volts, could cause damage
to the piezoelectic actuator. Thus, different sampling rates were tried. The higher
sampling rates worked well at reducing the voltage steps between samples, since the
sampling period was shorter, making the actuator output closer to continous. However,
the higher sampling rates also allowed more of the higher frequency noise into the system.
The lower sampling rates, allowed less noise in the system, but had large voltage jumps
between samples.

The solution to these problems was to insert a low pass filter at the sensor output.
A number of filters of different orders and cutoff frequencies were tried. The final choice
was a second order filter with a damping ratio of 0.707 and a cutoff frequency of 30
radians per second (4.8 Hz). This filter, combined with a 100 Hz sampling rate, allowed

good, stable performance for H-infinity and derivative control.
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2. Free Response of the Beam

The free response of the beam was tested for the first two modes. The beam was
set to an initial condition and allowed to vibrate freely. The plots for response of the first
two modes are shown in Figures 15 and 16. Note that the second mode plot data was
collected at a rate of 500 Hz for more accuracy. In order to get a good plot of the second
mode the data was filtered using a high pass FIR filter with a cutoff frequency of 14 Hz.
This filtered out the dominant first mode and allowed for a better view of the second
mode.

The damping ratio of each mode was determined by noting that the amplitude of

the wave at any time, ¢, is determined by
A(H) = A,e 5" 4.1)

where A, is the initial amplitude and @, is the frequency of that mode. If the amplitude is

measured at two different points on the plot the damping ratio can be found by solving for

C. )
In( 0

w0
€= — 4.2)

The damping ratios of the first two modes are shown in Table 3.

| Frequency (Hz / (rad/sec) ) | Damping Ratio
1 095/5.97 3.7x10°
17.0/106.8 3.9x10°

Table 3. Free response damping ratios

The damping ratios determined experimentally were used for the finite element
program described in Chapter III. The higher modes were estimated to be about the same
for the program. Also, note that the first two natural frequencies agree well with the

program frequencies of 1.01 and 17.8 Hz.
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3. Initial Condition Response with Active Control
In this part of the experiment, the response of the beam to an initial condition was

tested with two different control laws. The first was the H-infinity (or ,/E )

controller, and the second was a derivative control. As pointed out in Chapter II, the
H-inifity controller in this case is similar to the derivative control. It provides a phase lead
of 45 degrees instead of 90 for the derivative controller. Its magnitude rolls off more
sharply compared to the derivative controller at higher frequencies.

The results are shown in Figures 17 and 18. A damping ratio for each case was
calculated in a similar fashion to the free response in the previous section. The measured

frequencies and calculated damping ratios are shown in Table 4.

Frequency Damping
(Hz) Ratio

Free Response 0.95 3.9x10°

H-infinity Control 0.98 3.7x10”
Derivative Control 0.96 3.9x10°

Table 4. Damping Ratios

From the results in Table 4 the derivative controller seems to be slightly better than
the H-infinity controller at this frequency. However, as can be seen in Figure 18, the
derivative controller began to excite the second mode after about 30 seconds. The
derivative controller was also much more sensitive to noise in the system and often caused
spikes in the voltage signal sent to the actuator. The H-infinty controller, on the other
hand, was less sensitive to noise and gave a smoother input to the actuator. The H-infinity

controller turns out to produce reliable performance and was more stable.
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4. Forced Response

The forced response of the closed loop system was tested using the momentum
wheel as a disturbance source. Different runs were made using different frequencies.
Both H-infinity and derivative control laws were implemented.

As discussed previously, the system had stability problems with high frequency
noise and large voltage jumps. Thus, there was a necessity to use a low pass filter.
Initially first and second order filters with 30, 50 and 100 rad/sec cutoff frequencies were
used. The most stable performance was achieved using a second order 30 rad/sec filter.
This reduced the effective bandwidth of the controller to 4.8 Hz. Also, the filter began to
reduce the amount of phase lead of the controller as the disturbance frequency came near
4.8 Hz.

The controller did, however, work well within the low pass bandwidth with
significant active control action near the first natural mode of 1 Hz. The results of
closing the control loop are given in Figures 19 and 20. The decrease in amplitude for

both controllers was calculated and is shown in Table 5.

Decrease inamplitude(dB)

(Initial/Final) amplitude
H-infinity 5 14
3.35 10.5

Derivative

Table 5. Controller performance (1 Hz disturbance)

The H-infinity controller performed better in this case. A significant reason for
this was that the H-infinty controller was less sensitive to noise and, therefore, the gain
could be increased to get full use of the 150 V peak to peak output of the actuator
amplifier. The derivative controller became unstable if the gain was increased too much,
even with the low pass filter. Figure 20 shows that the derivative controller begins to
excite higher modes after about 55 seconds. The H-infinity controller, combined with the
second order filter, showed no tendency to excite the higher modes when subjected to the

disturbance. The H-infinity controller had the best performance with a forced response.
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V. SUMMARY AND CONCLUSIONS

Active control of flexible spacecraft structures has become an important topic.
Larger and lighter structures supporting more sensitive equipment have led to the need for
active control of spacecraft structures. This thesis studied a wave absorbing approach to
this control problem. A closed loop scattering matrix was derived which determines the
relationship between incoming waves, outgoing waves, sensor and actuator. The control
law was found by minimizing the magnitude of this closed loop scattering matrix.
Theoretically, this approach allows for a relatively simple control law, broadband control,
and does not require a modal model of the system for operation.

This control law was then applied to the Flexible Spacecraft Simulator (FSS). The
sensing and actuation for the flexible beam was implemented by piezoelectric ceramic
wafers mounted at the base of the beam. The control law was tested by simulation on a
computer, and then by applying it to the hardware in the lab.

The computer simulation showed that the controller was useful over a broad range
of frequencies below the Nyquist rate of the digital system. The results from the FSS
confirmed this for frequencies below 5 Hz. At higher frequencies the controller had some
problems due to sensor noise requiring a low pass filter, and thus limiting the bandwidth of
the system. At the first natural frequency of | Hz the H-infinity controller performed well
and increased the damping ratio of the system from 3.93 x 10° to 3.7 x 10°. The
controller also decreased the amplitude due to a 1 Hz sinusoidal disturbance by 14 dB.

Some recommendations for further study include adding a weighting function to
the terms in the closed loop scattering matrix. This would allow for weighting the output
of the controller at desired frequencies. It also allows for implementation of a low pass
filter before the H-infinity norm of the matrix is minimized. Another area of study would
be the use of analog filters on either the sensor output or the actuator input. The former
could be used to filter out noise from the sensor. The latter would be useful in smoothing

out the signal sent from the power amplifiers to the piezoelectric actuators. The filters,
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however, will change the phase of the closed loop system, which is another area to be
addressed. Lastly, the sensor and actuator were assumed to be collocated for this study.
Their centers are 1.96 inches apart. This should not be a problem for the lower modes of
the system. However, it is possible that at higher frequencies, the phase difference
between the wave at the sensor and actuator could cause a stability problem. This could
be alleviated by solving the scattering matrix for a noncollocated sensor and actuator.

In conclusion, the use of a wave absorbing controller with piezoelectric sensors
and actuators could be a viable approach to vibration suppression of space structures. As
discussed by von Flowtow [Ref 13] and Fuji, Ohtsuka and Murayama [Ref. 6],
eventually, this approach can be applied to large flexible spacecraft structures with
multiple noncollocated sensors and actuators. The wave absorbing control approach
combined with new sensor and actuator technology such as piezoelectric ceramics

presents a wide area for further research.
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*****************************************************************

Beam Simulator *

*

This program models a beam 27 inches long with lumped masses*
to change the natural vibration frequencies. The beam is *
modeled using a finite element model with 8 elements. The *
transfer function (theta/moment at element 1) of the beam is *
found using modal truncation. The program allows a variety of *
control laws to be tested by the user. Included are the H *
infinity controller (sqrt(s)), Derivative, and Integral *
control. Also a second order filter with a variable cutoff *
frequency can be applied to the H infinity or Derivative *
*

*

*

Q o° o° o 0 o o° o o & o o° o° o o o°

controller.
**'k*************************************************************
lear
m=.112014; s linear mass density (kg/m)
ml=.4672; % lumped mass (kg)
1=2.0436e-4; % lumped mass rotary moment of inertia (kgm”2)
h=.0635; 3 elemental length (m)
h1=.1143; ¢ 1st element length (m)
h8=.14478; ¢ 8th element length (m)
1=8.46825e-12; % beam cross sectional moment of inetria (kgm”2)
E=71e9; % Youngs modulus (aluminum)
n=8; s # of elements
dampf=0.0036; s Estimated damping ratio for beam (Exp from ist 2
modes)
f=zeros(2*n,1); % force vector (actuator)
£(2)=1;
kh=0.182926; s H infinity gain (due to beam properties)
T=0.01; % Sampling period for discretized system

s Elemental mass and stiffness

mll=m*h*[156 22*h;22*h 4*h~21/420;
m22=m*h*[156 -22*h;=22%h 4*h"2]/420;
m12=m*h*[54 -13*h;13*h -3*h"2]/420;
m21=ml2';

mlle8=m*h8*[156 22*h8;22*h8 4*h8°2]/420;
m22e8=m*h8*[ 156 -22%h8;-22*h8 4*h8"21/420;
m12e8=m*h8*[54 —13*h8;13*h8 -3*h872]/420;
m2le8=ml2e8';

2 Global mass matrix

=]

gm(1:2,1:2)=m22+m11;
gm(1:2,3:4)=m12;
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for i=1:n-2
gm(2*i+1:2%i+2,2%i-1:2*1i)=m21;
gm(2*i+1:2%i+2,2%i+1:2*i+2)=m22+ml11;
gm(2*i+1:2%i+2,2*%i+3:2*i+4)=ml12;

end

gm(2*n—1:2*n,2*n-3:2*n—2)=m21;
gm(2*n-1:2*n,2*n—1:2*n)=m22;

gm(13:14,13:14)=m22+mlle8;
gm(15:16,13:14)=m21e8;
gm(13:14,15:16)=ml2e8;
gm(15:16,15:16)=m22e8;

% Add lumped mass (possible 9 nodes)
MI=[ml 0; 0 I1l];

node=8§;

p=2*(node-1);
gm(p-1:p,p-1l:p)=gm(p-1l:p,p-1:p)+MI;

% Elemental stiffness matrices

k11=E*I*[12 6*h;6*h 4*h~2]/h"3;
K22=E*I*[12 -6%h;-6*h 4*h~2]/h"3;
K12=E*I*[-12 6*h;-6*h 2*h~2]/h"3;
k21=k12';

k11le8=E*I*[12 6*h8;6*h8 4*h8°2]/h873;
K22e8=E*I*[12 ~6*h8;-6*h8 4*h872]/h873;
k12e8=E*I*[-12 6*h8;-6*h8 2*h872]/h873;
k2le8=kl2e8';

% global stiffness matrix

gk(1:2,1:2)=k22+k11;
gk(1l:2,3:4)=k12;

for i=1:n-2
gk(2*i+1:2*i+2,2*i-1:2*i)=k21;
gk(2*i+1:2*i+2,2*i+1:2*i+2)=k22+k11;
gk(2*i+1:2*i+2,2*i+3:2*i+4)=k12;

end

gk(2*n—1:2*n,2*n—3:2*n-2)=k21;
gk(2*n-1:2*n,2*n-1:2*n)=k22;

gk(13:14,13:14)=k22+kl1le8;
gk(15:16,13:14)=k21e8;
gk(13:14,15:16)=k12e8;
gk(15:16,15:16)=k22e8;
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% Find mode shapes and natural frequencies

[V,D]=eig(gk,gm);
[lambda,k]l=sort(diag(D));
v=v(:,k);

factor=diag(V'*gm*V);
phi=V*inv(sqrt(diag(factor)));
omega=diag(sqrt(phi'*gk*phi));
freq=omega/2/pi;

modf=phi'*f;

% Calculate the open loop transfer function of the beam at
% each frequency for the first md modes (truncate).

md=input ( 'Number of modes (1<#<8): ');
s2=diag(ones(md));
sl=2*dampf*omega(l:md);
sO=cmega(l:md).*omega(l:md);

num=phi(2,1:md)'.*modf(1l:md); % sensor measures theta # 2
den=[s2 sl s0];
[numg,deng]=parallel(num(1l),den(1,1:3),num(2),den(2,1:3));
for i=3:md

(numg,deng}=parallel (numg,deng,num(i),den(i,1:3));
end

% Discretize open loop system
(numgd,dengd]=c2dm(numg,deng, T, 'tustin');

% Control Transfer Function

flagl='y"';
while flagl=='y'

disp('(1l) Integral')

disp('(2) Derivative & Filter')
disp('(3) sqrt(s)"')

disp('(4) sqrt(s) & Filter: ')
case=input('Enter Controller Type: ');
gain=input('Enter gain factor: ');

$Estimate square root of s
zrs = [-.0001 -.01 -1 -100];
pls = [-.001 -.1 -10 -1000];
nums=poly(zrs);
dens=poly(pls);
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[numsd,densd]=c2dm(nums,dens,T,'matched');

Noise filter
wc=input ( 'Enter Filter cutoff frequency (rad/sec): ');

dmpf=.707;

numf=wc” 2;

denf=[1 2*dmpf*wc wc”2];
[numfd,denfd]=c2dm(numf,denf,T,'tustin');

o®

if case ==

% Integral control
numhd=gain*[T 0];
denhd=[1 -1];

elseif case == 2
% Derivative
numhd=conv(numfd, [1 =1]);
denhd=conv(denfd, [T 0]);

elseif case ==
numhd=gain*numsd;
denhd=densd;

elseif case >= 4
(numhd,denhd]=series(numfd,denfd,gain*numsd,densd);

end

% Closed loop system
[numcld,dencld]=feedback(numgd,dengd,numhd,denhd,-l);

% Frequency Domain Evalutaion.
s plot Bode for open and closed loop systems.

w=logspace(0,10gl10(600),200);
[mg,pg]=dbode(numgd,dengd,T,w);
[mc,pc]=dbode(numcld,dencld,T,w);

figure(1l)

semilogx(w,ZO*loglO(mg),w,20*log10(mc))

grid

title('Discrete Bode Plot: Open and Closed Loop (Ts=0.01 sec)')
xlabel ('omega (rad/sec)')

ylabel('|G(s)|")

figure(2)

semilogx(w,pg,w,pc)

grid

title('Discrete Bode Plot: Open and Closed Loop (Ts=0.01 sec)')
xlabel ('omega (rad/sec)')

ylabel ('Phase')

¢ Time Domain Evaluation

o
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% Plot output of open and closed loop system.
flag='y';
while flag=='y'

dist=input('Enter disturbance frequency (Hz): ');
tmax=20/dist;

nt=0:T:tmax;

u=0.05*sin(dist.*6.28*nt);
[yg,xg]=dlsim(numgd,dengd, u);
{ycl,xcl]=dlsim(numcld,dencld,u);

figure(3)

plct(nt,yg,nt,ycl)

grid

title('Response of System to Sinusoidal Input (Ts=0.01 sec)');

xlabel('time (seconds)');
ylabel('theta (rad)');

flag=input('Try another disturbance frequency?(y/n) t,is');
end

flagl=input (!'Try another control law / filter?(y/n) ','s');
end
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Natural Frequencies

»

1.0e+003 *

0.00101324976094
0.01775301423174
0.04638342775662
0.07923661265561
0.11935988578432
0.22849778748830
0.37813429140721
0.56949274733975
0.61770877977266
0.79596117358377
1.16976439767046
1.54850209877084
2.04634262642825
2.68166333705337
3.45392614581641
4.22726231062265

APPENDIX B

Finite Element Model
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