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ABSTRACT

_ For the spacecraft and aircraft designers, the ability to change and control the shape of
the structures has been a challenging problem. For a spacecraft, it is highly desirable to
change the reflector shape in orbit to compensate for the surface errors and also to
perform antenna beam shaping. In the case of aircraft, the shape control of propellers,
helicopter rotor blades, and aircraft wings can increase efficiency and maneuverability
and reduce vibration and noise of the vehicles. In the present work, the shape control of
fiber reinforced composite plates with embedded piezoelectric actuators is investigated.

In the present study, a finite element formulation is developed for modeling a
laminated composite plate that has distributed piezoelectric actuators and sensors
subjected to both mechanical and electrical loads. A simple, higher order, shear
deformation theory with Hamilton's principle is used to formulate the equations of
motion. The model represents the parabolic distribution of transverse shear stresses and
the non-linearity of in-plane displacements across the thickness. The model is valid for
both segmented and continuous piezoelectric elements, which can be either surface
bonded or embedded in the laminated plate. A four-node, bilinear, isoparametric,
rectangular element with seven degrees of freedom at each node is developed. The
electric potential is treated as a generalized electric coordinate like the generalized
displacement coordinates at the mid-plane of the actuator layers.

For shape control, an optimization algorithm, based on a finite element techniques, is
presented for an optimal applied voltage to each actuator to minimize the error between
the desired shape and the actual shape. The error (objective) function is the mean square
of the error between the point in the actual surface and the corresponding point in the
desired surface. Based on these techniques, two computer programs have been developed,
a finite element modeling of a composite plate with piezoelectric actuators and an
optimization model of the actuator voltages for shape control. The present work
demonstrates the feasibility of the application of the piezoelectric actuators for the shape
control of composite plates used in aerospace structures.
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I. INTRODUCTION

Advanced structures with integrated self-monitoring and control capabilities are
becoming increasingly important due to the rapid development of ‘intelligent’ space
structures. Those smart structures that have actuators distributed throughout are defined
as adaptive, or actuated, structures. Examples of such adaptive structures are conventional
airéraﬁ wings with articulated leading-and trailing-edge control surfaces, robotic systems
with articulated manipulators and end effectors and spacecraft antenna reflectors.
Structures that have sensors distributed throughout are a subset referred to as sensory.
These structures have sensors which can detect displacements, strains or other mechanical
states or properties like electromagnetic states or properties, temperature, heat flow, or
damage. Applications of this technology might include damage detection in long life
structures, or embedded or conformal RF antennas within a structure. The overlap
structures, which contain both actuators and sensors implicitly linked by closed-loop
control, are referred to as controlled structures. A subset of controlled stfuctures are
active structures, distinguished from controlled structures by extensively distributed
actuators, which have structural functionality and are part of the load bearing system.

Intelligent structures are a subset of active structures that have highly distributed
actuator and sensor systems with structural functionality and, in addition, distributed
control functions and computing architecture [Ref. 1].

Smart structures have applications due to their ability to change shape. Some of these
are for spacecraft antennas, to compensate for surface error and thermal distortion to
improve antenna performance, and to change the antenna beam shape in orbit. They may
be used for and submarine and helicopter shape control as well. An aeroelastic application
to aircraft structures is quasi-static control of camber, dynamic control, and flutter
suppression. Smart structures can be used in acoustic control by developing an adaptive
structure in which the structural response can be modified with varying input disturbances.




The piezoelectric material is one of the smart materials that can be used as an
actuator and sensor. Piezoelectricity refers to the phenomenon of generating an electric
charge in a material when subjecting it to mechanical stress, which is known as a direct
piezoelectric effect. The converse piezoelectric effect is described as an induced strain in
response to an applied electric field.

Piezoelectric properties occur naturally in some crystalline materials and can be
induced in other polycrystalline materials. The distortion of the crystal domain produces
the piezoelectric effect. The domain may be aligned/poled by the application of a large
electric field, usually at high temperature. Subsequent application of the electric field will
produce additive strains in the local domain, which translate into a global strain in the
material.
| The piezoelectric effect was discovered in 1880 by Pierre and Jacques Curie. The
direct piezbelectric effect has been used for a long time in sensors such as accelerometers.
Use of the converse effect, however, has until recently been restricted to ultrasonic
transducers. Barium titanate, discovered in 1940, was the first widely used piezoceramic.
Lead zirconate titanate (PZT) [Ref. 2], discovered in1954, has now largely superseded
barium titanate because of its stronger piezoelectric effect. |

A PB-phase polymeric piezoelectric, polyvinylidene fluoride (PVDF), was initially
discovered by Kawai in 1969 [Ref. 3]. Raw polymeric PVDF (a-phase) is an electrical
insulator, and it does not have any intrinsic piezoelectric properties. If the raw material
is polarized during the manufacturing process, PVDF transforms to a B-phase , a tough
and flexible semi-crystalline material, and can be made to strain either in one or two
directions in the film plane. Since B-phase PVDF possesses a strong direct piezoelectric
effect, it has been used in many transducer applications; e.g., sonar, medical ultrasonic
equipment, robot tractile sensors, acoustic pick-ups, force and strains gages, etc. Due to
its distinct characteristics, such as flexibility, durability, manufacturability, etc., PVDF is

commonly used in such structural systems.



As a first step in the following work, a finite element analysis of a graphite/epoxy,
fiber reinforced, composite, laminated plate is developed, using a simple higher-order
shear deformation theory [Ref. 4]. Multi-layered composites have found wide use in many
weight-sensitive structures, such as aircraft, spacecraft antennas, and missile structural
components, where high strength-to-weight and stiffness-to-weight ratios are required. A
laminate is a multi-layered composite made up of several individual layers (laminae) in
which the fibers are oriented in a predetermined direction to provide efficiently the
required strength and stiffness parameters in each laminae.

For analysis and design of structural laminates, a classical plate theory (CPT) [Refs.
5,6,7, & 8] has been used in which it is assumed that normals to the mid-plane before
deformation remain straight and normal to the mid-plane after deformation (classical
Kirchhoff hypotheses). This theory under-predicts deflections and over-predicts natural
frequencies and buckling loads. These results are due to the neglect of transverse shear
strains in the classical theory. Thése €rTors are even higher for a plate made of advanced
composites like graphite epoxy and boron-epoxy, whose elastic modulus to shear
modulus ratio are very large (i.e., of the order of 25 to 40 instead of 2.6 for a typical
isotropic materials). These high ratios render classical theories inadequate for the analysis
of composite plates. An adequate theory must account for transverse shear strains.

Many plate theories have been proposed to incorporate the influence of the transverse
shear strains. In one of these, the Reissner-Mindlin plate theory [Ref. 9], transverse shear
and rotary inertia effects are included, and it contains a displacement field which accounts
for linear, or higher-order, variations of mid-plane displacements through the thickness,
but on the other side the deviation increases with increasing mode numbers. A theory for
laminated isotropic plates by Stavsky [Ref. 10]. has been generalized to laminated
anisotropic plates by Yang, Norris et. al. [Ref. 11]. Whitney [Ref. 12] has presented an
approximate method to incorporate the influence of shear deformation on plate deflection,

in a flexural vibration and buckling analysis. Elasticity solutions by Pagano and his




associates [Refs. 13, 14, 15, & 16] indicated the inadequacy of the classical laminate
theory. These shear deformation theories do not satisfy the conditions of zero transverse
shear stresses on the top and bottom surfaces of the plate, and they require a shear
correction to the transverse shear stiffness. Three-dimensional theories of laminates, in
which each layer is treated as a homogeneous anisotropic medium [Refs. 17, 18, & 19]
are intractable as the number of layers becomes moderately large.

Different higher-order laminated plate theories have been proposed, which account
for the transverse shear strains. Examples of such theories are, Whitney and Pagano [Ref.
20], Whitney et. al [Refs. 21,22], Lo et al. [Ref. 23] and Nelson et. al. [Ref. 24] In these
higher-order theories, an additional dependent unknown is introduced into the theory with
each additional power of the thickness coordinate.

A simple two-dimensional theory of plates that accurately describes the global
behavior of laminated plates seems to be a compromise between accuracy and ease of
ahalysis. A simple, higher-order theory described by Reddy [Ref. 25], is such a theory,
as it is accounts not only for transverse shear strain but also for a parabolic variation of
the transverse shear strains through the thickness. Consequently, there is no .need to use
shear correction coefficients in computing the shear stresses. This theory is used as a
prime base in this finite element analysis.

The finite element analysis of laminated composite plates has been presented by
several authors, Reddy et. al. [Refs. 26,36], and Noor [Refs.37,38], for bending and
vibration analyse. Mawenya [Ref. 40], developed a general quadratic isoparametric
multilayer curved plate element, and Panda[Ref41], presented a superparametric,
quadratic plate element for the plate bending analysis. Fortier and Rossettos [Ref. 42],
Sinha and Rath [Ref. 43], analyzed free vibration and buckling of thick plates of
unsymmetric cross-ply construction. Dong [Ref. 44] has given the solution for the
dynamic response of a simply-supported rectangular plate.

In the first part of the present work, a finite element model for a laminated composite
plate is developed using asimple, higher-order, shear deformation theory with




Hamilton’s principle for the formulation of the equations of motion [Refs. 45,46]. A
standard, four node, rectangular element with seven degrees of freedom at each node is
developed for the analysis of a flexible laminated plate having a constant thickness for any
individual layer. The displacement model is so chosen because it can represent adequately
the parabolic distribution of transverse shear stresses and the non-linearity of in-plane
displacements across the thickness. A bending, free vibration and stress analysis problem
is examined for different loadings, boundary conditions, and fiber orientation angles. The
results are compared with existing analytical and numerical solutions. Hence the present
element formulation demonstrates its applicability for a wide variety of laminate composite
plates.

Given the result of continuous competing requirements for improving the weight,
interdisciplinary performance, temperature stability, versatility, and reliability of propulsion
and ‘aerospace components, the development of a new generation of composite materials,
called intelligent/smart composxte materials * is recelvmg growing attention, which is the
concern of this dissertation.

The reader is referred to books, Cady [Ref. 47], Ikeda [Ref. 48], and Nye [Ref. 49],
for piezoelectricity and for the development of the constitutive relations for piezoelectric
materials. Tiersten [Ref.50], and Rogacheva [Ref. 51], contain methods for solving the
differential equations of the theory for piezoelectrical plates and shells, respectively .

Several researchers have studied the interaction between the mechanical properties
and the electric field. Crawley et. al. [Ref. 52], developed piezoelectric elements for
laminated beams, and with his co-workers[Ref. 53], has expanded the work and
considered the piezoelectric actuators to be plies of laminated plate and used the Rayleigh
Ritz method to study the deformations of a smart plate. They also modeled the induced
strain actuation for a beam [Ref. 54], and for a truss element[Ref. 55]. Lee [Refs. 56,
57], derived a theory for laminated piezoelectric plates based upon classical plate theory.
His experimental [Ref. 58], results showed that PVDF or PVDF, actuators can generate




plate bending and twisting independently or simultaneously, and they are suitable for
active damping control of a flexible structure.

Tiersten [Ref. 50] modeled single-layer piezoelectric plates, including the charge
equations, but did not study laminates. Wang and Rogers [Ref. 59], applied the classical
laminated plate theory to model laminated plates with spatially distributed actuators.
Tzou et. al. [Ref. 60], derived governing equations for piezoelectric shells using first order
theory. Mitchell and Reddy [Ref. 61], preser;ted a hybrid theory for enhancing laminated
plates based on modeling the electric potential through the laminate thickness with a 1-D
finite element. Hagood et. al. [Ref. 62], modeled the effects of the dynamic coupling
between a structure and an electrical network through the piezoelectric effect for a
cantilever beam. State space models were developed for three important cases: direct
voltage driven electrodes, direct charge driven electrodes, and an indirect drive case,
-where the piezoelectric electrodes were connected to an arbitrary electrical circuit with
embeddéd voltage and current sources. Ray et. al. [Ref. 63), presented the exact solutions
for a two dimensional analysis of a plate composed of piezoelectric material. This study
led to exact solutions for a composite plate with piezoelectric actuators and sénsors [Refs.
64, 65]. Lee [Ref 67], developed an analytical approach via state space equations.
Heyliger [Ref. 68], developed an exact solution for the free vibration analysis.

The previous solutions do not provide the results for large complicated structures
with integrated materials. Thus, the necessity for approximate techniques, such as the
finite element method arises. A few papers have been developed addressing the analysis of
intelligent structures by the finite element method. Allik and Hughes [Ref. 69], presented
a tetrahedral finite element for three-dimensional electroelasticity. Based on this model,
Tzou [Ref. 70], proposed a method for isotropic plates using isoparametric hexahedron
solid elements. Kagawa et. al [Ref. 71], developed a method for a transversely vibrating
bar with electrostrictive transducers. McDearmon [Ref. 72] and Tzou [Ref. 73],
developed a method for simple cases of deformation. Ha et. al.[Ref. 74] analyzed a

composite plate by using a three dimensional brick element. Both elements used in these



methods made the problem complex, costly and required some special techniques to
overcome inaccuracies and disadvantages of modeling a plate with 3-D elements. These
elements display excessive shear stiffness as the element thickness decreases. The two
dimensional quadrilateral plate element developed by Hwang et. al. [Ref. 75], is more
efficient than solid elements, but it appears to have restricted modeling capabilities.
Hwang et. al. [Ref.76], proposed a model based on classical laminated plate theory, which
neglects the effects of transverse shear suesse;, and hence is inadequate for the analysis of
moderately thick composite structures. Chandrashekhara, et. al. [Ref. 77], developed a
model based on the first order shear deformation theory, which needed a shear correction
coefficient. Static analysis or an intelligent plate was presented by Ray [Ref. 78], using a
higher order shear deformation theory, which added additional dependent unknowns and
made the problem costly to solve.

~ In the second part of the present work, a finite element formulation is developed for
modeling the static and dynamic response of laminated composite plates with distributed
piezoelectric actuators and sensors subjected to both mechanical and electrical loading. A
simple higher-order shear deformation theory with Hamilton’s principle -is used to
formulate the equation of motion of the system in which the piezoelectric layer is treated
as a normal lamina. The displacement model represents the parabolic distribution of
transverse shear stresses and the non-linearity of in-plane displacements across the
thickness. The model is valid for both segmented and continuous piezoelectric elements,
which can be either surface bonded or embedded in the laminated plate. The piezoelectric
layer can be isotropic or orthotropic, and the structure core can be anisotropic
(graphite/epoxy, etc.) or isotropic (aluminum). A new, four-noded, bilinear, isoparametric,
rectangular element with seven mechanical degrees of freedom and one electrical degree
of freedom at each node is developed. The electric potential is treated as a generalized
electric coordinate like the generalized displacement coordinates at the mid-plane of the
actuator layers. The structural deformations due to electrical and mechanical loads are
computed and compared to the available analytical and finite element results.




The third part of this dissertation is directed toward shape control and optimization of
the actuator voltages. Several works have been completed in vibration control. For
example Baz et. al. [Ref. 79], Challopadhyay [Ref. 80], Chandrashekhara [Ref. 77], Park
el. at. [Ref. 76], Tzou [Ref. 81, 82), Anderson and Hagood [Ref. 83], and Hagood et. al.
[Ref. 84]. Wang and Fuller [Ref. 85, 86, 87, & 88], have done several papers for active
structural acoustic control using piezoelectric actuators. A few studies have been done in
the shape control and optimization. Ghosh [Ref. 89] showed a model for plate shape
control by using PZT, Agrawal et. al. [Ref. 90], developed a mathematical model for
deflection using a finite difference technique and estimated the optimal actuation voltages.
Kirby [Ref. 91], and Koconis et. al. [Ref. 92], presented an analytical method to determine
the voltages needed to achieve a specified desired shape with minimum error between the
actual shape and the desired shape. Based on Koconis method, Varadarajan et. al.
[Ref. 93], showed a model for shape control of a laminated plate.

In the third part of the present work, an optimization algorithm based on the finite
element technique is developed to determine the optimal voltages applied to-the actuator
to minimize the error between the desired shape and the actual shape. The error function is
defined as the mean square of the error between the points in the actual surface and the
points in the desired surface for each element of the finite element grid. The original shape
and the desired shape of the plate are specified. Thus the objective is to find the optimal
actuator voltage to get minimum error between the desired shape and the actual shape.
The analysis is based on small deformation theory, therefore, the specified desired shape
must be within the region of small deformation from the original shape.

Two Matlab codes were developed. The first code, ‘COMPZ’ is an interactive finite
element code. It is able to solve a laminated composite plate, with or without
piezoelectric layers, subjected to mechanical and electric loads for different boundary
conditions. The code is able to analyze either a complete or a quarter plate analysis to
save computational time, and it will perform a bending, free vibration analysis, and




a stress analysis for the individual layers. It is valid for different types of material for both
piezoelectric or laminated layers ( anisotropic, isotropic, etc.).

The second Matlab code, ‘OPTSHP’, is able to analyze the structure and compute the
change in shape due to mechanical and electrical loads. This code includes a loop
containing an optimization algorithm coupled with a Matlab Optimization Toolbox to
compute the voltage applied to each actuator to minimize the objective function. The

numerical results are presented for each part of the analysis.
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IL. FINITE ELEMENT ANALYSIS OF A COMPOSITE PLATE

A. INTRODUCTION

The partial differential equation governing composite laminates of arbitrary geometry
and boundary conditions can not be solved in closed form [Ref. 95]. Analytical solutions
of plate theories are available in the literature (i.e., Navier solutions, Levy solutions). The
Rayleigh-Ritz and Galerkin methods can also be used to determine approximate analytical
solutions, but they too are limited to simple geometries because of the difficulty in
constructing approximation functions for complicated geometries. The use of numerical
methods facilitates the solution of these complicated problems. Among numerical
methods, the finite element method is the most effective.

There are several types of finite element models that have been developed for plate
theories. These can be grouped into three major categories: displacement models, mixed
and hybrid models, and equilibrium models.

The displacement finite element models of plate theories are based on the brinciples of
virtual displacements, where all governing equations are expressed in terms of the
displacements. The mixed and hybrid finite element models are based on modified or
mixed variations of the plate theories, in which both displacements and stresses are

independently approximated. The equilibrium models are based on the principle of virtual
forces. Among the three types of models, the displacement finite element models are the
most commonly used in commercial finite element programs.

The objective of this chapter is to develop a finite element model for a laminated
composite plate, using a simple, higher-order, shear deformation theory. The model is
then validated for different boundary conditions and loading cases. Bending, free vibration
and stress analyses are performed using the proposed theory.




B. GENERAL THEROY

initial configuration
of a vertical line
3

2:1 X

‘7/‘\

Wo

Aversge deformation
configuration of the
vertical line

. Mid surface

(
Actual deformation
configuration of the
FA vertica! line

Figure 2.1: Deformation of the normal to the mid-plane “From Ref. [45].”

A typical rectangular laminated plate has a length a, width b, and thickness t. The
laminate is composed of a number of perfectly bonded orthotropic layers (laminae), which
are placed sequentially one after another. A coordinate system is adopted such that the x-y
plane coincides with the mid-plane of the plate, and the z axis is perpendicular to the
plane. The present theory is formulated based on the following displacement fields [Ref.
45];
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U(x,,2) = U(x,3,0) + 26,(x,5,0) + 2°,(x,9,0) + 2’6, (x,,0) 2.0

2 3
=Up+2¢,+2°Co+ 276

V(x,y,2) =V (x,3,0) +24,(x,9,0) + 224, (x,9,0) + 2°, (x,9,0)

=V + 28,0+ 260 + 276,
W(x,y,z) =W(x,y,0) =W,
where;

U,, V,and W, are the displacements of a point on the reference surface with coordinates

_ {Xo, Y0, 20). ¢, and ¢, are the average rotations about the Y and X axes respectively of

the normal to the mid-surface of the undeformed plate, and z is the distance of a point
from the mid-plane along the Z axis as shown in Figure (2.1). The remaining terms
correspond to higher order rotations. = Applying the conditions that the top and the
bottom surface are free from transverse shear stresses;

7, (xyxt/2)=0  and 1,(x,y2t/2)=0 (2.2)

where ¢ is the plate thickness. For an orthotropic plate, this means that the shear strains

are zeros, i.e.

£,(x,yAt/2)=0 and g, (x,y1/2)=0; 2.3)

Differentiating equation (2.1) and substituting in equation (2.3)




6. =&+ /&

Exlzeztia = &0 +2z§x0 + 3224':0 +W | & z=xt/2 = 0

Ex|z=212 = Po Lo +(3/ ) g+ W/ &=0

6, =V &+ P

Eplz=ti2 = B0 +228,0+ 3229}0 + W B|ses1n =0

Epr|s=s02= B0 £ 1450 +(3/ 4+ Wy =0

By solving equations (2.4) and (2.5), we get

4

4
Cro = 372 (¢x0 + a"/é‘) and Sy = _37(¢y0 +5"’/@’)

Substituting equation (2.6) into equation (2.1), we get

Ux,y,2) = UO +z|:¢xo —%(i—) (¢x0 + &V/&):|

Vxp,z) =V, +z[¢yo _%@2(% + o’\v/@/\)]

W(x,y,z)=W,

14

(2.4)

(2.5)

(2.6)

2.7)




The displacements at any point in the plate are given in terms of the seven unknown
quantities Uy, Vo, Wy, @.8,0,W/ &k, and Sw/ &) .

C. STRAIN-DISPLACEMENT RELATIONS

The linear strain-displacement relation in the Cartesian coordinate system is

e | (@/a
& [y
(e} ={e, b= {(@/ B+ /a0) 2.8)
0| |@jasamia
|s)] l@ia+ama)

By substituting equation (2.7) into equation (2.8), we get

-
W)
N
|
G

(U + 2o, - HPW) G + )7 1 36°

Vi, + 2~ MW + o) 13

= Up, + Vo + 2o, + Bos —4Q W] K+ o, + 0,02 1 317
b =4z (W] + do) + W, | &

B0 — 42/ (WD + ) + W, /&

v

(2.9)




& = Vo3
o = Uny + Vo

&2 = o+ Woss

& = to+ Wy

K =¢0s
K, =4,
K=oy + boss

K2 =4O &+ 4,) 1

KL =4[ &+ 40) /£
K =—-4(Sw/a* +¢,,)! (35
K = -4(Fw[3 +4,,) (3F);
and '

K} =—4Q2FWE&H + b, +8,0.) 3 (2.10)
which includes linear strains, curvatures, twists and other higher order curvatures.
D. SRESS-STRAIN RELATIONS

For anisotropic lamina, there are no planes of symmetry for the material properties. If

there is one plane of material property symmetry, where the plane of symmetry is z=0 a

material is termed monoclinic, and has 13 independent elastic constants . For a monoclinic

16




material, the stress-strain relationship is:

cA (G, Cp G Gy 0 0lls
Oy Ci G Gy G, 0 015

19 _ G Cp Gy G, 0 0 ) 2 X @.11)
Oy Co Co Cs Gy 0 0 flg

Oz 0 0 0 0 :C Cullée

%:) L0 0 0 0 G Cxllé:

Since the normal stress o, is small, it can be neglected. The corresponding €, can be
eliminated by putting o, equal to zero in equation (2.11). This gives the reduced stress-
strain relationship as

2.12)




Cu= G-
C, =Cy —C—ggl?-;

Co=Cp- Cgiﬂ ;

Cu=C, —g‘é—;%;

Css = Ciss s6 = Csss

or in short form; C,=C,-CsC;/ Cy

G =6

and the C, coefficients [Refs. 96, 97];

C, = 1-vy0y,
'~ E,EA’
C.= Upn T ULy _ Uy + Ul
2" EEA  EEA’
C,= Uy + UnUsy _ Uz + Upplns |
1 E,E.A EE,A
_ 1-u,u;,
| = EEA’
C. = Uy + UipUs _ Up t Unly
2" EEA EEA °
1-u,0,
G, = ——,
»" EEA’
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for i,j=1,2,4

for i,j=5.6

(2.13)

(2.14)




- 1= 0,0y = UUy, = Uy U3 = 20,0304
E\E,E,

A4

where E,E, E, are the Young’s moduli in the 1, 2, and 3 directions, respectively; v, is

the Poisson’s ratio for transverse strain in the j-direction when stressed in the i-direction.

For orthotropic lamina there are two orthogonal planes of material property symmetry
for the material, and symmetry will exist relative to the third mutually orthogonal plane.
The stress-strain relations ecjuation (2.11), in coordinates aligned with principal material
directions have no interaction between normal stresses and shearing strains; i.e.,
Cy=C,=Cy=Cy=0; Thus the stress-strain relation of an orthotropic lamina is;

o) [c, ¢, o o o]f&]
o |G Cx 0 0 0|5

loyb=l0 0 C, 0 o fet (2.15)
o.l [0 o o C, o]e

Lo’”/ L 0 0 O O C;6_ \8)24

If the fibers are oriented at an angle 6 with the x-axis as shown in Figure 2.2, the
transformed stress-strain relation for a lamina will be




Tt

v

X
’ GX ] -Qll Ql2 Q14 0 0 1 €x ]
O'y Q21 Q22 Q24 0 0 8)’
0,1=1Qs Q, Q O 0 K&yt (2.16)
(e 8 0 0 0 Qs Qlléx
kaﬂ, L 0 0 0 st Q66_ \syz‘
in short form;
[o]=[0]{e} 2.17)
where;
Q,=C, cos* @+ 2(C'12 + 2CQ,,)cos’l!9sin2 o+ Céz sin‘ @ (2.18)

Q,, = (C, + C,, - 4C,,)cos°@ sin*8 + C,(cos*@ + sin* )




Q,, = (C,,—2C,, - C,,)cos’0sin6 + (C,, - C,, + 2C,, JcosOsin’d
Q,, = C,;sin*0+ 2(C,, + 2C,, )cos’Gsin’g + C,,cos*0

Q,, = (C,, ~2C,, - C,,)cos8sin’6 + (C,, — C,y + 2C,, Jeos’Gsin®
Q. = (G, + C,, —2C,,)cos® &in’0 + C, (cos* + sin*6)

Q,; = Ci;c08’ 8 + Csin’6

Q4 = (Cis— Cy)cosbsing

Qq = C.e5in6 + Cl 00528

E. STRESS RESULTANT-STRAIN RELATIONS

Combining equation (2.9) with equation (2.16) and integrating layer-by-layef over
the thickness, the following relations of the stress resultant are obtained [Ref. 96];

12
WM R)= [ 0,(2,2); 219)
/2 3
(N M,.B) = [ 0,(1,2,2)dz;
2 3
(NoMyoB) = [ 0,(1,2,2%)dz;

Qurk) = [ 0.0

and

@k = [ 0Lz,

The above equations can be set in the matrix form as;




(N,] [4 4 4 0 O B, B, B, 0 0 E, E ElJ 53}
N, A, 4, 0 0 B, B, B, 0 0 E, Ey Ey, 33
N, 4, 0 O B, B, B, 0 0 E, E, Eu|l&,
0. A, A, O 0 0 Dy D, 0 0 0 |le
0, 4, 0 O O Dy Dy 0 0 0 |l&
M, b, b, b, 0 0 F, B, K, K,
14 t= D, D, 0 0 E F KK
M, D, 0 O F, F, F, Kly
R, F, B, 0 0 0K
R, F, 0 0 O K.,
F, Sym. H, H, H, Kj
P}' H22 H24 Ky3
1P ) ] H,, | LK;)
or in compact form
{N} =[D){¢"} (2.20)
where ;
[D]=Rigidity matrix
[ 4] = Extensional stiffness matrix
[ B] = Coupling stiffness matrix
[ D] = Bending stiffness matrix
[E],[F], and[H] = Higher order matrices
which are given for n layer by:
(4,:8,,D,,E,F,H) =Y [ 0,122,222 (forjil,....6) (2.21)
k=1 F

22



F. VARIATIONAL PRINCIPLE

The generalizd form of Hamilton’s principle, which states that the variation of the
Lagrangian during any time interval must be zero, has the form:
[s(3+mdt =0, (2.22)

where ¢, and t, are the time interval.

The Lagrangian J of a body is defined by the summation of all kinetic energy A and
potential energy A .

3= [(-mav (2.23)
where;
x= L% pla} {ayav (224)
h= L%{a}r{a}dV (2.25)
Thus the Lagrangian is
1 1
3= L[Ep{q}’{q}-g{e}’{a}}drf (2.26)
where;

g is the velocity ( time derivative of the displacement q);
3J is the Lagrangian;

V is the volume.

The virtual work W done by the external applied force is

W = [{ag} {P}ds | @.27)

where;




s is the surface areas at which the mechanical load is applied
P, is a surface load vector (N/m?).

Substituting equations (2.26) and (2.27) into the Hamilton’s equation (2.22), yields the

variational equation as:

['tfepla) {a}-51e"(ohav+ [{ar) {R}as) ar =0 (228)

Since all the variations must vanishat ¢ =¢ and ¢ =1,, by substituting equation (2.17),

and taking the variation, the variational equation takes the form:

[ ploa) {a} dV~+ [ s [ole}av- [{ag) {R}ds =0 (2.29)

G. FINITE ELEMENT FORMULATION

The objective is to define the degrees of freedom Uo,Vo,bx0,9y0, Wo, Wy, and wy in the
plate in terms of nodal displacements and rotations by using a bilinear, isoparametric,
rectangular element with four node. Each node of the element has seven degrees of
freedom. Similar interpolation functions for the element coordinates x and y; the in-plane
displacements Uq and V, and the two rotations ¢xo and ¢y were used. They were defined

by;
4
p= Z} Np, (2.30)

where;

p is the value of the variable at any point in the element
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Xa g A
(x+a/2,y:-b/2) - (x+a/2,y+b12) (1,-1) (L1)
r 3 '
2 . 3 2 3
(XeYe) b n
[ 4 | 1 4
F
(xc-2/2,y.-b/2) (x-8/2,y:+b/2) -1,-1) -1,1)
. Actual element ~ Master element

E=2(x-x)a, n=20y-y)/b
Figure 2.3: Actual and master element.

p; is its value at node point
N, is the interpolation function, which in the natural coordinate system (&,#) is;
N, =141+ &)1+ nn) (2.31)
where;
& and 7 are the local coordinates of the point, and & = ~1,1,1,-1 and
n =~-1-11, for i = 1,..,4, as shown in Figure (2.3)
The transverse displacement is interpolated using a non-conforming shape function [Ref.

98], which can be given by;




we=lf & b fi & b S &k fi & k) - (2.32)

where for i=1— 4

£,=Q18) L+ EEX1+ )2+ &+ =1 = &) (2.33)

g = (@/16)5(1+ £5Y A+ X &6 - 1)

h, = (b/16)n, (1+ 7, )’ (1 + &5 X, = 1)

| '-wheré; : '

E=2x-x)la, n=2(-y)/b, @34
(x.,y,) are the centroid coordinates of the plate , and the non-dimensional coordinates of
the nodes are (-1,-1), (1,-1), (1,1), and (-1,1), respectively.

The nodal displacement vector {ql} at the first node point on the reference surface is;

T

{q1}=[U01 Voo v B0 Wo Wa Wy (2.35)

and the element displacement vector {qe} is;

{a)=la. & & a] (2.36)
The generalized displacement vector at a point is
: {q} = [UO VO ¢x0 ¢y0 I/V() w,x w,y]T (237)

Substituting equations (2.30) and (2.37) in to equation (2.10), we obtain the strain vector

at the mid-plane in a matrix form
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' UOl ]
Vo
) [ 1 ¢x
& N, ol
s}? Nl,y
& N, Ny, .
52 N, fl,x 8. hl,x U
0 02
5 N 1 fl,y gl.y hl.y
¥z Voz
K: Nl x
9 K; = Nl,y '4 {
Kiy Nl,)’ Nl,x
K'é Nl ji,x gl,x h]’x eee U
=2 "
Kyz Nl .fl.y g1~v hl,y .ee V
K, 04
K: Nl x fi,xx gl,n hl,xx ¢
K x04
K; NIJ .fl,yy gl,w h]” o ¢
K 04
LK;’, L Nl,y Nl,x. zfl,xy 2gl.1)’ 2}11,», o] Wm
w4,x
\w4’y/
where;
Ki=K./t; Ki=KEile
B=Kit; K=K/t
K =K./t
6 =4/t £, =-4/3¢,
In a short form {¢"} =[Blq.}. 2.38)

where the nodal strain-displacement matrix B is given by

51=[] [] [2] [2] @
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The first, second, and higher order derivatives of the interpolation functions which are
expressed in equations (2.38) and (2.39) can be evaluated with respect to the global
coordinates. An additional computations were involved which can be expressed as. Let ¥
represent one of the interpolation functions which has been used (ie. N,, f;, g, and/or

k).

The first order derivatives with respect to the global coordinates are related to those with
respect to the local (or element) coordinates according to:

&) [& aT' (& sl
& B g g _gi =T éyii (2.40)
&) |lon o] (on on

where the Jacobian matrix [J] is evaluated using the approximation of the geometry which
may take the form: '

x=x +¢&a/2; (2.41)
y=y.+nb/2

or

x =Tt ga2;

+
y= Y 2Y4 +17b/2

The second order derivatives of W, with respect to the global coordinates (x, y) are
given by:
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>¥ (2% )
a ZF| (&
(b Sk & 24
ad) 7 &
%%3 \| & /
where;
2 @ 22
% \& ‘zz
=2 (2] 24 @43)
n o) ‘o
AKX HH XY KX
ME - ME nE M
gx  Jy
® & |
Nl 2 & (244
or  or
Fe Py
M Fon

The elements of the matrices [J 1] and [J 2] are computed using equation (2.41).

The generalized strain at a point is related to the reference surface strain as:

e=[B )&} (2.45)




w

1 0000z 000 02 0 0]
010000z 00 0 02 0
[B,]=0010000z0000z’ (2.46)
000100002 00 0 0
000010000z 0 0 0]
The reference surface ( mid plane ) strain can be expressed as;
&=[Bla.} 247)
Thus;
¢=[B)Bl4.} (248)
By using the transformed stress-strain relation,
[o]=[0)(e} . (2.17)
in equation (2.49) ,
[o]=[o]B.IB)4.} (249)

H. EQUATION OF MOTION

By substituting equations (2.48) and (2.49) in the Hamliton’s equation (2.29) gives
the system equations of motion:

[{o0.} ANTMav{g.}+ [ {aa.} 181 [B] O] BY Blav{a.} - {{a.} N7 {P}as=0

(2.50)
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In matrix form, the equations of motion can be expressed as:

[M.]{fie} +[&]{q,} = {Pue} (2.51)
where the element mass matrix is;
[M.]= [ANTINWY 2.52)
= [ [NV [mYN)d(area)

The shape function matrix [N] is given by [Ref. 47];

N O 0 0 0 0 0
0O NN 0 0 0 0 0
J0 0N 0 0 0 o0
[M=X|0 0 0 N 0 0 0 (2.53)
o 0 0 0 f g h
0 0 0 0 f, g, h,
0 0 0 0 f, g, A,

> denotes the matrix assemblage for the element four nodes, and




in which I, and I, are the normal and rotational inertia, respectively;

URAED WIS & (2.55)

where p' is the mass density of the i* layer. The element stiffness matrix has the form;

[x.]= {187 (8] o] )51 256)

= [[8) [DY Blas

where the rigidity matrix [D] for n number of layers is given by;

D)= ["00z2. 20 (or}i=l,..0) (2:57)

k=1 *

The rigidity matrix D is given in equation (2.20 ), and the mechanical excitation force is
given by;
T
[Pu]= [¥:] {Bas (2.58)

Thus the consistent load vector at node i is

ds (2.59)

{Pucf = [ 2

where; g, is the intensity of the load per unit area.

32



Assembling all elemental equations gives the global dynamic system equation:

(Mg} +(K){a} = {B} (2.60)

I. NUMERICAL INTEGRATION

The elements of the equation of motion (2.51), which are given individually in
equations (2.52), (2.56) and (2.59) can be integrated numerically using Gauss
Legendre quadrature (see App. A). A full jntegration technique of 3x3 Gauss points
is used to perform the integrations, and it gives satisfactory results (comparing to the
exact and available finite element solutions) for all plates.

[M.]= L [NY RN}, @)
= ['[1M AN idgan
[.]= [ [18[D) B, (2.62)

= [ [18V'[D1 Bl /lagan

.~




J. FREE VIBRATION ANALYSIS

A free vibration analysis can be performed using the equation of motion (2.60),
where the right hand side equals zero (the work done by external forces is equal to zero
for the free vibration analysis). The effects of the degree of orthotropy, of different
stacking sequences, aspect ratio (span-to-thickness ratio) of the structure, numbers of
layers and orientation angles of the fibers, on the natural frequencies and mode shapes
are demonstrated in the validation part.

K. STRESS ANALYSIS

Figure 2.4: Local discrete least squares smoothing “From Ref. [99].”

By solving equation (2.60) for a static deflection, the element displacement vector is
computed , which can be substituted into the generalized strain at a point equation
(2.48), then into equation (2.17) to get the stress vector at any point in the structure.
Stresses are obtained at 2 x 2 Gauss sampling points, as shown in Figure (2.4) [Ref. 99].
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In local discrete smoothing [Ref. 99], it is assumed that g(&£,7) is an exact least
squares fit to selected values of o(&,n) at the Gaussian integration points shown in
Figure (2.4). (exact least squares fit is one which passes through all the sampling points
and is therefore interpolatory in nature). Thus, the smoothed corner nodal stresses
6,,0,,0,, and 0, may be obtained from the expression.

NEES| 31
l4— -= l-— -=
- 2 2 2 2
I e R O |
o ) 2 T2 Ou
%2y _ 2.64
&, V3 1 V3 1 ||ow (2:64)
2= = 14— -=
o, 2 .2 2 2_(loy
) 2 2 2

where 0,,0,,0, and o, are the unsmoothed stresses at the Gauss points
(o, = 0(&,1)) as shown in Figure (2.4). The smoothed stress values are theﬁ modified
by finding the average of the nodal stresses of all elements meeting at a common node.

L. VALIDATION:

To test the validity of the finite element analysis technique and to establish its range of
applicability, numerical examples are investigated.

Example 1.
A three- layer (0°-90°-0°), simply supported, square plate of three different span to
thickness ratios (A=10,20,100) is tested . The total thickness of the 0° and 90° layers is

the same. Layers at the same orientation have equal thicknesses (i.e. t;=t; and t;+t;=t,).
The material constants are as follows:




Table 2.1; Boundary Conditions for various different conditions (x = constant).

Simply supported Clamped Free
Uz0; V=0 U=0, V=0 Uz0; V=0
6o*0, ¢,=0 =0 40,=0 6020 @o=0
w=0; w,#0; w=0; =0 w20, w,=0;
w,=0 w,=0 w,#0

E;; = 172.4 GPa (25x10° psi);
Ez = 6.9 GPa (10° psi);

G2 = G13=3.45 GPa (0.5x10° psi);

Gy = 1.38 GPa (0.2 x 10° psi);

Vi2 & V13=0.25

Aspect Ratio( length to thickness ratio)=10, 20 and 100;

The plate is subjected to a double sinusoidal load
q=qosin(nx/a)sin(ry/b)

where a=b=L; the plate length. Table 2.1 gives the boundary conditions on the edge
x = constant. Similar statements can be made for the edge where y is a constant by
interchanging the subscripts for x a.nd y. A 4x4 mesh quarter plate system with 3x3
sampling points, is used in all examples. The results are given in Table 2.2 in normalized

quantities. The results are normalized as follows:

(o—.x’asa:xy) = (l/qoz'z)(o'zd y’axy);

(Exz’Eyz) =(1 /qo'q')(aawayz);

w=nr'Ow/124',;
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Table 2.2: Three-Layers cross ply (0°/90°/0°) square plate [Ref. 45] subjected to sinusoidal

loading (¢,=t, = t/4, t,= t/2).

A S. | Wan E, o, E,, o, Eo; o, E‘,3
10 A [ 1468 |-140 {0577 |+3.29 [0.318 |-21.07 |0.0247 |-10.5
B |1.448 [-1527 0532 [-443 0307 [-23.82 |0.0250 |-9.42
C |1.534 [-1024 [0.484 |-13.42 [0350 |-13.15 - -
D [2.034 [19.02 [0.542 |-3.04 - - 0.0292 | +5.80
E |1.727 | 1.04 0.493 |-11.81 |0.407 | 0.99 - -
F |1.714 {031 0.554 |-0.88 |[0.397 |-1.42 0.0273 |-1.12
G | 1.709 - 0.559 - 0.403 - 0.0276 -
20 A | 1119 |-590 (0556 | 2.76 |0.284 |-8.22 0.0224 |-2.6
B | 1114 |-631 0557 | 2.58 0307 |-.65 0.0231 | 0.4
C |1.136 |-448 |0.511 (-589 |0.287 |-7.12 - -
D | 1273 |7.07 0.546 | 0.55 - - 0.0239 3.9
E |1.191 {0.14 0.533 |-1.84 (0312 |0.97 - -
F {1191 |+0.16 }[0.538 |{-096 |0.308 |-1.61 0.0229 |[-1.3
G [1.189 - 0.543 - 0.309 - 0.0230 -
100 A 11004 |-04 0.543 0.7 0.267 |-1.48 0.0215° | 0.33
B | 1.003 |-0.496 |0.566 501 [0.284 | 4.80 0.0223 4.2
C |1.005 [-0.298 }0.523 | -2.97 |0.263 |-2.95 - -
D }1.015 | 0.694 |0.551 2.23 - - 0.0219 23
E 0999 |-0.899 |0.537 [-0.37 {0.265 |-2.20 - -
F 10997 {-1.11 10523 |-2.89 [0.263 |-2.81 0.0208 | -2.35
G | 1.008 - 0.539 - 0.271 - 0.0214 -
0.539 0.269 0.0213
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where;

S is the reference source A Present finite element.

B FE2/Panda and Natarajan [Ref. 41]. C FE1/Reddy [Ref. 27]

D FE3/Mawenya and Davies [Ref. 40]. E ISPQ/Moser et. al. [Ref. 104].

F FE4/Phan and Reddy [Ref.33]. G Exact/Pagano and Hatfield [Ref. 16].
CPT Classical plate theory. '

and

A=alt, where t isthe structure thickness.
0= 4G,, +[E,, + En(1+20,)]/ (1= 00,));
W =w(a/2,al/20);
0, =5,(al2,a/2£1/2)

0, =5,(al2,a/2£1/4);
o, = 7,,(0,0,£1/2);

E, = error in w from exact value

E

41

error in o, from exact value.
E, =error in o, from exact value.

E, =errorin o, from exact value.

Table 2.2 shows that the numerical values of all quantities are converge to the CPT
results by increasing the span to thickness ratio A. A model developed by Reddy [Ref.
27], based on the penalty/YNS, (YNS is a theory of Yang, Norris and Stavsky) with eight
node quadrilateral elements and five degrees of freedom per node is perform better for
small span-to-thickness ratios 4. Elements developed by Panda, Mawenya and Moser,
either have too many structural degrees of freedom, or have unsatisfactory performance
comparison to the present model. The Phan and Reddy element gives very good results
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compared to the exact solution for the thick plate (small 1), but the error of this element
increases with the increase the span to thickness ratio. Thus the conclusion is that for

higher span to thickness ratios one can use the present element , and for lower span to
thickness ra;ios, Phan’s element can be used for better accuracy. For length to thickness
ratios equal to fifty, Figures (2,5); (2.6), and (2.7) show the different stress distributions
for a composite laminate using the present finite element method.




Normal Stress distribution Of Simply Supported Composite Plate
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Figure 2.5: Distribution of the in-plane normal stress o for a simply supported
laminated square plate (0°/90%/0°) subjected to double sinusoidal load.
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Normal Stress distribution Of Simply Supported Composite Plate
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Figure 2.6: Distribution of'the in-plane normal stress o,, for a simply supported
laminated square plate (0°/90°/0%) subjected to double sinusoidal load
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Figure 2.7: Distribution of the transverse shear stress oy, for a simply supported
laminated square plate (0°/90°/0°) subjected to double sinusoidal load.
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Example 2.

The following material constants are used in the free vibration analysis of a composite
plate [Ref. 46];

E,/E, =40, Gi2=G13=0.6E;;
Gz3 = O.SEz, Vi2= 0.25

The dimensionless fundamental frequency of the present finite element is compared
with different methods of analysis given in Table 2.3, for span to thickness ratio equal to
five. The effect of span to thickness ratio and the fiber orientation angles of the
dimensionless fundamental frequency are given in Figure 2.8. These results validated the

- finite element code.

Based on the results, the fundamental frequency can be increased by increasing
lamination angle up to 45° except the case of two layers in which it decreases. Increasing
the number of layers with fixed thickness increases the fundamental frequency due to the
decreasing of flexural extensional coupling effect. The dimensionless frequency increases

as long as the span to thickness ratio decreases and reaches a maximum value at-a fiber
angle equal to 45°.




Table 2.3: Dimensionless fundamental frequency for four layers (0%/90°/0°/90°) with span

to thickness ration equal five
Method Normalized Natural Frequencies
Present FE 0.4500
HSDT* 0.44694
HSDT® 0.44686
HSDT® 0.44686
FSDT’ 0.44083
FSDT*¢ 0.45083
Noor ¢ 0.42719
CPT® 0.66690
CPT® 0.66690

Where;

HSDT is the higher order shear deformation theory [Ref. 35].
FSDT is the first order shear deformation theory [Ref. 35].

CPT is the classical laminate plate theory.

* Results obtained using the finite element solution [Ref. 35].

® Results obtained using the Navier Solution.

° Results obtained with the exact solution [Ref. 35].

¢ Results obtained by applying a finite difference scheme to the equations of the three-

dimensional elasticity theory.
* “From Ref. [35]”
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III. FINITE ELEMENT ANALYSIS OF A SMART
COMPOSITE PLATE

A. INTRODUCTION

The rapid development of high-speed computers has facilitated the use of
computational techniques in a variety of engineering applications. The finite element
method is one of the most popular and powerful techniques in modern engineering design
and analysis of complicated structures and multifield problems. Most of the research on
active piezoelectric structures has focused primarily on experimental and theoretical

.studjes, and there has been little development of general purpose piezoelectric finite
element codes [Ref. 99].

In general, experimental models are limited by sizes, cost, and other laboratory
unknowns. Theoretical models can be more general, however, analytical solutions are
restricted to relatively simple geometries and boundary conditions. In the case of
complicated geometries and/or boundary conditions, both theoretical and experimental
techniques encounter technical difficulties. Thus, finite element development becomes
very important in the modeling and analysis of a elastic/piezoelectric coupled system. A
typical elastic/piezoelectric structure is composed of a main elastic continuum, such as
aluminum or graphite epoxy, with coupled (surface bounded), or embedded piezoelectric
sensors and actuators. The thickness of the main structure can be about two or three
times thicker than that of the piezoelectric layer. Thus, it would be very inefficient and
time-consuming if the entire structure were modeled by isoparametric hexahedron or
tetrahedral solid elements. Thus, the development of a new finite element model applied
to piezoelectrip composite laminated plates, based on a simple, higher-order, shear
deformation theory is essential to investigate the structural response due to the applied
field and ways to control the shape of the structure.

47




In this chapter a finite element model is developed and a simple higher-order shear
deformation theory derived with Hamilton’s principle used to formulate the equations of
motion of the structure. The model is valid for a piezoelectric layer either surface bonded
or embedded in the laminated. plate. The piezo-lamina could be patches or completely
cover the surface as shown in Figures (3.1) and (3.2). A four noded, bilinear,
isoparametric rectangular element with seven mechanical degrees of freedom and one
electrical degree of freedom is developed. Tl:;e electric potential is treated as a generalized
electric coordinates, similar to a generalized displacement coordinates at the mid-plane of

the actuator layer.

48




Actuator _ y
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a. Piezoelectric layer complete cover the surface
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b. Simply supported plate with piezoelectric layer complete cover the surface

Figure 3.1 Composite plate with piezoelectric sensor and
actuator completely covering the surface
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Figure 3.2: Composite plate with distributed segments piezoelectric
actuators and sensors

50



B. VARIATIONAL PRINCIPLE

The linear piezoelectric constitutive equations coupling the elastic field and the electric

field can be expressed as [Ref. 47];
Y
gx
D gy s L s E
x € €y €3 €4 €5 €4 e &1 &2 &3 ||E,
z s s s
Dyr=ley e, €3 € e e <£ (H e & es\E, (3.1
D L4 s s 3 E
£ €1 €n €3 €4 65 €| & & &L
p -4
(85}
r 3 ~ - 3 - -
O, Gy €y €3 €4 G5 Cgll& € €, €
g, Ca Cn €y €y €O Cyll6 €, €y €y £
X
o, L C3 €y €G3 Cy O Cy || & €3 €3 €y
1%, 4L E, (2)
Oy Ciy Cyy Cy Cy C4 Cy ||y €4 €y €y P
Z
Og Cis Cys G5 €5 Css Ci || &g €5 € €
9z) L[G6 C6 €6 Cus €6 Ces)|Ex) €6 € €3]

Equation (3.1) describes the direct piezoelectric effect, which means a charge/voltage

generated by an imposed force/pressure to a piezoelectric material. The converse
piezoelectric effect is described by equation (3.2) in which induced stress/strain are

induced due to an externally applied voltage/charge. The equations can be written simply
as:

D} =[e] {e} +[¢’]{E} (3.3)
{o} =[c}{e} -[e){E} (3.4)




where;

{D} = Electric displacement vector (Coulomb / meter square)
[e] = Dielectric permittivity matrix (Coulomb / meter square)
{£} = Strain vector

[£] = Dielectric matrix at constant mechanical strain (Farad / meter)

(permittivity component) ,
[E] = Electric field vector (Volt / meter)
{o} = Stress vector (Newton/ meter square )

{c} = Elasticity matrix for a constant electric field (Newton / meter square)

It is assumed that the principal material coordinates coincide with the coordinates of
the problem being analyzed. Thus the constitutive relations for a material having
orthohombic mm?2 symmetry, including piezoelectric effects, are given by:

8:
8)‘
D, 0 0 0 0 e; O . g 0 O0IE,
D,t=|0 0 0 e O 07£’>+ 0 & ORE, D)
D, e € e 0 0 0 ;y 0 0 &]lE ‘
Lgy",
(6,] ey ¢ €3 0 0 0] «E‘J [0 0 ey
o, €y Cp» €3 0 0 0jlg 0 0 ey E
o, €, Cyp € 0 0 O0ileg 0 0 e *
1 L 31 32 33 ﬁ L _ 33 E (36)
Oy 0 0 0 ¢, 0 0]& 0 e, O E’
o, 0 0 0 0 c5 Oife&, e, 0 O z
Oz LO 0 0 0 0 cfi&) L 0 0 0]
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In this analysis, the plane stress approximation is made by setting o, = 0, the strain

g, is eliminated from the constitutive relations, which will takes the following form:

(3.7)

(3.8)




Table 3.1 Analogy between mechanical and electrical quantities.

Mechanical Electrical
Force density P (vector) Charge density p (scalar)
Displacement q (vector) Potential @ (scalar)
Stress ¢ (second -order tensor) Flux density D (vector)
Strain € (second-order tensor) Electric field E (vector)

The elastic coefficients T;and c; can be obtained in the same way as C;j and C;, which

are given in equations (2.13) and (2.14), and the transformation (if necessary ) can be
computed by the same method described in equation (2.18). The analogy between the
mechanical and electrical quantities [Ref. 69] is given in Table 3.1.

The Lagrangian, 3, of a piezoelectric body is defined by the summation of all kinetic
energy ,X , and potential energy , i, (including strain and electrical energies):

3= [(x-mav (3.9)
where;
x=20ld) (4} (3.10)
- =2[te)" (o} - (BY"(D}] (3.11)
Thus the Lagrangian is
3= LBp{q}’{q} ~3{ia"(e) —{E}"'{D})}JV (3.12)




wheré;
q is the velocity ( time derivative of the displacement q);
J is the Lagrangian;
V is the piezoelectric volume.

The virtual work, W, done by the external surface force and the applied surface
charge density , z, ( C/m?) applied to the piezoelectric body is;

o = [ {ag} {P)as, - [ oouds (3.13)
where;
s, and s, are the surface areas at which the mechanical and the electrical loads are
applied; respectively
P, is a surface load vector (N/m?)

@ is the electric potential (volt)

The minus sign in equation (3.13) occurs because in the variational principle for the

electromechanical medium it turns out that the electric enthalpy H = U — E.D, ; takes the

.
i~

place of the internal energy function U in the Lagrange density; i.e., the effective
electrical energy content of H is opposite in sign to that of U .

By using Hamilton’s principle
2
[s@+mar =0, (3.14)

where 1, tot, is the time interval, and all variations must vanishat t =1 andt=t,.
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Substituting equations (3.12) and (3.13) into equation (3.14) yields the variational

equation as:

[ 3ela)"ta) -5 (817 (0))av's | ()" (R} - [ oous =0

(3.15)
By substituting equation (3.3) and (3.4) and taking the variation gives:

[ [ (ol6d)" (g} - 186} [c Jie} + {66} [el B} + (6B} [e] (&} + (6E) [} E W}
t

+ [ {ag) {B}as, - [ swuas,

(3.16)

Since all the variations must vanish at ¢ = ¢, and = ¢,, the variational equation takes the

form:
[[olan)” (g} + (06) TeMe) - (6oY e} - (Y TeT o) - (oY [ Y v
- [ {aa)"{B)as + 1@,@:0 G17)
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C. FINITE ELEMENT FORMULATION

To generate the electro-elastic matrix relations for a finite element, it was assumed
that the surface of the piezoelectric layers which are in contact with the laminated
substructures are suitably grounded. Also, since the thickness of the piezoelectric layers is
very small, it is reasonable to assume that the electric potential functions, which yield zero
potential at the interface between the actuator and/or the laminated substructure and
provides a linear variation across the thickness of the sensor or actuator layer are as

follows:
D" (x,9,2) = (2= by, )P (x,) (3.18)
where @; can be treated as the generalized electric coordinate similar to the generalized

displacement coordinates at the mid-plane of the actuator and sensor layers. The
generalized electric coordinates at any point within the element can then be expressed in

terms of i nodal variables values via interpolation function N,:
of =[N, [{o:} (19
where {CDJ } is the nodal generalized electric coordinate vector and is given by
(4 e e € € T
o} =[or o @ @ - (3.20)
with & (i = 1,..,4) is the generalized electric coordinate at the i® node of the element

and [Nd,] is the shape function matrix, that is, the same linear shape function used for

element coordinates x and y, which are given in equation (2.31).

N, =140+ &5+ nn) (3.21)

where ,

[No]=[M, N, N, N (3.22)




O (x,3,2) = (2= h, ) No {05} (3.23)
The electric field vector {E} is defined by the electrical potential energy @ by using
gradient operator V:

{E) = -V (3.24)

Substituting equation (3.23) in equation (3.24) , gives the electric field vector;

(£} = [z, B, J{@:) (3.25)
- where ; -
[Bo] = V[Ns] (3.26)
Ny Nox N N, |
=|N,, N,, N,, N,
N, N, N, N,
and
~(z-h) 0 0
[zp]= 0  —(z-h) 0 (3.27)
0 0 -1

The strain vector {£°} at the reference surface is defined by;

{e°} =[B)q.} (3.28)
where ;

{qe} is the element displacement vector given in equation (2.37).
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[B] is the nodal strain-displacement matrix given in equation (2.38).
The generalized strain at a point is related to the reference surface strain as;

&} =[B}{e%} (3.29)

Substitute equation (3.28) into equation (3.29) yields

& =[8]Blq.} (3:30)
where;
100002000 02 0 O]
010000200 0 02 0
[B]=sl]o 0100002z 0 0 0 07 (3.31)
000100002z 00 00
0000100002 0 0 0

Substitution of equations (3.25) , (3.30) into equation (3.17) yields;
[ pla) (WY {NY{a)av + [{a.) (BY[B] [IB1IBYq.}av

- e 1BV B Tl 2, 2. Jos)av - [ (o0t} [B] [2,] (e[ ] BYa.}av
- [1o) 8] [2] 1z ]2 ) @ilav

L VINT (R ds1+L {802} [No ] (2 hy,)ds, = 0 (332)
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D. EQUATIONS OF MOTION
1. Plate With Actuators Only

The variational equation (3.32) can be written in the form;

[ AN IMar{a Haa) + [181[B] B Y Bl (g} e}
- [1el (8] ez o Jav {@sHan) - [[2.] [2,] el [BYBlav{a. oo}
(aflaT s -
- [0 {RYasfn + [ [No] o=y puas, foot} = 0
Thus the equation of motion in matrix formi

[+ [k Jac) -[k@]m - {n.} (.34

[ktbq] d)o = g}

After adding artificial, linear, viscous damping to equation (3.34), the equations of motion
will take the form;

(M. g} +[eun i} + [Run e} = [Roo 03} = PM} (335)

[koo g} +[kos e} =
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where;
[M.]= [ ANT [NV (3.36)

= [ [NY [mIN)d(area)

The shape function matrix [ N] is given by

N, 0 0 0 0 0 0]
0O N 0 O 0 0 0
. 0 0 N O 0 0 o0
[N]=Z 0O 0 0 N, O 0 0 (3.37)
o 0 0 O /i & h
0 0 0 0 f, &. b,
(0 0 0 0 f, 8y hy
and
(L, 0 0 0 0 0 O]
015 0 0 0 0 O
0 0, 0 0 0 O
['rﬁ]: 0 0 0L 0 O0 O (3.38)
0 0 0 075 0O
0 00 0 01 0
0 0 0 0 0 0 I,
in which 1, and 7, are the normal and rotational inertia, respectively;
(L) = zfm'pz (3.39)

i=r !

where p' is the mass density of the i” piezoelectric layer.
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The damping matrix [cqq. is defined as a proportional damping, i.e.

[qu] = a:mqq] + ﬂ[qu]’ (3.40)
and
(k] = [[BY[B] [c]B]IBlav | (3.41)
= [ 18] [DY Bl

where the rigidity matrix [5 ] for n number of layers is given by

[5,_1.] = Z [ ¢,(1,2,2%,2%,2* 2%dz  (forj,i=1,...6) (3.42)
‘ k=1 * ,

and its elements are given explicitly in equation (2.20) and

ko] = (BT[] Te]Z, | B.Jav (3.43)
= [ [B)'Bez] B, Ja4

where [B,eZ ] for m number of piezoelectric layers is given by;

[Bez]= 2 [[B] ]z )= (3.44)
and
[kag| = [[Bo] ]2, Tel[B)BYY = [,0] (3.45)
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and
[kea) = [[B]]2,) [¢']2, ) BoJav (3.46)
= [[5] 2o 2] B}

where [Ze’Z ] for m number of piezoelectric layers is given by;

(223 [ [z ] 1]zl 647

The mechanical excitation force is given by
[e.]= [ [NT{B}as (3.48)

Thus the consistent load vector at node i is

ds, (3.49)

(= Lo

| ]
>N N o0 o oo

- -

~ in which g, is the intensity of load per unit area, and the element load vectors { PM} can
be obtained as;

{PM}=[PMI Pp Py PM4]T (3.50)

The electrical excitation or the actuating term {g} is as follows:
T
{e} = J: [No] (=) s, (3.51)
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To specify the voltage, the distributed applied charge density required to create a
prescribed electric potential distribution on the surface of the actuator layer can be
determined as;

&3 .1
x,y)=-— O (x,y,2 )|,- (3.52)
H(x,) @-hy) (X752 ) 2=h,,

where A,,and Ay, are the distances from structure middle surface to the outer and the inner

surfaces of the piezoelectic actuator layer, respectively. Assembling all the equations
gives the global dynamic system equations

[m){g} +[Clfd} +[K,, (g} - [k (@) = {F) (3.53)
(Koo J{a} + (Koo [} =

Note that the mechanical equétion is coupled with the electrical equation; in which {F} is
the global mechanical excitation and {G} is the electrical excitation. In active vibration
control application, {G} is the feedback voltage determined by the control algorithm.
In the static case, equation (3.53) becomes;

(K. J{a) ~[Ko (@) = {F) (3.54)
(Ko, J{a} +[ Koo (@) =

By performing a condensation of the { } degrees of freedom from equation (3.54), the

equation of motion will be as follows:

[k} = [qu][Koo] (3.55)

where;

(K] = [ K]+ [Bro [ Koo [ Kr) (3.56)
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and the electrical potential vector is;

B} =[Koo] (G} ~[Ker[{a]) (3.57)

which can be used to calculate the voltage distribution. In the free vibration analysis, { G}
is set to zero so that the voltage distribution associated with each mode can be estimated.

Also from equation (3.55), the feedback force {F}} can be expressed as

5} =Ko K] () 358

2. Plate With Actuators And Sensors

For actuator and sensor the variational equation (3.32) will takes the form:

[ AN NV G o)
([ 18] [B] [[B)Blav{e. o) - [ (8] [B] lel 2, [ BoJav{osHaa.)
- [[3s] [z] [e]"[B) Blav {g. }{ows} - [[2,] [z [e’][Zp][B,,]dV{d)g}{&D

+1[18]'[B] ] B)Blav {a.} " [1B]B) [e]Z, | B0 Jav s Haa.)

SIENEABHEA BELPRIE SR (PR (PR 5 PA EXZACRIE Y
- [INT {Rasda)" + [ [No] (z =y, s foo} =0

(3.59)
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Since &, and &D; are arbitrary, equation (3.61) is satisfied only if

[){d.} + [k o} [k {05}, =[] {5}, = {2} (3.60)
ol lod bl o), <o) At
[koq ]S {qe} +[kw]{d>§}s =0 ‘Sensor’

After adding artificial damping and assembling all the equations, the global dynamic

‘system equations are;

[MY{g} +[Cl{g} +[K, ] - (k0] {®}. - [Ke (B}, = {7} (3.61)

Koqa{‘I} + [KWL{E}R ={G} ‘Actuator’

[K@q ]S{q} + [Kw]s{-d—)}s =0 ‘Sensor’

where {g}, {®},, and {®}, are the global, nodal, generalized, displacement coordinates,

and the global, nodal, generalized, electric coordinates for actuator and sensor,

respectively.
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The global, nodal, generalized, electric coordinates can be condensed using equation
(3.61), yielding the system equations.

[M{g} +[cHg} +[K Ja} = {F"} | (3.62)

where;
{F} = (F} +[Ko | [ Koo, (G} (3.63)
(5] = (K] + [ Ko [ Koo, [ K], +[ Ko [ Koo]. [ K, (3.64)

Since the charge applied to the sensor layer is zero ( G=0), the voltage from the sensor
layer can be written as;

{®}, = {Koo), [Keu . {0} (3.65)

The values of the matrices in equation (3.60), m_, k., k

9q° "gq9°* " q®a > k@qa: and kwa.‘can be

computed from equations (3.36), (3.41), (3.43), (3.45) and (3.46). The matrices k,,
kogs » and kyq, can be computed the equations (3.43), (3.45), and (3.46) for the sensor

layers. The mechanical and electric loads are computed using equations (3.49) and (3.51).




E. NUMERICAL INTEGRATION

By using Gauss Legendre quadrature, a full integration technique of a 3x3 Gauss
points (see Appendix A) are used to compute the integration of each element of the
equations of motion of both cases, using actuators only or using actuators and sensors
(3.34) and (3.60). Thus equations (3.36), (3.41), (3.43), (3.45), and (3.46), can be

numerically integrated as follows:

[M]=], [N Na, (3.66)
= ['[1w) (AN Adedn
LAE) '[B]T[I_DIB]dAe (3.67)
= ['[ 18 [D) Bl dgdn
(ko] = |, [BT'[Bez] B, Jas, (3.68)
= [ [181Bez][ B} Idgan
[keo] = [, [Bo] [26°2][ B, a4, (3.69)

- LTB,,]T[Zg’Z][B@]IJIdgdn
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{pM}=}:1 , 40| O |4, (3.70)

| Jidedn (3.71)

{g} = L‘[Nw]T(z-h,p)ﬂdAe (372

= ['[1¥a] - h,)udzan

where A. is the master element area.
F. VALIDATION

To demonstrate the performance of the finite element formulation developed in the
present study, the numerical results were compared to the exact solution [Ref. 65], and
existing finite element simulations [Ref. 78]. A square smart plate, consisting of a three-
layered (0°/90°/0°%) cross-ply laminated plate with the thickness 3 mm was used. A two

piezoelectric PVDF layers 40 um each, served as actuator on the top surface, and
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a second as sensor on the bottom surface. The elastic properties that simulate a high
modulus graphite/epoxy composite are [Ref. 13].

E;;= 172.4 GPa (25x10° psi) E,=6.9 GPa (10° psi);
G12=G15=3.45 GPa (0.5x10° psi); G,:=1.38 GPa (0.2x10°%);
V12="V13=0.25

The piezoelectric PVDF layers properties are [Ref. 73]:
Dielectric permittivity

ey =0.0460 C/m”

es =0.0460 C/m”

e =0.0000 C/m”

Dielectricity

&, =0.1062x 10°  F/m
£, =01062x10° F/m
£, =0.1062x 10°  F/m

Poisson ratio v =0.29
Mass density p=0.1800 x 10* kg/m”
Modulus of elasticity E=2 x 10™ N/m"

The mechanical loading and the electrical potential distribution is described by:
q = g, sin(mx / a)sin(zy / b)

and

O(x,,hg,) =V sin(mx / a)sin(zy / b);
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where g, is the intensity of load per unit area (N/m®), and V is the amplitude of ® in

volts. The deflection is normalized as :

100E, .
q.Ah

W=

where;

E, is the transverse Young's modulus of the‘ graphite/epoxy layers

A is the span to the thickness ratio
h is the structure thickness
g, =10N/m™.

Figures (3.3), and (3.4 ) show the bending deflections verses length to thickness ratios
for a smart plate subjected to a double sinusoidal distribution for both mechanical and
" electrical loads, respectively. Figure (3.5) shows a normalized central deflection for a
simply supported smart p]até subjected to a different applied voltage values A three
dimensional plot of the finite element grid points deflections (81 nodes ) under the same
loads is shown in Figure (3.6).

From the results we can conclude that a new finite element model is developed using
a simple higher order shear deformation theory to analyze a smart composite plate. The
numerical results are compared with the exact solution [Ref. 65], and existing finite
element simulations [Ref. 78]. This result validates the present finite element model. The
error of the model comes in to the picture at small span to thickness ratios (3 and/or 4) but
it decreases dramatically as the span to the thickness ratio increases and it attains nearly
the exact when the ratio exceeds one hundred. The plate deflections can be increased by

increasing the applied voltage to the actuators.
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Central deflection of simply supported smart composite plate

2.5
V=0 & Sinusoidal load q0=10 N/m2
2t | (PVDF (0/90/0) PVDF)
- Present FE
15+ : Exact

3 ~* Reference a

Nonnalized central deflection

1
0.5+ Moo eoeesceeecceccieceecooo--
O 1 3 ! 1
0 20 40 60 80 100
Length to thickness ratio

Exact/ [Ref. 65]; Reference a, FE/[Ref. 78]

Figure 3.3: Bending deflection vs. length to thickness ratio for a plate
subjected to a double sinusoidal mechanical load.
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Central deflection of simply supported smart composite plate

5 T
V=100
] — -
S V =200
© -5 .
2
3 Sinusoidal electrical & mechanical loads
g 10- ) q0=10 N/m~2
8 . X ~ (PVDF,(0/90/0),PVDF)
o - - ' . B
& - Present FE
© .
g 20l : Exact
2 | * Reference a
251 % -
-30 ' : ' :
20 40 60 80 100

Length to thickness ratio

Exact/ [Ref. 65]; Reference a, FE/[Ref. 78]

Figure3.4: Bending deflection vs. length to thickness ratio for a plate
subjected to double sinusoidal electrical and mechanical loads.
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Central deflection

0.045
Sinusoidal electrical load
0.04}
q0=0 N/m*2
c
2 0.035 (PVDF ,(0/90/0),PVDF)
= Length to thickness ratio=100
3 003t
g
%0025}
Q
?
N 0.02¢
E
S 0.015
0.01r

0.005 ' - : : : : -
700 150 200 250 300 350 400 450 500

Applied voltage

Figure 3.5: Normalized central deflection vs. applied voltage for a plate
subjected to a uniformly distributed electrical load.
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Grid point deflection of simply supported plate(PVDF,(0/90/0),PVDF)

S o 5
o N O
P A S

Deflection W

V=200 volt & at=100 0 0 q0=10N/m"2

Figure 3.6: Grid point deflection for simply supported plate subjected to
a double sinusoidal electrical and mechanical loads.
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V1. SHAPE CONTROL AND OPTIMIZATION

A. INTRODUCTION

Future technologies in active changes in the structure shape such as airfoils
spacecraft antenna, turbine blades, etc. justify and necessitate the study of using
piezoelectric actuators to control the shape of structure deformed quasi-statically. In the
previous chapter, a finite element model was used to calculate the change in the shape of
a composite plate when the voltage is applied to the piezoelectric actuators.

In this part of the analysis, a new model is developed to determine voltage applied to
the piezoelectric actuator to achieve minimum error between the desired shape and the
actual shape with prescribed actuator(s) placements. The mathematical model is developed
based on a kinematical relation between a point in the actual shape and a corresponding
point in the desired shape for each element of the finite element grid. The system of
equations for the error function is formulated based on a finite element technique. The
optimization algorithm is applied to the error (objective) functions through a finite element
analysis program called OPTSHP. The code performs the analysis using a finite element
technique and determines the plate deformation due to the applied voltage to each
actuator. It is also able to call a Matlab optimization function to compute the minimum
voltages applied to each actuator.

B. PROBLEM STATMENT

Consider the problem of a plate with known original shape and actuator configuration
where the desired shape is specified. Thus it is desired to find actuator voltages to achieve
the prescribed shape, which minimizes the error between the desired shape and the actual

shape, for a prescribed actuator(s) position, to achieve a minimum error (objective)
function.




Piezoelectric patch

Composite plate

Figure 4.1 : z, coordinate shows a point location on element of the finite
element grid

The analysis is based on small deformation theory. Therefore the specified desired
shape must be within the region of * small deformation’ from the original- shape. Also,
the analysis uses the shape change of a reference surface. Thus within the approximations
used , the shapes of either the ‘top’ or the ‘bottom’ surface of the element can be taken
as the reference surface.

The shape of each element of the finite element grid is described via a suitably chosen
reference surface. The shape of this reference surface is defined by a single z,-coordinate

of every point element surface. The z,-coordinate is perpendicular to the x-y plane as
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\ Desired Surface

v

Original Surface

Figure 4.2: Original Surface, Actual surface, and Desired surface in the x-z plane

shown in Figure (4.1). The shape can be specified by a polynomial function'in x and y
such as:
Z, = a, +a,x +a,y +axy+ax’ +ay’ (length units)  (4.1)
Also the desired shape can be specified by the same way;
24 =b, +bx + b,y +bxy+bx* + by’ ( length units) 4.2)

where a; and b; are constants.
C. ERROR FUNCTION A

Assume that a given set of voltages is applied to a specified number of actuators
which result in a change in the shape of the plate and give a new configuration of the
structure, (dashed line in Figure 4.2.) which represent the actual shape. An error function

will be introduced which includes the difference between the actual shape and the desired
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one [Ref. 90].
The error function will take the form:

A= [ Bady (length’) (4.3)

where;
A is proportional to the distance between the reference surface of the desired shape
and the actual reference surface

Q, is the element domain.

A represents the difference between the z-coordinate on the reference surface of the
desired shape and the z-coordinate of a corresponding point on the actual reference
surface.

The error function can also be the sum of the error square at each element

A= 5"‘_& ' (4.4)
i=1

where; A represents the difference between the z-coordinate of a point on the desired

shape and the z-coordinate of a corresponding point on the actual surface for each element
of the finite element grid.

Thus the objective is to make the error function A as small as possible such that the
desired surface and the actual surface are nearly identical (ie.,A — 0) for a prescribed
actuator(s) position over the finite element grid, with optimal applied voltages for these
prescribed optimal placements .

From Figure 4.3 the distance 4 is defined as;
A=(2y+ &) = (24 + OZ ) (length units) 4.5)
To evaluate each term in this equation, we consider a nodal point A on the original
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Desired Surface Actual Surface

Acfual Surface

Desired Surface

Original Surface

Figure 4.3: Difference between the actual surface and the desired surface in the x-z plane
“From Ref. [91].”




reference surface at (xoyo). Thus z, is the z-coordinate of the point A on the original
reference surface, &, is the difference between the z-coordinate of point A on the original
reference surface and the z-coordinate of the corresponding point A’ in the actual surface ,

which can be expressed as :

&, &
&, =(——°—u+—9v+w) , (4.6)
0 & @) p

where ;
u,vand w are the displacements of the node A.
u is the displacement tangential to the reference surface in the axis x-z plane;
v is the displacement tangential to the reference surface in the off-axis y-z plane;
w is the deflection normal to the reference surface;
Z4, is the z-coordinate of point B on the desired reference surface at (X0,¥0)-

The point on the desired reference surface corresponding to point A’ on the actual
reference surface is point A~ located at (¥, + 8¢y, ¥, + &,). &, is the difference between

the z-coordinates of points A" and B.

It can be approximated by the first two terms of a Taylor series expansion.

&, = (%)B&O +(f;ﬁ) k2 @7

The distances &, and dy, are the changes in the x- and y-coordinates between points A
and B.

&, = (u - w—g) (4.8)
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-]
&y =|v-w—"

The following parameters are introduced which depend on the geometry of the original
and desired surface,

o222 5) )

B A

By using this parameter the objective function will take the form:

A= [ [0~ 2a)+ mw+ u+ ny] dvdy (410

D. FINITE ELEMENT FORMULATION
A bilinear isoparametric rectangular element is used to describe the shape of the

element. The element coordinates, x and y are interpolated using a linear shape function
N,, which has the form:

N, =14+ EE)1+ nm) (4.11)

where;

N, is the linear interpolation function.
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&,n are the master element coordinates.
x,y are the actual element coordinates.

The actual element coordinates x and y can be transformed to the master element by
the same way as in the finite element analysis. The mathematical relations for the element
transformation will have the form: |

x=x,+&al2 4.12)
y=y. +nbl2;
and
E=2/a(x-x.);
n=2/b(y-y.)
By substituting equation (4.12) in equations (4.1) and (4.2), the actual and the desired
shape equations will have the form;

z, =a,+a(x. +£&af2) +a,(y. + nb/2) + a,(x. + Eaf2)(y. + nb/2) (4.13)
+a,(x,+&af2) +a,(y, +nb/2)’

and
Z4. = b, +b(x, + £al2) + b, (y, + nb[2) + by(x. + £af2)(y. + nb/2) (4.14)

+by(x, + £af2) +by(y. + nb/2)’

(z, could be zero, for a flat plate, or a first order polynomial )
By the chain rule of partial differentiation,

& =EEE+—5—I7-E (4.15)
& o 2o
y XYy noy
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and

R _ Rie X | R O (4.16)
& & & &
&m=5&'¢5§+&daéﬂ
&y & ong

By using equations (4.16) and (4.17), the three geometric parameters 1, 12, and ns,
which are expressed in equation (4.9), can be computed. The objective function equation
(4.10) takes the form:

A= [, (@& = 2aa () + G W + (G mu+ m(&m)V] ey (4.17)

The electric excitation may be factored out of displacements %,v, and w in equation

(4.17) by introducing the vectors # ,vand W, which can be defined as follows. The
degrees of freedom of the system can be determined from the equations of mbtions (3.57)
and (3.64) for both cases of actuator and actuator and sensor that are given in chapter
three in short form as:

{a} =[xT{F} @18)
where;
{q} is the array of the degrees of freedom {UO,VO,A,X,% Wy, w,,and wy}
[K']—l is the inverse of the structure stiffness matrix (given in equations (3.58) and
equation (3.66)).
{F } is the applied electric and mechanical loads vector, in the case of the actuator

only which is described in chapter three as;
{F}={F +[qua][Kooa]-l{G} (4.19)
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in case of applied electric load only.

{F'} =[qua][Kw]"{G} (4.20)
where {G) is the global electric actuating force in which for one element g is defined as;
(g} = [ [Vo] (2~ h,)us, @21)

and the distributed applied charge density is described as;

___ &
p(x,y) = G-h) O(x,y,2)

(4.22)

z=hop

which is function of the amplitude of the electric potential distribution (¥ in volt).

' The displacement u,v,andw are defined via the interpolation shape function as:

u= ZN,.ui _ (4.23)
i=1 .
4
v=) Ny,
i=1
4
w=) fw

i=1

u,,v,,and w, are the displacements at the nodal point in the x, y, and z direction

respectively, which can be picked out from the deformation array {q} expressed in

equation (4.18) such as:

u =K {F} (4.24)
V, = K{F'}
w, = NW{F'}
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where;
KK ,and K, is the flexibility influence coefficient rows corresponding to the
displacements u,,v,,andw, in the global matrix inverse [K" ]'l.

By substituting #,, v, and w; equation (4.23) takes the form:

7= i Ny = i NR{F} (4.25)

where;
S, is the shape function used for the deflection w at node j,
N, is the shape function used for the displacement u, and v at node j, and #,7,and %

are the displacements in the three directions, which are computed from the finite element
analysis of the plate.

These displacements are a function of the voltage applied to each actuator. To factor

out the voltage in the objective function, #,V and W, values are used instead of

u,v,and w in equation (4.17) and one can obtains;

A= [ (@& m -2 Gm) + HEDFT) + 1 EMAV) + (&Y (V)] dedy

(4.26)
which is a function of the amplitude of the electric potential distribution (¥ in volt).




E. NUMERICAL INTEGRATION

Equation (4.26) can be integrated numerically using Gauss-Legendre quadrature
(see Appendix A). A full integration technique of a 3 x 3 Gauss point is used for each

element. Thus, the error function for the one element can be written as;

1 . 2
A = [T 1eEm -2 @)+ mEDPO) + (M) + (&P O)] Vldzdn
(4.27)

where |J| is the determinant of the Jacobian matrix.

The structure objective function is defined as the summation of the error for each

element such as:
A=2.4 (4.28)

subjected to
Lower limit < ¥ < Upper limit

where m is the number of elements of the finite element grid, and V' is the amplitude of
the electric potential distribution applied at each actuator (in voltage).

F. OPTIMIZATION ALGORITHM

A Matlab function fmin and fmins are used to find the minimum of a scalar
function. The f min function is used to minimize a function of one variable on a fixed

interval. The problem is mathematically stated as :
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minimize f(x) (4.29)

x
subjected to:

where f(x) and x are scalars.

The fmin function is used to optimize the objective function in the a case of constant

applied voltage to each actuator (V' is scalar).

The function f mins is used to find the minimum of a scalar function of several

variables starting from an initial estimate, which is generally referred to as unconstrained
nonlinear optimization, and is mathematically stated as: '

minimize f(x) (4.30)
. |

where x is a matrix or vector and f is a scalar function.

The function f mins is used when different values of the voltage are applied to the
piezoelectric actuators (¥ is a vector) . f mins uses the simplex search algorithm of
Nelder and Mead'®, 'for minimization of a function of n variables, which depend on the
comparison of function values at the (n+1) vertices of a general simplex, followed by the
replacement of the vertex with the highest value by another point. The simplex adapts
itself to local landscape and contracts to the final minimum. The method is shown to be
effective and computationally compact. A procedure is given for the estimation of the

Hessian matrix in the neighbourhood of the minimum needed in statistical estimation

problems.




G. SOLUTION PROCEDURE

The flow chart of the solution procedure to compute the optimal voltages applied to
the actuators and to minimize the objective (error) function is shown in Figure 4.4. The

procedure is as follows:

1. Input the structural data, such as material properties for both graphite epoxy
and piezoelectric materials, plate dimensions, actuators dimensions , boundary
conditions and the applied voltages to the actuator.
2. Assume an initial guess for the applied voltages to each actuator at prescribed
selected positions. '
3. Callthe optimization algorithm using a Matlab function f mins (in case of
different voltages applied to different actuators ) or f min (in case of same voltage
applied to all actuators).
4. Compute the plate deformation due to the current applied voltage, using the finite
element analysis. v
5. Evaluate the objective function and applied voltages. ‘
6. Check the convergence of the objective function and voltages. If they converge,
the program will terminate.
7. Otherwise, update the current applied voltages to the actuator(s) and then go to
step three and repeat the procedure.

H. VALIDATION
As illustrated in the flow chart, Figure 4.4, the optimal location of the actuator(s)
position to get a minimum error function at a specified applied voltage is determined.

The OPTSHP code for the optimization algorithm has been tested.
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Input Structure Data

i

Assume initial guess for voltage(s)
applied to the actuator(s)

X
Call Optimization Algorithm using
S mins/or f min function

d

Using finite element analysis,
compute the shape deformation
due to the current applied

!

Evaluate the Objective Function
and the applied voltage(s)

Check convergence
of O.F &Volt(s)

Update the current applied
voltage(s) to the actuator(s)

Figure 4.4: Flow chart of solution procedure
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Figure 4.5 Element numbers for different actuator positions for a simply supported
square composite plate (a= b).

A square fiber-reinforced composite plate with three layers (0°/90°/Od) and one
piezoelectric layer patch on the top surface and another one on the bottom surface was
used. The length to thickness ratio equal fifty, and the materials properties for
graphite/epoxy are as follows [Ref. 13].

Ey=172.4 GPa (25x10° psi) E2=6.9 GPa (10° psi);
G1,=G15=3.45 GPa (0.5x10° psi); G,;=1.38 GPa (0.2x10°%;
V12=V13=0.25

The piezoelectric PVDF layers properties are [Ref. 73]:
Dielectric permittivity

es; = 0.0460 C/m’™
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€5, =0.0460 C/m*
€33 = 0.0000 C/m™

Dielectricity

g, =0.1062 x 10° F/m
g, =0.1062x10° F/m
g, =0.1062 x 10°  F/m

Poisson ratio v =0.29
Mass density p =0.1800 x 10* kg/m"™
Modulus of elasticity E=2 x 10™ N/m

The mechanical loading is taken to be zero, and the electrical potential distribution is
assumed to be uniformly distributed with amplitude ¥. The deflection is normalized as :
100E,

PR

W=

where; ,

~ E; is the transverse Young's modulus of the graphite/epoxy layers
A is the span to the thickness ratio (equal fifty)

h is the structure thickness

A nine element model was used for different positions of the actuators as shown in

Figure 4.5. The original shape is chosen as a flat plate (z, = 0) and the desired shape is

selected as: z,, =1x10”x> —42 x10™xy +6x 10332,




Example 1.
In this case the error between the actual shape and the desired shape due to a specified

amount of the applied voltage to the actuator is computed by placing the actuator(s) at
different positions on the finite element grid (Figure 4.5). The error function values are
given in Table 4.1 for an applied voltage equal to 100 volts for each actuator position.

Example 2.
The predicted voltages and the grid points transverse deflections, for both the actual

and the desired transverse deflections, (in-plane deformations are not included) are
computed for two cases. Figure (4.6) shows the first case, when the actuator is placed at
element number five. The second case, when two actuators are used at elements two and

eight, is shown in Figure 4.7.

Example 3.
The optimal value of voltage applied at the actuator(s) to obtain minimum error

between the actual shape and the desired shape (minimum error function) can be
computed as shown in the flow chart, Figure 4.4, using the Matlab f min function with

certain upper and lower limits of the applied voltage, such as -100< V < 100. The optimal
voltage applied to the actuator for different positions on the grid and the corresponding

minimum value of the error function are given in Table 4.2.

The reported values were the global minimums. This was accomplished by applying
different initial values of voltages (i.e. -500 to 500 Volt.) to the actuator and determining
the numerical value of the objective function at these different voltages. The minimum
value of the error function found was identical to the value computed by the optimization
algorithm. |
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Table 4.1: Error function values at different actuator positions for applied voltage equal
100 volt.

Actuator Position Error Function Value
| Element #1 , f= 5.87619804 e-18
Element #2 f= 5.05453907 -18
Element # 3 f= 4.44646994 e-18
Element #4 f= 7.68074043 e-18
Element #5 f= 9.30776749 e-18
Element # 6 f= 4.28947367 e-18
Element # 7 f= 5.86952426 e-18
Element # 8 f= 5.04220635 e-18

Element #9 f= 4.44063580 e-18

®  The applied voltage at each actuator is 100 Volts.

Example 4.
In the case of four actuators used at a time, the voltages and error function values are

given in Table 4.3. Table 4.4 shows the results for two actuators used at a time. The
results in both cases were obtained by using the Matlab function fmins with

unconstrained value on the applied voltage.
An optimization algorithm is applied to get minimum applied voltages to the actuators to

minimize the error function. Tables 4.3 and 4.4 show that location of the actuators play an

important role in minimizing the error.
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Figure 4.6: Actual and desired transverse deflection at the grid
point for actuator at fifth element.
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x 107 Actual and desired grid point Deflection
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Figure 4.7: Actual and desired transverse deflection at the grid point
for actuators at elements two and eight.




Table 4.2: Optimal applied voltage and error function at different actuator positions.

Actuator Position Minimum Applied Minimum Error
Voltage (Vol.) Function
Element # 1 VvV =78.226 f=5.83495108e-18
Element #2 V =70.944 f=4.78995246¢-18
Element # 3 V =99.999 f=4.44647064¢-18
Element #4 V =34.161 f=5.88349351e-18
Element #5 V =137.346 f=4.74690856¢-18
Element #6 V =175.062 f=4.03165923¢-18
Element # 7 - V=78.611 f=5.82972138¢-18
Element # 8 V=71.14] f=4.78117803¢-18
Element #9 V =99.999 f=4.44063651e-18

Table 4.3: Optimal applied voltages and error functions for the case of four actuators used

at a time.

Actuators Positions

Minimum Applied
Voltages (Volt.)

Minimum Error

Function

Elements# 1,3,7& 9

V,; =-21.060
V3 =98.104

V;=-16.473
Vo =101.482

f=4.0531138¢-18

Elements #2,4,8 &6

V,=18.404
V4 =-29.429
Ve =65.262

Vg =22.349

f=4.01531283¢-18
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Table 4.4: Optimal applied voltages and error functions for the case of pair of actuator
used at a time.
Actuators Positions Minimum Applied Minimum Error

Voltages (Volt.) Function

Elements # 1 & 7 V; =41.612 f=5.78007896¢-18
V,=47.265 |

Elements #2 & 8 V= 35.943 f=4.74678213¢-18
Vs =39.934

Elements #3 & 9 V;=85.710 f=4.0583368¢-18
Vo =90.547

Elements # 1 & 3 | Vi =-26.368 f=4.10114654¢-18
V3 =175.055

Elements # 4 & 6 V,=-8.231 , f=4.01544062¢-18

| Ve =79.660

Elements # 7 & 9 V;=26.0895 f=4.09288468¢-18
Vo =175.193

Elements # 1 & 9 V,=17.007 f=4.10970645¢e-18
V, =170.053

Elements #3 &7 V3 =169.712 f=4.12087738¢-18
V,;=-16.138
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V. CONCLUSIONS

A finite element model was developed to analyze the behavior of a smart composite
plate. This intelligent plate was composed of distributed sensor and actuator layers made
of PVDF or PZT and a laminate of graphite/epoxy layers. In the analysis, the piezoelectric
layer was treated as a normal lamina. A simple higher order shear deformation theory
with Hamilton's principle was used to formulate the equations of motion. A four node,
bilinear, isoparametric, rectangular element, with seven degrees of freedom at each node
was developed. The electric potential was treated as a generalized electric coordinate like
the generalized displacement coordinates at the mid-plane of the actuator and sensor
layers. A Matlab code ‘CMPZ’ was developed to analyze the structure.

Several conclusions can be made from the results. The present finite element method

" can be used for static and dynamic analyses for both thick and thin composite structures
with distributed piezoelectrié sensors and actuators. The numerical results generated by
the developed code agree very well with the exact solution and other published finite
element solutions. This validates the finite element model. The method developed is much
simpler to formulate and more efficient than models based on hexahedral or tetrahedral
solid elements and/or three dimensional brick elements. The error of the method
increased for small .span to thickness ratios and decreased dramatically for higher span to
thickness ratios. A Hermite cubic interpolation function was used to approximate the
transverse deflections, however, the method does not suffer from the shear correction,
which is problematic in the first order shear deformation theory. The developed
displacement model includes the parabolic distribution of the transverse shear stresses and
the non-linearity of in-plane displacements across the thickness. This is an advantage over
the classical laminated plate theory, which neglects the effects of transverse shear stresses.
The number of degrees of freedom of the element used in the present method is one third
the number of degrees of freedom of the element used in the model developed by the

higher order shear deformation theory, which of course saves computational time.
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For shape control and optimization, an optimization algorithm based on a finite
element method was developed. Kinematical relations were used to formulate the
objective (error) function as the summation of the mean square error between a point in
the actual surface and a corresponding point in the desired surface integrated for each
element of the finite element grid. This approach is an improvement over the method
where surface error is determined only at the nodal points.

The optimal voltage applied at each actuator to achieve a specified shape with
minimum error between the actual shape and the desired shape was computed using an
optimization code. The Matlab code ‘OPTSHP’ is developed in conjunction with Matlab
functions which gave very satisfactory results. The code is able to determine the value of
the error function for different actuator(s) positions for a specified amount of the applied
voltage to the actuator(s). The model is applied for both cases, either constant voltage
apﬁﬁed to the actuator(s) .or different voltages applied to several actuators. The
procedure proposed in this work was implemented for a composite plate with any
demonstrated number of piezoelectric actuators. It was demonstrated from the examples
that the desired shape was made to chosen match the actual shape, which satisfies small
deformation theory. The procedure was tested for more general layouts of actuators and
the optimization algorithm was applied to get optimal applied voltages to the actuators to

minimize the error function.

Future work is proposed in the following areas;

1. Generalization of the finite element model to non-rectangular elements and shell
elements.

2. Optimization of the actuator placements.

3. Closed loop shape control to compensate for varying external mechanical and thermal

loads.
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APPENDEX A. NUMERICAL INTEGRATION

For the isoparametric element considered in this work, an exact evaluation of the
integration for mass, stiffness and the equivalent nodal loads was not always possible
because of the algebraic complexity of the differential equations representing the element
used. Since the interpolation functions are easily derivable for a rectangular element, and
it is easier to evaluate integrals over rectangular geometry, we transform the finite element
integral statements, defined over quadrilaterals, to a rectangle. In such a case, it is
necessary to use some numerical integration technique. One of the most accurate and
convenient methods is Gaussian quadrature, which involves approximation of the

“integrand by a polynomial of sufficient degree, because the integral of a polynomial can be
evaluated exactly [Ref. 93]. If an integral;

P=['Fax @

with function F(x) is approximated by a polynomial;

N
F(x)~ 2 F¥(x) (A2)

I=1

where F; denotes the value of F(x) at the I"™ point of the interval (x;,x;) and ¥ (x) are

polynomials of degree N —1. The representation can be viewed as the finite element
interpolation of F(x), where F; is the value of the function at the I" node. For our

rectangular element the integral will take the form;

11 M N |
[ Feyaay = | Femlagn= [[[ Fenlagan~ 33 F&nlEnRR,

I1=1J=1

(A3)
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where,
£2, is the actual element domain with its x, and y coordinates ( Fig. 2.3)

.()e is a linear master element with its r and s coordinates  (Fig.2.3)

(£,m) denote the Gauss points in the & and # directions.  ( Fig 2.3)

R, and R, denote the corresponding Gauss weights ( see Table. A.1)

Mand N denote the number of quadrature points. ( in most, cases, the interpolation
functions are of the same degree in both £ and n direction, ie. M =N .

|J| is the determinant of the Jacobian matrix J, in which,|J| > O everywhere in the

element (2.

Geometrically, the Jacobian represents the ratio of an area element in the actual

element to the corresponding area element in the master element:

dA = dxdy = |Jld&dn . (A4)
The number of Gauss points is based on the formula;
N = integer(1/2(p+1)) (A.5)

which means that the smallest integer greater than 1/2(p + 1) ; where p is the degree of the
polynomial which may be integrated exactly employing equation (A.S).

Table A.1 gives the integration order, weighting factor and the location of the Gauss
points for linear, quadratic, and cubic elements [Ref. 94]. The maximum degree of the
polynomial refers to the degree of the highest polynomial in £ and n that is present in the
integral F(&,n) of equation (A.3).
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Table A.1:

Weights and Gauss points for the Gauss- Legendre Quadrature.

N +& R,

1 0.0 2.0

2 0.5773502692 1.0

3 0.7745966692 0.5555555556
0.0 0.8888388889

4 0.8611363116 0.3478548451
0.3399810436 0.6521451549

5 0.9061798459 0.2369268851
0.5384693101 0.4786286705
0.0 0.5688888889

6 0.9324695142 0.1713244924
0.6612093865 0.3607615730
0.2386191861 0.4679139346

7 0.9491079123 0.1294849662
0.7415311856 0.2797053915
0.4058451514 0.3818300505
0.0 0.4179591837

8 0.9602898565 0.1012285363
0.7966664774 0.2223810345
0.5255324099 0.3137066459
0.1834346425 0.3626837834

N=2, Linear; N=3, Quadratic, N=4 Cubic, etc.
N X N =the order of integration.

& = Location of imtegration points in master element.
R = Weighting factor.
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APPENDEX B. COMPUTER PROGRAMS

Two Matlab codes were developed, 'COMPZ' and 'OPTSHP'. The 'COMPZ' code
is a finite element analysis program for a smart composite plate. The program is able to
compute the static and the dynamic response of the structure, bending deformation, free
vibration, and stress analysis subjected to both mechanical and electric load for various
boundary conditions. The program is able to solve a composite plate with and without
piezoelectric layers. The composite laminates could be graphite epoxy with reinforced
fiber or aluminum layers. The piezoelectric elements can be segmented or continuous
elements and can be either surface bonded or embedded in the laminated plate. The

procedure to run the program is as follows:

'1. Mesh generation :
Input the number of point in x direction Ny
Input the number of point in y direction N,
Input the plate length in x direction Ly
Input the plate length in y direction L,
Input the plate thickness in z direction Lthk
Input the number of patches their lengths in x direction (if any)
Input the number of patches their lengths in y direction (if any)

The program will generate the mesh automatically and compute the elements numbers,
nodes coordinates, and the elements conductivity.
2. Structures Data:
Input type of the structures, simply supported or cantilever plate.
Input materials constants for the structures core (graphite epoxy or aluminum ) and for
the piezoelectric material. E;, E,, etc.
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3. Applied Loads:
Input the intensity of the load per unite area qo.
Input the amplitude of the applied voltage V.

4. Method of analysis:
Input quarter plate analysis.
Input full plate analysis.
Composite plate analysis.
Smart composite plate analysis, with piezoelectric materials,
Complete cover the surface, or
Uniform patches cover the surface

5. Result
Plate deflection
Natural frequency and mode shape
Stress value for each layer

The "OPTSHP" code is an optimization program using the finite element technique in
which the optimization algorithm is applied to the objective function by using a Matlab
function f mins through finite element analysis subroutines. The code is able to compute

the plate deformation due to the applied voltage and/or mechanical load and determine the
optimal placement of actuator. Also the code is able to compute the minimum amount of
the applied voltages to each actuator by using a Matlab function f mins and f min.

The steps to run the code are:

1. Mesh generation :
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Input the number of point in x direction Ny
Input the number of point in y direction N,
Input the plate length in x direction Ly
Input the plate length in y direction L,
Input the plate thickness in z direction Lthk
Input the number of patches

I

Input the patches element numbers

2. Structures Data:

Input type of the structures, simply supported or cantilever plate.

Input materials constants for the structures core (graphite epoxy or aluminum ) and for
‘ the piezqelectric material. E;, E,, etc.

3. Applied Loads:
Input the intensity of the load per unite area qo (if any)
Input the initial value of the applied voltage V.

4. Method of analysis:
Input full plate analysis.
Smart composite plate analysis, with piezoelectric materials,
Uniform patches cover the surface

5. Determine the patch location:
Input initial guess for patch position and compute the objective function
The program will do finite element analysis and compute the plate deflection due
to the applied voltage at this place.
Input the second guess at other location of the finite element grid.
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Repeat this check and compare the values of the objective function for each case and
pick the minimum value which represent the optimal place to get minimum error

between the actual and the desired shape.

6. Determine the optimal amount voltages applied to each actuator:
Input initial value of the applied voltages for the each actuator at the selected position.

Call the optimization algorithm using the Matlab function f mins and

£ min, they will perform a finite element analysis for this value of the voltages.

The code will update the voltage values and repeat the analysis again.

The code will check the global minimum of the objective function and will stopped at

the global minimum with minimum amount of voltages applied to each actuators.
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