REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

29.0ct.99

DISSERTATION

4. TITLE AND SUBTITLE
ACTIVE NARROWBAND DISTURBANCE REJECTION ON AN ULTRA QUIET

PLATFORM

6. AUTHOR(S)
MAJ EDWARDS STEPHEN G

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NAVAL POSTGRADUATE SCHOOL

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
THE DEPARTMENT OF THE AIR FORCE

AFIT/CIA, BLDG 125

2950 P STREET

WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-325

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

19991116 097

14. SUBJECT TERMS

15. NUMBER OF PAGES
233

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT

ABSTRACT

DTIC QUALITY INSPECTED 4

Standard Form 298§Rev. 2-89) (EG)
Prescribed by ANSI Std. 239,18
Designed using Perform Pro, WHS/DIOR, Oct 94




NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

ACTIVE NARROWBAND DISTURBANCE REJECTION
ON AN ULTRA QUIET PLATFORM

by
Stephen G. Edwards

September 1999

Dissertation Supervisor: Brij N. Agrawal
Co-Advisor: Roberto Cristi

Approved for public release; distribution is unlimited.




REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1999 Doctoral Dissertation

4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

ACTIVE NARROWBAND DISTURBANCE REJECTION ON AN ULTRA QUIET

PLATFORM

6. AUTHOR(S)
Edwards, Stephen G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Naval Postgraduate School ° B

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or
the U.S. Government.

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT

Vibration isolation on spacecraft is needed for imaging sensors, microgravity experiments, and other sensitive payloads. The
preferred method thus far has been passive isolation because of its simplicity and low cost. Active vibration isolation and disturbance
rejection will soon be more common as space qualified sensors, actuators and processors become more capable and affordable, and
performance requirements increase. Spacecraft disturbances are typically periodic vibrations which are most effectively controlled
through feedforward techniques. A popular choice of feedforward control methods for disturbance rejection is the Multiple Error Least
Mean Squares (LMS) algorithm which requires a separately measured disturbance-correlated signal in its implementation. A new
technique called “Clear Box” makes extensive use of identification to bring out information that is normally hidden or not used by
traditional control methods. It allows operation in an information-rich environment with built-in fault tolerance, the ability to control
unanticipated disturbances, and the ability to select which modes to control (if saturation of the actuators is a possibility or concern), all
without the need for a separately measured disturbance-correlated signal. Experiments using both Multiple Error LMS and Clear Box on
an Ultra Quiet Platform provide an effective demonstration of the advantages of the Clear Box Algorithm, including a new Adaptive
Basis Method which allows control of rapidly varying frequencies.

14. SUBJECT TERMS 15. NUMBER OF
Vibration Isolation, Narrowband Disturbances, Deterministic Disturbances, Disturbance Rejection, UQP, Clear | pagEes

Box, LMS, Filtered-x LMS, Multiple Error LMS, Active Control, Feedforward Control, System Identification, 248
Adaptive Basis

16. PRICE CODE

17. SECURITY CLASSIFICATION OF | 18- SECURITY CLASSIFICATION OF | 49 gpcyRiTY CLASSIFICATION OF | 20 LIMITATION OF
THIS PAGE ABSTRACT
REPORT Hidirlt ABSTRACT
Unclassified nclassitie Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18




THIS PAGE INTENTIONALLY LEFT BLANK

ii




Approved for public release; distribution.is unlimited

ACTIVE NARROWBAND DISTURBANCE REJECTION ON AN
ULTRA QUIET PLATFORM

Stephen G. Edwards
Major, United States Air Force
B.S., U.S. Air Force Academy, 1986
M.S., Air Force Institute of Technology, 1990

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN
AERONAUTICAL AND ASTRONAUTICAL ENGINEEREING

from the

NAVAL POSTGRADUATE SCHOOL

September 1999 -
Author:
Approved by:
[2. M. [ve m/? |
BI‘IJ Agrawal, Professor Roberto Cristi, Associate Professor
Dept. of Aeronautics and Astronautics Dept. of Electrical and Computer Engmeenng '

- Co- Adv1so/r/
—
AR AL 2 Dy

Dissertation Supervis

shua Gordis, Associate Professor Isaac Kaminer, Associate Professor
Dept. ‘»' echanical Engineering Dept. of Aeronautics and Astronautics

;\Jlld‘l‘(‘ AN A ANAA

erald Lifdsey ™ Chairma
Dept. of Aeronautics and“Astroflaytds

/ .
Approved by: 7 e \)

AN men ~ A rondutics and Astronautics

Y l d
< "ND >
Approved by:

Anthony Clavarelh Acting Associate Provost for Instruction o

iii




THIS PAGE INTENTIONALLY LEFT BLANK

iv




ABSTRACT

Vibration isolation on spacecraft is needed for imaging sensors, microgravity
experiments, and other sensitive payloads. The preferred method thus far has been
passive isolation because of its simplicity and low cost. Active vibration isolation and
disturbance rejection will soon be more common as space qualified sensors, actuators and
processors become more capable and affordable, and performance requirements increase.
Spacecraft disturbances are typically periodic vibrations which are most effectively
controlled through feedforward techniques. A popular choice of feedforward control
methods for disturbance rejection is the Multiple Error Least Mean Squares (LMS)
algorithm which requires a separately measured disturbance-correlated signal in its
implementation. A new technique called “Clear Box” makes extensive use of
identification to bring out information that is normally hidden or not used by traditional
control methods. It allows operation in an information-rich environment with built-in
fault tolerance, the ability to control unanticipated disturbances, and the ability to select
which modes to control (if saturation of the actuators is a possibility or concern), all
without the need for a separately measured disturbance-correlated signal. Experiments
using both Multiple Error LMS and Clear Box on an Ultra Quiet Platform provide an
effective demonstration of the advantages of the Clear Box Algorithm, including a new

Adaptive Basis Method which allows control of rapidly varying frequencies.
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L INTRODUCTION

A. MOTIVATION

Isolation of mechanical vibration on spacecraft is becoming more of a necessity.
The use of larger solar arrays and apertures leads to the presence of increased vibration
energy due to flexible modes in the spacecraft structure. At the same time there is an
inevitable progression toward higher performance requirements for missions involving
imaging sensors, interferometers, and microgravity experiments leading to the need for
improved isolatibn of these sensitive payloads.

Passive isolation presents a reliable, low-cost solution that is effective for
attenuating high frequency vibrations. Passive techniques typically are not used for low
frequeﬁcy vibration isolation since the delicate nature of the resulting mechanism is
unable to withstand the launch environment. The problem is compounded by the
presence of low frequency modes that result from the increased dimensions of modemn
spacecraft structures. These modes are excited by periodic disturbances or impulsive
disturbances such as sudden structural deformation_ due to thermal stress, attitude control
thrusters, etc. Sources of periodic excitation include solar array drive motors, cryé
pumps, and momentum wheels.

Active control techniques allow a significant performance enhancement over
passive methods, but require sensors, actuators, and processing equipment which must all

be light weight and energy efficient. As space qualified sensors, actuators, and




processors become more capable and affordable active control will become the logical
choice for achieving performance goals.

Control techniques for rejection of disturbances are numerous and include
classical feedback, modern feedback, disturbance accommodating control, disturbance
observers, repetitive control, adaptive control, adaptive inverse control, adaptive
feedforward control, and neural networks [Ref. 1]. These methods require some degree
of knowledge of the system dynamics or the disturbances to be controlled. Adaptive
techniques are best suited to situations where the system dynamics and/or disturbance
characteristics are changing with time. In most cases narrowband (periodic) disturbances
are most effectively controlled through the use of feedforward techniques.

A widely accepted adaptive feedforward method for noise and vibration control is
the Filtered-x LMS Algorithm [Ref. 2], or the Multi-Input Multi-Output (MIMO)
implementation called the Multiple Error LMS Algorithm [Ref. 3]. A drawback of these
methods is that they require a separately measured, disturbance-correlated reference
signal which is adaptively filtered to form the control signal. In many cases a disturbance
source may be unanticipated (an example is the thermally-induced solar array vibrations
experienced by the Hubble Telescope), and these techniques are ineffective against such
disturbances if the sensor placement does not provide a strong, well-correlated signal.
LMS-derived methods also require prior knowledge of the system’s dynamics, which
may vary with time due to loading and environmental changes, or changes in orientation
of the solar arrays and communication/sensing apertures. Finally, the LMS algorithms do

not provide the ability to selectively cancel disturbances. This ability to know which




disturbance frequencies to reject and which to ignore is important because it prevents
actuator saturation when disturbance frequencies are coincident with, or close to, system
modes that are uncontrollable or weakly controllable. It also allows the use of lighter
weight, less capable actuators when weight is a primary concern (e.g., in spacecraft
applications).

A new technique called Clear Box approaches the control problem from a system
identification perspective [Ref.s 4,5]. Identification brings out information that is
normally hidden or not used in traditional "black box" disturbance rejection methods.
Requiring only the knowledge of actuator inputs and (disturbance-corrupted) sensor
outputs, the Clear Box Algorithm allows complete identification of both the system
dynamics and the disturbance frequencies. The identification, which can be performed in
the presence of unknown periodic disturbances, results in a "disturbance-free” ARX
(AutoRegressive with eXogenous Input) model which is then used to calculate a
"disturbance effect" signal. This disturbance effect signal and the ARX system model
provide the information needed to intelligently identify and selectively cancel
disturbances while taking into account limited actuation resources. All of the required
information can be extracted from identification alone without requiring measurement of
a separate disturbance-correlated signal.

Thus, the shortcomings of the LMS-based algorithms are addressed while
allowing consistent reduction of the error to the sensor noise level. This dissertation also

implements a new control version of the Clear Box Algorithm called the "Adaptive Basis




Method" that is capable of controlling rapidly varying disturbance frequencies by using

adaptive basis functions to synthesize the control signal.

B. LITERATURE REVIEW

1. Background

The earliest efforts to actively control sound (acoustic vibration) are traced to Paul
Lueg of Germany [Ref. 6] who attempted to control sound propagating in a duct through
superposition of a 180 degree phase-shifted sound wave, resulting in destructive
interference at the desired point in the duct. Problems with standing waves arose that
could not be solved with the technology available at that time, and interest in the subject
did not resurface until the 1950's in the United States. Olson's "Electronic Sound
Absorber"l [Ref.s 7,8] successfully minimized sound levels using a microphone and a
canceling source (speaker) in a room environment. However, the effectiveness of the
system rapidly diminished as the distance between the canceling source and the control
point (the microphone) was increased. As technological advances continued, interest in
the subject increased. The problem of controlling sound in a duct was eventually solved
by Jessel [Ref. 9] and Swinbanks [Ref. 10] who eliminated the standing wave problem
encountered by Lueg by employing multiple cancellation sources. Swinbanks' work was
continued and improved upon by Poole [Ref.s 11,12] from 1976-1978.

Up to this point the techniques employed for sound reduction coﬁsisted mainly of

simple gain and phase adjustments to cause destructive interference, and the dynamics of




the system were not used in determining the canceling signal. The availability of better
processors in the late 1970’s led to the first use of signal processing techniques to
actively control sound and (for the first time) structural vibration. These new techniques
used an analytical model of the physical system to determine the appropriate control
signal, with a great deal of new work appearing in the mid 1980’s. Some notable
examples include control of exhaust noise [Ref. 13], spinning spacecraft [Ref. 14], mass-
spring-damper systems [Ref.s 15,16], vibration isolation platforms [Ref.s 17,18], rotors
[Ref.s 19,20], flexible beams [Ref.s 21,22], and industrial machinery [Ref. 23].

The “model reference” approaches used to this point were susceptible to
performance degradation if the system parameters changed due to environmental, load, or
structural changes. System identification techniques were still being refined, and many
physical systems were too complex to model accurately using analytical methods. This
led to an increasing interest in adaptive control which had attained a solid foundation by

the late 1970’s [Ref. 24].

2. Adaptive Control

Adaptive control allows optimal performance in the presence of modeling errors
or changing system parameters since the control parameters adapt to minimize an error
signal, and are not strictly dependent on the model of the system being controlled.
Examples of adaptive con&ol algorithms that emerged from early work include Least
Mean Squares (LMS) [Ref.s 25,26,27], Recursive Least Mean Squares (RLMS) [Ref.

28], and the Adaptive Lattice Filter [Ref.s 29,30]. The LMS Algorithm (Widrow, et. al.,




1975) employs a Finite Impulse Response (FIR) filter to generate a control signal from a
reference input. The RLMS Algorithm (Feintuch, 1976) employs an Infinite Impulse
Response (IIR) filter to accomplish the same result, but has met with resistance due to an
inability to prove convergence [Ref. 31].

The adaptive nature of these controllers creates an inherently nonlinear control
system, which results in the stability and convergence propérties being more difficult to
analyze than linear control systems [Ref. 32]. Proofs of stability of the LMS Algorithm
have so far been restricted to linearized systems operating under the restricted condition
of slow adaptation [Ref.s 33,34,35,36]. The advantage gained by the adaptive techniques
is that small errors in the system model are compensated for by the adaptive controller.
However, larger changes in the system dynamics require periodic re-identification in

order to maintain optimal performance and stability.

3. System Identification

There are many methods available for identification of system dynamics [Ref. 37,
38,39,40]. The techniques include both batch (off-line) or recursive (on-line), parametric
or non-parametric, and time domain or frequency domain. While the presence of
unknown disturbances or noise is assumed, these are generally assumed to be white noise
or random disturbances. It is shown in Ref. 41 that models identified in the presence of
these periodic disturbances can have serious defects that render them unusable for control
applications. The Clear Box Algorithm presented in Chapter II and implemented on the

UQP effectively removes the model defects associated with unknown periodic




disturbances that are present during the identification process, and allows implementation

of an adaptive feedforward controller based on this disturbance-free system model.

4. Application of Vibration Control to Spacecraft

Spacecraft applications for vibration control are numerous [Ref.s 42,43,44],
including launch load alleviation [Ref.s 45,46,47], isolating the effects of noise-
producing equipment [Ref.s 48,49,50,51,52,53], isolation of sensitive optics [Ref.s
54,55,56,57,58,59,60,61], and microgravity experiment isolation [Ref.s 62,63,64,65,
66,67,68,69,70,71,72,73]. Hexapod (or “Stewart”) platform [Ref. 74] configurations
similar to that employed in this research allow control of vibration in six degfees of
freedom using only linear actuators [Ref.s 75,76,77,78,79,80].

In general, there are three types of on-orbit spacecraft control implementations
including 1) isolation of a noise source from the structure, 2) direct control of the flexible
structural members, and 3) isolation of a sensitive payload article. Adaptive control
methods are appropriate for all three types of control implementations. The UQP
apparatus employed in this research is configured for sensitive payload isolation, but

could be adapted for noise source isolation as well.

C. THESIS OVERVIEW

Chapter II presents a detailed outline of the basic theory that supports the control
algorithms used in this dissertation. After reviewing the Least Mean Squares (LMS)

algorithm, and its evolution into the Filtered-x LMS (FXLMS) algorithm for vibration




and noise control, the FXLMS LMS algorithm is expanded to a form for multi-input,

multi-output (MIMO) systems called the Multiple Error LMS algorithm.

Following a theoretical summary of the LMS algorithm, the new “Clear Box”
algorithm is presented, including a summary of two distinct approaches to formulating
control signals. The first is the original “Sine/Cosine Method” where estimates of the
disturbance frequencies are used to generate a control signal made up of the combination
of sine & cosine pairs. The second “Adaptive Basis Method”, developed during the

course of this research, generates a control signal based on the disturbance effect n (and

multiple time-shifted versions of it), and does not require disturbance frequency
estimates.

Chapter III is an overview of the eXperimental setup used for the vibration
isolation experiments. A description is given of the Ultra Quiet Platform (UQP), and its
actuators and sensors. Also described are the support electronics including the data
collection and processing equipment.

Chapter IV Describes the system identification experiments performed on the
UQP, and describes the process used to build and verify a reference model of the system
dynamics. This model is then compared with a model obtained using the Clear Box
algorithm in order to verify the accuracy of the results.

Chapter V presents a summary of the disturbance rejection experiments that were
performed on the UQP. The first experiments in each section use the Multiple Error
LMS algorithm, followed by experiments using the two methods of the Clear Box

algorithm. The experiments include a variety of narrowband disturbances, including




single and multiple frequencies (and harmonics), and also disturbances that are either
constant or time-varying in frequency and amplitude. Also demonstrated is the ability of
the Clear Box algorithms to handle the case where a disturbance frequency coincides
with that of an uncontrollable mode of the system. The performance of each algorithm,
and the conclusions to be drawn from the experiments are discussed in Chapter VL
Chapter VII presents a summary of the results and conclusions. Also included is
a description of the unique contributions of this research, and recommendations for

further work.
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IL. REVIEW OF THEORY

A. INTRODUCTION

In Chapter I the advantages and disadvantages of several control methods were
discussed. From the literature, the Filtered-x LMS (FXLMS) algorithm appears to be the
accepted choice for active sound and vibration control due to its simplicity and ease of
implementation. However, the Clear Box algorithm approaches the problem from a
system identification perspective, and as a result the algorithm operates in an
information-rich environment. This added information allows a more intelligent
approach to the disturbance rejection problem.

This chapter provides a review of the mathematical formulation of the FXLMS
algorithm and the extension to the MIMO version called Multiple Error LMS. Following
this review, an outline of the Clear Box identification and control formulation follows.

These formulations are the basis for control experiments performed Chapter V.

B. LMS ALGORITHM
Since the FXLMS algorithm is derived from the Least Mean Squares (LMS)

algorithm, we first present the LMS adaptive algorithm in order to introduce the features

of FXLMS.
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1. Formulation of the LMS Algorithm

The goal of the LMS algorithm is to use an nth order digital FIR filter W to

generate a feedforward control signal y(k) and minimize the mean square error of &(k),
which represents the difference between y(k) and the disturbance signal d(k) (shown in
Figure II-1). This mean square error will, from this point on, be referred to as (k). The
algorithm requires a “reference signal” x(k) that is correlated with the disturbance signal

d(k) in order for the controller to perform well, as will be shown later.

d(k)

@

vk e(k)

Figure II-1: LMS Filter

Each choice of the n+1 filter coefficients in W yields a different £(k), leading to
an n+2 dimensional performance surface. For example, a first order filter would have

two coefficients (w, and w; ). Plotting the £(k) with respect to these coefficients would

result in the three-dimensional “performance surface” shown in Figure II-2.
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Figure 11-2: Performance Surface

The LMS algorithm attempts to minimize &(k) by “directing” the filter
coefficients toward the minimum point on the performance surface. In general, gradient

descent methods converge to a local minimum, unless the expression for £(k) is convex

in W in which case the local minimum is the global minimum. Referring again to

Figure II-1, £(k) can be expressed as

e(k)=d(k)+ X (k) W (2-1)
where
x(k) Wy
gw=| "V we 22
x(k.—n) w
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The mean square error (k) of £(k) is defined as

E(k)=E[e(k)’ ] » (2-3)

and it can be expressed in terms of the filter coefficients since

e(k)? =dk)* +WTX (k)X (k)W +2d (k)X (k)" W (2-4)

Applying the expectation operator to each term in (2-4) gives

E[s(k)2:| = E[d(k)2]+WTE[)?(k)X *)’ ]VV + 2E[d(k)}? 54 ]W (2-5)

or, in matrix form

Ek) = El:d(k)z |+W'RW +2P"W (2-6)

where we define

R =E[)?(k))?(k)T],

_ _ (2-7)
P= E[d(k)X(k)]
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In this expression, R represents the input correlation matrix, and P represents the cross-

correlation between d(k) and the vector of delayed inputs, X (k). Note that there is a

unique solution to the vector of filter weights, W , if R is positive definite, which occurs

when

n=2f (2-8)

and fis the number of frequency components in d(k) [Ref. 81,82].

To converge toward the global minimum of the performance surface each filter

weight is updated along the gradient of the surface, given by

A08 |08 9¢ ¢ 5 b
v=2s _ =2RW +2P 2-9
ow [awo ow, ow, il W @)

The minimum error occurs at the global minimum point, where V=0, and W =W" (the

* indicates the optimum solution). From Eq. (2-9) we now have
0=2RW"+2P (2-10)
which results in the matrix form of the Weiner-Hopf equation [Ref. 83]

W'=-R'P (2-11)




Using this solution to determine an expression for the minimum mean square error of

g(k) from Eq. (2-6) we obtain

Epn =E[d(k)*|+W" RW" +2P"W'

= E[d(k? ]+ [R”'F]T RR'P-2P'R'P

- - (2-12)
= E[d(k)z]— P'R'P
E. = E[d(k)z]—— P'wW’
To update the filter weights, we use
Wk +1) =W (k) + u(=V(k)) (2-13)

where u is the “adaptation rate”, which is a positive value. The exact computation of the
gradient at time step k, V(k), is inefficient to calculate. The simplicity of the LMS

algorithm comes from employing an estimate of the gradient. Since from Eq. (2-3) we

have &E(k)=E [s(k)z], we can simply remove the expectation operator to obtain an

estimate of £(k). Now we use &(k)=e(k)?, and recall that (k)=d(k)+ X (k)’W to

obtain the estimate of the gradient at step k
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[9(e(®)?) ] [9e(K) |
oW, ow, v
Vi =| 1 |=2e®)| ¢ |=2e®X (2-14)
d(e(k)*) 0e(k)
] ow, | | ow, ]

Now the update to the filter weights is accomplished at each time step using the measured

error and the reference input as follows
Wk +1) =W (k)-2ue(k)X (2-15)

The maximum adaptation rate that can be used (without causing instability) is given by

O<u< (2-16)

max

where A_, is the largest eigenvalue of the input correlation matrix R [Ref. 84]. An
alternative upper bound is 1/tr[R], which is more restrictive but easier to calculate [Ref.

85]. The resulting convergence of the filter coefficients W achieves a global minimum

mean square error &(k).
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2. Formulation of the Filtered-x LMS Algorithm

Note that the structure of the problem outlined for the LMS algorithm, above,
differs from the disturbance rejection problem of interest here. Figure II-3 shows that

there is a physical plant between the output of the filter W and the signal £(k) .

Disturbance Disturbance
Source dk)
~-Sensor
w Control Signal
Reference I gk)
x(&K) Adaptive uQpP
Filter (Secondary Plant) Error,
(k)
) A e
i P2 ) Filtered <
— : Reference,
Model of P, ()

Figure I1-3: Filtered-x LMS System Representation

The disturbance source acts on the physical system through the plant B (with

unknown dynamics) referred to as the “primary plant”. A sensor provides a disturbance-

correlated reference signal x(k). The Filtered-x LMS algorithm determines an
appropriate feedforward control signal g(k) that acts on the system through the
“secondary plant” P,, which in this case is the UQP’s active strut system (see Chapter III

for a complete description of the UQP experiment apparatus). The error at the system

output £(k) is the result of the actions of the disturbance source and g(k) on the primary

18




and secondary plants, respectively. The existence of the plant P, between the filter and
(k) requires a change in the way the LMS algorithm is applied.

The key is to start with a form of the problem that minimizes the mean square
error of €(k) at the output of the filter W, as shown in Figure II-4 a). Next we simply
duplicate the P, box for an equivalent representation in Figure II-4 b). Finally we
assume that the filter W is changing very slowly with time. We make this assumption so
that the property of commutability between W and P, holds (i.e. WP, = W), and thus
make the final transition to Figure II-4 ¢). Adding the primary plant path results in the
final configuration of the disturbance rejection problem originally shown in Figure II-3.

The reason for the “Filtered-x" designation of the algorithm comes from the fact
that the reference input x(k) is filtered by a model of the secondary plant before being

used in the LMS algorithm to update the filter weights. Thus, the only difference

between the equations used to implement the LMS and Filtered-x LMS algorithms is that

the term X used in Eq. (2-15) consists of a filtered version of the original signal.
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a) d(k)

x(k)

Ek)
b) )
A

Ll s
5 ‘Algorithm <

£

x(k)

p W

“Filtered” x(k)

Figure I1-4: Transformation to Filtered-x LMS

3. Extension to the Multiple Error LMS Algorithm

The UQP is configured similarly to a Stewart Platform [Ref. 86], which employs
orthogonal struts to minimize coupling between a given strut’s actuator and neighboring

sensors on other struts. Under perfectly decoupled conditions the UQP could employ six
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single-input-single-output (SISO) Filtered-x LMS controllers with no loss of
performance. However, coupling does exist between struts (as will be shown in Chapter
IV), and better performance results if a multi-input multi-output (MIMO) controller is
used.

The Filtered-x LMS algorithm has been extended to a MIMO version [Ref. 87]
called the Multiple Error LMS algorithm. For the development of this algorithm it is
assumed that there are M actuators, and L sensors. Again, there is a reference signal

x(k) which passes through a “primary plant” before being sensed at the system output

(Figure II-1) as d(k). The disturbance at the Ith sensor is represented by 4, (k) .

Disturbance
dck)

Disturbance
Source

Control Signal
gk)

Reference

UQp

x() [Ith Order E
FIR Filter (Secondary Plant) Tror,
g(k)
» ¢ Filtered Algorithm' <
e Reference, L
Jth Order k)
FIR Filter
(Model of P,)

Figure I1-5: Multiple Error LMS Algorithm

The plant model used to filter the reference signal is a Jth order Finite Impulse

Response (FIR) filter C whose coefficients c,,; indicate the jth coefficient (j=1,...,J )
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for the filter that models the dynamics between the mth actuator and the Ith sensor. The

resulting filtered signal r(k) includes LxM elements similarly indicated by 7, (k). The
M control signals in g(k) are generated by filtering the reference signal with an Ith order
FIR filter W whose coefficients are w,,. Finally, the error signal at each of the L sensors

is indicated by ¢,(k) , an expression for which is

M J-1 I
g k) =d(K)+ Y, D €y X, W= Nx(n—i~ j) (2-17)
m=1 j=0 i=0

As long as each d, (k) is partially correlated with x(k) it is possible to reduce the
error at each sensor through the proper choice of the coefficients w,,. By defining the

total error as

J=E{2L:e,2(k)}, (2-18)

I=1

from Eq.s (2-17) and (2-18) it is clear that J is a quadratic function of each of the

coefficients w,, , indicating that gradient descent methods allow convergence to a global

minimum J. The differential of J with respect to one coefficient is

L

3 g {E £ (k) 25 (k)} (2-19)

aW 1=1 aW

mi mi
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Partially differentiating Eq. (2-17) with respect to w,, we obtain

0¢, (k)
ow

mi

J-1
= Zc,mjx(k —i—J) (2-20)
j=0

The above quantity is the same as that obtained by filtering the reference signal, delayed

by i samples, with the FIR filter C, which is denoted by r,,(k —i). Thus we have

98 _ . (k-i) @-21)
ow

mi

Adjusting each filter coefficient in W by the negative of the gradient expression in

Eq. (2-19), and using the expression in Eq. (2-21), we obtain
L
w (k+D)=w, (k)- 2”2 g, (K)n,, (k—1) (2-22)
I=1

where u is, once again, the adaptation rate. When L=M =1 this algorithm reduces to

the result obtained in Eq. (2-15) for the LMS and FXLMS algorithms.
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The assumption of time invariance in the w,, filter coefficients is equivalent, in

practice, to assuming that the filter coefficients change only slowly compared to the

timescale of the response of the system to be controlled [Ref. 88].

4.  Stability

Proofs of stability of the LMS Algorithm have so far been restricted to linearized
systems operating under the restricted condition of slow adaptation [Ref.s 89,90,91,92,
93], and are typically limited to analysis of the single-input single-output case, although
recent proofs have addressed the MIMO case [Ref. 94,95].

To maintain stability the adaptation rate u for the SISO Filtered-x LMS
Algorithm must be chosen less than the upper bound set in Eq. (2-16). A recent text by
Fuller et. al. [Ref. 96] offers a guideline for the Multiple Error LMS Algorithm

adaptation rate

O<u< (2-23)

2721

where’ 77 is the mean square level of the filtered reference signal r(k), and I is the order

of the adaptive filter.




C. CLEAR BOX ALGORITHM

1. System Representation

We approach the identification problem by assuming that the system can be
represented by a linear discrete-time state space model of the form

x(k+1) = Ax(k) + Bu(k)+ B,d (k)
y(k) = Cx(k)

(2-24)
where x(k) is an nx1 state vector, u(k) is an mx1 input vector, and y(k) is a gx1 output
vector. Similarly the system A, B, and C matrices have dimensions nXn, nXm, and
gxn , respectively. The system is represented in Figure II-6. It is assumed that nothing
is known except for the recorded system input u(k), the disturbance-corrupted output data

measurements y(k), an upper bound on the true system order n, and an upper bound on

the number of disturbance frequencies f.

u(k) y(k)

Figure II-6: System Representation for Clear Box Algorithm
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2. p-Step Ahead Predictions

Eg. (2-24) is a one-step-ahead prediction of the state, based on the state and
system input at the current time. By a recursive procedure we can determine the
equations for a p-step-ahead predictor given by

x(k+ p) = APx(k) +Cu, (k) +C 4, (k) (2-25)

where u,(k) and d,,(k) are vectors of the control inputs and disturbances,

u(k) d(k)
()= u(k:+ D | 4 ®)- d(k:+l) 2.26)
u(k+p-1) d(k+p-1)

The\ matrices ¢ and ¢, are of a form similar to the controllability matrices associated with

the control input and disturbance excitation, respectively, and are given by

c =[A""B,...,AB,B], C,=[A""B,,...,AB,,B,] (2-27)

The output equation can similarly be propagated forward in time, with the result

y, (k) =0 x(k)+Tu, (k) +T ,d,, (k) (2-28)
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where the elements of the equation are defined by

C

y(k) cA

y,m=| ED | ool

‘ CAP™?

yk+p-1) e

(2-29)

[ 0 0 vee e O] [0 0 e 0]
cB 0 . CB, 0 ' oo
T=| CAB CB -. . |, T,=| CAB, CB, : Lol
: Lo 0 : 0
|CAP?B - CAB CB 0] | cA’?B, -+ CAB, CB, 0

0is a pgxn matrix similar in form to the system observability matrix. Tis a pgX pm
Toeplitz matrix with its elements corresponding to the gxm system Markov parameters

CB, CAB, ... , CAPB, whose elements are the system response to a unit pulse applied at

each control input.

3. Removing Dependence on the Initial State and the Disturbance Time
History

Equations (2-25) aﬁd (2-28) represent the system input-output mapping, and at
this point their solution depends on the initial state x(k) and the disturbances dy(k). The

goal is for the algorithm to rely solely on the input and output time histories (u,(k) and

¥p(k)). Note that the system input signal u,(k) must have sufficiently rich frequency
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content to excite all of the modes of the system. Application of band-limited white noise
to the system can satisfy this condition.

To eliminate Eq. (2-25)’s dependence on x(k) and d,(k) additional degrees of
freedom are introduced into the model by adding and subtracting My,(k) to the right side,

resulting in

x(k+ p)= AP x(k)+Cu,(k)+C ,d,(k)+ My, (k)— My, (k) (2-30)

where M is arbitrary, and of dimension nX pg. Substitution for y,(k) (from Eq. (2-28))

into the above equation yields

x(k+ p) = APx(k)+Cu, (k) +C ,d, (k) + M (0 x(k)+Tu, (k) +T ,d, (k) )~ My, (k)

2-31
= (A% +M0 )x(k)+(C + MT )u,(k)+(C,+ MT,)d, (k)~My, (k) @30

In order to eliminate x(k) and d,(k) from Eq. (2-31), M must be chosen to satisfy

the following two conditions (for all values of k),

AP +MO =0 (2-32)

(C,+MT,)d,(k)=0 Vk (2-33)

so that Eq. (2-31) becomes
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x(k+p)=(C +MT )u, k)~ My, (k) (2-34)

Equation (2-33) represents a set of constraints that must be satisfied for all values of

k=1, 2,..., N, N+1,.... These constraints can be grouped together such that

(c,+MT,)D =0 (2-35)

where

D =[d,), d,(2),... d,(N), d,(N+1),...] (2-36)

Since the rows of the matrix p are made up of the time-shifted histories of the
disturbance signal, and assuming that there are f distinct frequencies present in the

disturbance signal, there is a limit to the possible rank of p even if the available time
history is infinite. The maximum rank, p, of p is equal to 2f, or 2f +1 if any of the

disturbances has non-zero mean. The result of this observation is that the maximum

number of constraints represented by Eq. (2-35) is np (where n is the true order of the

system). In order to show that a solution M exists that meets all of the required

constraints, we will use the following arguments.
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Let pf be formed from p linearly independent columns of D, so that it is now
pxp. Similarly the dimensions of 1; and ¢; can be reduced to pgxp and nxp,

respectively. Combining Eq.s (2-32) and (2-35), the equations that M must satisfy are

M[o,z,p,|=-[4", c,D,] (2-37)

where, again, M is nxpq, o is pgxn, and A” is nxn. From the dimensions of the
matrices we see that Eq. (2-37) represents n’>+np linear equations in nx pq =npq
unknowns in M. A solution for M exists if [O , T,D f] is full (column) rank, and p is

chosen such that ngp>n®+pn. Recalling that p=2f+1, this condition for the

existence of M can be expressed as

n+2f+1
p22o T
q

(2-38)

Thus, if an upper bound on the true system order »n and the maximum number of
frequencies that need to be controlled are known, p can be chosen such that a solution M

exists. [Ref. 97]
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4. Disturbance-Corrupted System Model

The condition expressed in Eq. (2-38) assures that the p-step ahead state
prediction in Eq. (2-34) is valid. Pre-multiplying Eq. (2-34) by C results in an input-
output model of the form

y(k+p)=C(C +MT )u,(k)- CMy, (k) (2-39)

Shifting the time index back by p steps gives, for k> p

y(k)y=C(c +MT )u,(k— p)—CMy,(k—p) - (2-40)
where
u(k - p) y(k - p)
k-p+1 k—p+1
u, (k- p)= u( :p+ ) . yk-p)= ¥( :p+)
u(k-1) y(k-1)

So we now have a model that predicts the next system output condition, given the last p
sets of disturbance-corrupted input-output data. The input-output model in Eq. (2-40) has

the same form as
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y&) = y(k-1D)+0o,y(k—2)++0a,y(k—p)

+ ﬂ]u(k -+ ﬁzu(k —2)+-+ ﬂpu(k —p) (2-41)

where o, @, ...,a, and B, B,,..., B, are the model coefficients. These coefficients are

related to the matrices in Eq. (2-40) as follows
[@,.0, 0,0 ]=-CM,  [B,, B, B ]=C(C +MT) (2-42)

Note that since this model is derived from disturbance-corrupted data it will include
modes that are not part of the system dynamics. Assuming the disturbances are
narrowband (sinusoidal) in nature, the extraneous modes in Eq. (2-41) will have

frequencies corresponding to those of the disturbances.

5. Disturbance-Free System Model

The identification of the system model may need to be accomplished under
various conditions, depending on the application and the quality of the sensor data
available. The system’s dynamic model may be relatively constant, or may be rapidly
time varying. For the UQP application, the dynamics of the system (from actuator input
to sensor output) are fairly constant over time, and thus the identification can be
accomplished in batch mode a single time, or periodically if conditions warrant (if a

malfunction occurs, or adjustments are made, etc.) If the system model is known to
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change with time, then the identification can be accomplished recursively so that constant

updates are available.

a) Identification from Disturbance Corrupted Data

Assuming that the system identificatioh must be done in the presence of
disturbances that cannot be “turned off”, the available input-output data will be corrupted
by disturbance effects that are not part of the true system dynamics. The assumption is
also made that the sensor data is contaminated with some degree of noise. In this case a
least squares solution of the ARX model coefficients is warranted, and can be found

using
[c(c+MT), —cM |=v" (W) (2-43)

where the Y and V matrices are formed from input-output data as follows,

Y =[y(p), y(p+1D), ..., yO)], v=[”ﬂ(0) u,() - u,(-p)

2-44
3,0 3,0 - y,,(l—p)] @49

with u, (k) and y, (k) as in Eq. (2-26). The ; and B, coefficients are found from Eq.s

(2-42) and (2-43). For an ARX model of order p to be generated, at least p data samples
must be available. Since noise is assumed to be present, the use of substantially more

data points will have the affect of averaging and will generally give a better result.
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When using noisy data it is generally ﬁseful to choose p large enough to
include all of the disturbance modes plus a number of “noise modes” or over-
parameterization modes. At this point the identified system model coefficients will
include three types of modes; true system modes, disturbance modes, and noise modes.
The disturbance modes need to be removed in order to obtain the disturbance-free model.

This process is described in the next two sections.

b) Disturbance Identification through Modal Decomposition

To facilitate the removal of the disturbance modes it is convenient to

convert the ARX model to an equivalent state space observable canonical form

2(k+1) = A, z(k)+ Bu(k) 245)
y(k)=C,z(k)
where
(a, 1 0 - O] (B,
o, 01 . : B,
A=l 0 0 . 0|, B,=B| C,=[I 00 - 0] (246
Co o :
o, 0 0 0] _ﬁp_

Conversion of this model to modal form yields the state space equations
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k+1)=Aw(k)+Tuk
{w( )= Aw(k) + Tu(k) 047
y(k) =Qw(k)
where A, T, and Q are formed via similarity transformation;
A=T"AT, T=T'B, Q=C,T (2-48)

Assuming A, is diagonalizable, the columns of the transformation matrix, T, are the
eigenvectors of A,. Each oscillatory mode of A, results in a pair of eigenvectors that

are complex conjugates of each other. In this case one column of T is formed from the
real part of this eigenvector pair, and a second column is taken from the imaginary part.
Any non-oscillatory (real) modes of the system will result in a single real eigenvector

column added to T (the corresponding real eigenvalue is A, ). Building the transformation

matrix in this manner results in the diagonalized, or decoupled transition matrix

o, @ X
A = diag /’11,.../1[‘ ‘] 22 (2-49)
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where n, and n,_ are the number of real and complex modes, respectively, and

n, +n_ = pq. The complex eigenvalue pairs are represented by the 2X2 block matrices

on the diagonal of A, the ith complex eigenvalue pair is 0, * jw,, where i=1,2,..., -2i .
The output and input influence matrices are given by
_br(l)
b
.0 @ o .2 _| -
Q=[c®c?,..,c0c?,..], T= 4o (2-50)
b

where ¢?,c® and b®, b are the respective output and input influence coefficients

associated with the real eigenvalues A’ and the complex conjugate eigenvalue pairs

6 + jo®. The pulse response of the i™ real or complex conjugate mode is given by

@) _w(i)

k1
POy =" A" b",  and  PO(k)=c LZ-) a«%} B (@51)

c

and the total system pulse response is
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p=3Pom+ S P00 =3 PO @-52)

i=1 i=1

Again, n_is the number of real eigenvalues, n, is the number of complex conjugate
pairs, and n, =n_+n,_.
Now it is possible to calculate the relative contribution of each mode to

the total system pulse response by taking the inner product of each modal pulse response

with the fotal system pulse response (over N samples), as
- N .
SO =Y P(k)- P (k) (2-53)
- k=1

If the i™ mode’s pulse response is well correlated with the total system
pulse response then the elements of the gXm matrix § @ will be relatively large, which

is an indication that a mode is one of the true system modes, as opposed to a noise mode.

To obtain a scalar “modal pulse response norm” discriminator for each mode [Ref. 98],

the elements of S can be summed so that

§D = i i SO (2-54)

k=1 I=1
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The lower portion of Figure IV-10 on page 87 shows an example of how these norms are
used to isolate the true system modes from the other modes present in the model (noise
and disturbance modes).

The periodic disturbance modes are oscillatory with their z-plane poles
being very close to the unit circle (just inside or just outside depending on the particular
set of data used). This results in near zero (positive or negative) damping for the
disturbance modes, which is to be expected for forced oscillations. Typically, if p is
chosen large enough, the damping ratios of the disturbance modes will be at least one or
two orders of magnitude smaller than those of the noise modes or true system modes, and
they are easily identified (see the upper portion of Figure IV-10). Also, the accuracy of
the identified frequency improves as p increases. The frequencies of the disturbances are

thus readily determined when the model is converted to this modal form.

c) Disturbance Free ARX Model and the Disturbance Effect

Once the disturbance modes have been identified in the modal state space
model, they can be removed by eliminating the corresponding rows and columns from A,
T, and Q. The resulting matrices are the “disturbance-free” versions, which are denoted
by a “bar” on top; A, I, and Q. These are simply the A, B, and C matrices converted
by a similarity transformation, and they describe the same system. The only difference is

that the K, f, © model form uses a different state vector w related to x by the

transformation x(k)=Tw(k). Since the “intermediate step” of calculating the state
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vector is not needed in this problem, and in both cases the same y(k) output is the result,

it is equivalent to use “ A”, “B”, and “C” to describe the disturbance-free model in state
space form.

Recall from Section 3 that a system input-output model in ARX form was
found by using additional freedom introduced by the matrix M to eliminate the
dependence of the model on the initial state and the disturbance input(s). The same
approach is used here, but the goal is only to remove the dependence on the initial state
and retain the “disturbance effect” for later use.

The p-step ahead state prediction equation using the disturbance-free

system parameters is thus
%(k+ p)= (A% + 10 )%(k)+(C + MT Ju, (k) +(C, + MT, )d, k)~ My, (k) (2-55)
The C, O ,and T matrices are formed the same way as in Eq.s (2-27) and (2-29), but

A, B, and C are used in place of A, B, and C. To remove the dependence on the initial

state X(k) , the condition that must be met is
AP +MO =0 (2-56)

Since O is full column rank (the identified system is fully observable), M can be found

from
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M =-(&) (o) (2-57)

as long as p is chosen so that pg>n. This choice for the “arbitrary” matrix M

eliminates the dependence on the initial state, but leaves the disturbance term intact. Pre-

multiplying Eq. (2-55) by C gives the result

(k) =~Cily, (k- p)+C(C +MT )u,(k-p)+C(C, +MT,)d,(k~p) (2-58)

where
u(k—p) u(k—p) d(k—p)
). ) = u(k——:p+1) u-p)= u(k—:p+1) A -p)= d(k—:p+1)
u(k-1) u(k—1) d(k-1)

The entire term in Eq. (2-58) involving d,(k—p) (the last term on the

right side) is simply a linear combination of the disturbance inputs to the system, and
represents the forced response of the system to these disturbances. With this term

referred to as n(k) Eq. (2-58) becomes

J(k)=—-CMy, (k- p)+C(C +MT Ju,(k— p)+n(k) (2-59)

40




where this is in the form of an ARX (Auto-Regressive with eXogenous input) model

yk)y=ayk-D+a,y(k-2)+...+&,y(k—p)+

— — —~ (2-60)
Buk -1+ Buk—2)+...+ Bu(k — p)+n(k)
and the coefficients are given by
(&,.@, ... 8% |=-CM, B, Bpuis-- B,]=C(c +MT) (2-61)

The models given in Eq.s (2-41) and (2-60) are equivalent, but two very
important differences are that 1) the coefficients are now representative of the
disturbance-free system, and 2) the disturbance effect has been separated from the system
dynamics. Note that the disturbance effect separation was accomplished mode-by-mode
through column and row elimination. If desired, selected disturbance modes can be left
in the system model, and would remain absorbed in the & and B coefficients. This is
desirable if a particular mode is determined to be uncontrollable or weakly controllable.
This selectivity will be discussed further in Section 6 below.

It is possible to calculate the disturbance effect directly by rearranging Eq.

(2-60) in the form
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n(k) = y(k) - y(k-1) -, y(k-2)—...—&,y(k - p)
— Bu(k -1 - Bu(k=2)—...— Bu(k - p)

(2-62)
This allows a real-time calculation of the disturbance effect based on the last p
measurements of the input-output data. The calculated disturbance effect in Eq. (2-62)
contains all of the frequencies that were 1) identified as disturbance modes, and 2)

removed from the system model.

6. Control Formulation

a) Choice of Control Signal Basis Functions

At this point the disturbance-free system model and the disturbance effect
are known. For a time-invariant system, the disturbancleree model need only be found
once through batch processing of the input-output data and elimination of the disturbance
modes. Using this model, the disturbance effect is calculated from Eq. (2-62) in real-time
and is available at each time step (after p data samples are taken). From Eq. (2-60), the

feedforward control u (k) that cancels the steady-state disturbances must satisfy

B, (k=1)+ Byu, (k—=2)+...+ B,u, (k- p)=-n(k) (2-63)

If the identified system model is non-minimum phase, the system zeros

present in the E coefficients will cause the control signal to grow, unbounded, if an
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attempt is made to recursively calculate u,(k) from Eq. (2-63). The alternative is to take

advantage of the knowledge that the control signal needs to be made up of periodic
components to cancel the periodic disturbances. Two options for such an approach are
presented here which exploit the fact that the disturbance effect signal contains all of the
disturbance frequencies (assuming they were not intentionally retained in the system’s
ARX model coefficients).

The first option is to use the sine function as a basis for the control signal.

Analysis of the disturbance effect signal (k) yields estimates of the disturbance

frequencies, and for each frequency present a sine/cosine “basis set” can be used to
cancel the disturbance. Using the frequency estimates the coefficients for the sine and
cosine terms are calculated recursively.

The second option exploits the fact that the exact disturbance frequencies
are present in the disturbance effect signal 7(k). The time history of n(k), like the sine
function, is a basis that can be used to generate the disturbance-canceling control signal.
The cosine function is simply a time-shifted sine function, and a similar time shifting of
n(k) will yield a valid basis set. The attractiveness of this option is that the disturbance
frequencies do not need to be estimated since the exact frequencies are already present in
n(k).

The choice of which control formulation to use depends mainly on the rate
of frequency variation expected in the disturbances, and somewhat on the available
processing power. All of these considerations will be discussed in Chapter VI, but for

now the steps needed to implement the two options are discussed below.
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b) Control Formulation Using the Sine/Cosine Basis Set

The first step in generating a sine/cosine-based control signal is to
estimate, as accurately as possible, the frequencies of the disturbances, and this can be
done in two different ways. The first uses the system input-output data to generate a full
system model as described in Section 5.b). The disturbance frequencies are then
estimated by finding the modes that have near-zero damping. A major shortcoming of
this approach is that the control signal needs to be turned off while the input-output data
is recorded, otherwise the disturbance modes will be suppressed by the control signal,
and will not be manifested in the system model. Repeatedly turning off the control signal
will likely result in an unacceptable loss of performance. Also, for time-invariant
systems the full system model does not have to be recalculated unless the system has
been damaged or adjusted, and repeated re-identification is computationally inefficient.

The second approach to estimating the disturbance frequencies requires
fitting an autoregressive (AR) model to the disturbance effect data. Such a model would

have the form

ntk)=ymk-D+ymk-2)+...+ynk-7) (2-64)

and the model order T must be chosen such that

gt >2f (2-65)
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where f is the number of disturbance frequencies present in n(k). The AR model can
then be analyzed to find the frequencies of the modes with near-zero damping (thé
disturbance frequencies). This can be done in a similar fashion to the system
identification method used earlier (conversion to modal state-space form, etc.), or the
roots of the difference equation in Eq. (2-64) can be used to find the z-plane pole
locations (which yield the frequencies and damping ratios). Since the disturbance effect
is the same whether or not the control system is operating, there is no need to turn off the
controller to identify the disturbance frequencies.

By adopting a feedforward control signal of the form
L
u, (k)= [ cos(wkAr)+b, sin(w,kAr)] (2-66)
i=1

(where At is the controller sample time) it is possible to cancel the identified disturbance

frequencies ®,, i=1,2,...,L. To solve for the control coefficients, Eq. (2-66) is

substituted into Eq. (2-63) to obtain a set of equations that is linear in a and b, and thus a
solution can be obtained recursively in real-time.

Recognizing that periodic re-identification of the disturbance frequencies

could result in abrupt changes in the @, values, it is desirable to replace the term kAt

in (2-66) with 6,(k) which is updated at each time step using

0,(k)=0,(k-1)+A6,, and AB, =wAr (2-67)
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Eq. (2-63) can now be put in the form

n(k) =—¢7 (), (2-68)
‘where
_ a -
¢fT k)= [Gl(k), s G (R), H (k),...,H, (k)], v, = ZL (2-69)
bL

and the gxm matrices G,(k) and H,(k), i=1,2,..., L, are given by
G (k)= ﬁ} B cos(6,(k)-IAB,),  H,(k)= i B,sin(6,(k)-1A6,)  (2-70)
i=1 =1

Equation (2-68) is in a form which can be solved with Recursive Least Squares (RLS)

using the following set of equations

v, (k) =y, (k-1)+ L (k)[n(k)-7ik)] (2-71)
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where

(k) =4 (e, (k =1) (2-72)
L, (0) = B, (k=16 (0[5 (OB, (& =1, (0)+ Ay | (2-73)
k—1)—-L,(k)¢7 (k)P, (k-1
Pf(k)z[Pf( )Lf(l>¢f(>f(k )] 08
f

where A,is the “forgetting factor” which determines the relative data weighting [Ref.
99].

As soon as the first disturbance frequency estimate is available, the
recursive solution of the control coefficients is initiated, and the control signal is

calculated from Eq. (2-66), using the 6,(k) substitution discussed earlier. The initial g
and b, values are set to zero, and the initial covariance matrix, P;(0) =Y1,,;,,, Wherey

is large compared to the order of magnitude of the parameters to be estimated.
Convergence to steady-state values will occur if the disturbance frequencies and
amplitudes are constant and the frequency estimates are exact. If the frequencies and/or
amplitudes are varying with time, then recursive estimation and regular disturbance
frequency estimates allow the coefficients to track the correct solution. The performance
of the controller depends on the accuracy of the frequency estimates provided. If the
estimates are inaccurate, or the true disturbance frequency drifts between estimates, the
recursive estimation allows the coefficients to “cycle” at a frequency equal to the

difference between the true and estimated frequencies.
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To demonstrate this, assume @, is the true disturbance frequency, and o,

is the estimated frequency, and define

W, =0,~0,, oOf O, =0,+0, (2-75)

If the recursively calculated feedforward control signal u,(k) is correctly compensating

for the disturbance, as will be demonstrated in Chapter V, then it must be composed of

sinusoidal components that have frequency @, such that

u; (k) =vsin(wk)+6 cos(wk), where k==kAt (2-76)

However, the control signal is calculated from estimates of the disturbance frequency,

@, , and so we also have

u, (k) = a(k)sin(w, k) + B(k)cos(w, k) (2-77)

where (k) and B(k) are the time-varying feedforward coefficients. Equating the two
expressions for u (k) , we obtain

v sin(w,k) + & cos(w,k) = au(k)sin(w,k) + B(k) cos(w,k) (2-78)
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Substituting for w, from Eq. (2-75) we have
y sin((@, +®,)k) + 68 cos((w, + W, )k) = or(k)sin(w,k) + B(k)cos(w,k)  (2-79)
Using trigonometric identities for angle summations, and rearranging terms yields

¥ [sin(w, k) cos(w,k) + cos(, k) sin(w, k) |+

2-80
8 [cos(w,k) cos(w,k) - sin(w,k)sin(w,k) ] = c(k)sin(w k) + B(k) cos(@ k) (2-80)

Grouping terms we obtain

[y cos(w,k) -8 sin(w, k) —a(k)]sin(w k) +

2-81
[y sin(w,k) + & cos(w, k) — B(k)]cos(w, k) =0 (2-81)

Setting the bracketed terms equal to zero, and using

AE\/)/Z +62

¢, =tan” ( _

(=7

) (2-82)

MR <

0, = tan‘l(

)

we arrive, finally, at expressions for a(k) and B(k);
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a(k) = Asin(w,k +¢,),
B(k) = Asin(w,k +¢,)

(2-83)
which demonstrates that if the frequency estimate is incorrect, the control signal

coefficients will vary with time, and will cycle sinusoidally at a frequency w, equal to

the difference between the true and estimated frequencies. An experimental
demonstration of this cycling is provided in Section V.C.1.b).

A unique feature of the Clear Box algorithm is that it allows selective
control of each identified disturbance frequency. If the disturbance frequency happens to
be located at a frequency which is uncontrollable (or weakly controilable) the resulting
control signal required to cancel the disturbance would have a large magnitude, which
could saturate the actuator(s). To prevent this from happening, logic is implemented that
prevents any attempt to control these frequencies. To accomplish this, the disturbance
frequency in question is simply eliminated from the list of disturbance frequencies sent to
the DSP controller. In general, both the system dynamics and the disturbance frequencies
may be varying with time. In this case, disturbance frequencies can be selected for
control based on the amount that each uncontrolled disturbance affects the response of
the system, and also on the magnitude of the control signal required to control the
disturbance. In Eq. (2-66), the Euclidean norm of the coefficients associated with each
sine/cosine pair represents the magnitude of the control signal required for that

disturbance frequency.
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To determine the effect each disturbance, if uncontrolled, would have on

the system output, Eq. (2-60) is used to obtain
Yo (k) =0y, (k=1) -y, (k-2)-...~&,y, (k= p) =7(k) (2-84)

Assuming the system is linear, it is known that the steady state response to the

disturbances present is a linear combination of the harmonic components
L
(k)= [c; sin(@,kAr) +d, cos(wkAr)] (2-85)
i=1

Substituting Eq. (2-85) into Eq. (2-84) gives an expression that is linear in

the response coefficients, ¢, and d;. Batch or recursive methods can be used to solve for

these coefficients, and the Euclidean norm of each sine/cosine pair represents the
magnitude of the system response for each disturbance frequency. Those frequencies that
have a low ratio of system response magnitude to control signal magnitude can thus be

de-selected for control if actuator saturation is a possibility.

c) Control Formulation Using the Disturbance Effect as a Basis Set

In applications where the disturbance frequencies are known to vary, an
approach that does not rely on frequency estimation is desirable. Such an approach

would not only eliminate the processing requirements of estimating the disturbance
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frequencies, but would also improve performance since the frequency estimates would
not be old or otherwise inaccurate. With this motivation, a new Adaptive Basis Method
is presented to address the case of rapidly varying disturbances, and to eliminate the need
for disturbance frequency estimates.

Comparison of Eq.s (2-41) and (2-60) shows that all of the frequencies
eliminated from the disturbance-corrupted system model are now present in the
disturbance effect term (k). Consider an example where it is desired to control a single
sinusoidal disturbance with a frequency of | 25 Hz using a controller operating at a
sampling rate of 400 Hz. This means there will be 16 data samples per disturbance
period, and n(k) will contain a single sinusoid of the same frequency (25 Hz). Shifting
this sinusoid by 90 degrees, or 4 samples, results in an orthogonal signal and gives a basis

set similar to the sine/cosine functions, and a controller of the form
u, (k) =ymk)+ynk-4) (2-86)

can be used to satisfy the controller requirement expressed in Eq. (2-63). The y, and v,
coefficients can be solved for recursively in the same manner as @, and b, in Eq. (2-69).

Note that it is not necessary to have orthogonal basis functions for the
controller to operate successfully. As long as the functions are not linearly dependent (in
the example this would occur if the signal were shifted by a multiple of 8 samples), then

the disturbance can be completely cancelled. The method works equally well when there

52




are f disturbance frequencies, as long as there are N time-shifted n(k) basis functions

such that

N22f+1 (2-87)

For the general case, a feedforward control signal u,(k) must satisfy Eq.

(2-63), which is repeated here for convenience,

B, (k=D + By, (k=2)+...+ Bu, (k- p)=-n(k)

The assumed form of the control signal is

u (k)y=ymk—A)+ynk—A)+...+y,nk—-Ay) (2-88)

where A, (i=1,..., N) are the number of samples that the disturbance effect has been
shifted to generate the N basis functions. Each A, value is chosen by the operator, and

the guidelines below should be followed when selecting them.

A, 21 Vi
A #A, Vi, j (2-89)

A - (A, -A Vi ik
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The first guideline prevents any problems with causality by using the disturbance effect
that is delayed by at least one time sample. The second ensures that two functions do not
have the same time shift (such a pair would be identical functions). The third introduces
a ranaom characteristic to the time shifting, and prevents linear dependence of the basis
functions for any given disturbance frequency.

Note that u,(k) is mX1, n(k) is gx1, and thus each y; matrix is mxgq.
For the UQP application the computational requirements of the algorithm can be reduced
by noticing that the disturbance effect signal for sensor i has the same frequencies as the
signal in sensor j (V i, j). It is likely that the disturbance effect signal at one sensor could
have amplitude or phase differences, but each .strut’s control coefficients can be
recursively adjusted to account for unique amplitude and phase requirements. Thus, the
n(k) time history for any strut can be used as the basis function for controlling all of the

struts, and using this information a new form of the control signal is chosen as
u, (k) =yn (k—A)+wn (k—A)+...+y,n (k=Ay) (2-90)

where n°(k) is the scalar disturbance effect signal at the strut chosen to act as the “basis
strut”. Now each y, parameter (i=1,..., N) has dimension mX1 instead of mXq. The

first step toward solution of these parameters is to progressively time shift Eq. (2-90) as

follows
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u (k=D =y k-A-D+yn k-2, -D+...+yyn (k-Ay -1)

uy (=2 =yt k=, =24yt (k= By =2 4wy R =By =2 o

u;(k-p) =y (k-A, -p)+un (k-A,-p)+... +y N (k=Ay - P)
Substitution of these expressions into Eq. (2-63) results in

Bum (k=A, -1+ By (k=A, =1 +...+ By,n (k—Ay -1+
Bum (k=A =2)+Bym k=A,=2)+...+ By (k—Ay =2)+..+  (2:92)
B_pll/m‘(k —Al —p)+ BPW2n*(k—A2 _p)+ +BPWNH*(k—AN _p) = —ﬂ(k)

Since 0" (k) is a scalar sequence, Eq. (2-92) can be rearranged as

B (=0, ~Dw, + B (k=A, Dy, + ...+ B (k= Ay =Dy, +
B (k—A, =20, + B (k=A, =20, +...+ Bn (k—Ay =2y +...+  (2-93)
B (kA - pw,+ B (k—A, = W, +...+ B0 (k= Ay = Py, =-n(k)

~ and rewritten in vector form as
—n(k) =@ (k)¥ (k) (2-94)

where we define the following vectors
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@' (k) =[g,(k) 9,(k) - ¢y (k)] (2-95)

¢,-(k)=ﬁ‘,5m*(k—A,-—j), i=1,2,...,N (2-96)
and
v, (k)
w(ry=| V2 @-97)
vy (k)

Each‘ parameter ¢,(k) is a gxm matrix, making ®" (k) a gx Nm matrix. The vector
Y(k) of the feedforward control parameters has dimension NmX1.
Having the set of linear equations in ¢,(k) in the form of Eq. (2-94)

facilitates use of the RLS algorithm described below

Py =PE-D+ L(k)[-n(k) _o" (NP (k —1)]
(2-98)
P(k) = P(k -1)- L(k)[ch (k)P(k —1)]

where

L(k)= Pk -1)®(k) I:CIDT (k)P(k -1)®(k)+ R]_l (2-99)
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The estimated feedforward control coefficients in ‘IA"(k) are used in the

control input calculation in Eq. (2-90). The computational requirements of the above
algorithm are almost identical to that of the sine/cosine controller described in the
previous section, except there is no need to compute disturbance frequency estimates.

In the case where there are uncontrollable modes known to be present in
the system, or if actuator control ability is limited, it may be desirable to use selective
cancellation of disturbances (as with the sine/cosine method). This can be implemented
using the Adaptive Basis Method through selective filtering of the disturbance effect

signal (demonstrated in Section V.E.2).

7.  Stability

A stability analysis conducted in Ref. 100 (for a SISO system controlling a single
disturbance frequency) demonstrates theoretically that the Clear Box Siné/Cosine Method
has a phase margin of 90 degrees at the frequency of the disturbance, assuming a slow
adaptation rate (which equates to a forgetting factor close to one). Equivalently, the error
of the identified system dynamics can be off by as much as 90 degrees before instability
is induced. This is similar to the results of stability analyses of the LMS-based
algorithms referenced in Section B.4, indicating that the average values of the sensor
error and the disturbance-correlated signal (either x(k) or 7(k)) must at least be of the
same sign in order for the error to be reduced [Ref. 101].

The Clear Box Adaptive Basis Method is very similar to the Sine/Cosine Method

in the case of a single disturbance frequency (assuming a low level of noise in the
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disturbance effect signal, and the use of two basis functions, or N=2). Thus the
stability analysis referenced earlier could be adapted to show a phase margin for the
Adaptive Basis Method that is similar to the other two controllers. While the added
nonlinear effects of a changing/adapting set of controller basis functions inhibits analysis
of the method for the general case, experimental assessment of the controller’s stability
can offer some indication of its ability to perform well in less than ideal conditions. This

will be accomplished in Chapter V.

D. ALTERNATE APPROACHES

Two approaches are described here that may offer alternative ways to achieve
good performance against time-varying frequencies and/or achieve greater computational
efficiency. These approaches are recommended for implementation in future work.

The Adaptive Basis Method was developed to allow the Clear Box Algorithm to
control rapidly varying frequencies with little or no loss of performance (over the static
frequency case). This same goal can be achieved if the Sine/Cosine Method’s frequency
estimates are significantly more accurate. To achieve this, the most recent distl'lrbance
frequency estimates can be fit to a polynomial curve. This curve can then be extrapolated
forward in time to the time steps prior to the next frequency update. This is shown in
Figure II-7 using a simple third order polynomial fit to eight data points of past
disturbance frequency estimates. In this hypothetical situation, the last estimate was
given at time step k =8000, and the next update is not expected until time step

k=9000. The current approach of the Sine Cosine Method (as implemented on the
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UQP) holds the last estimate until the next update, in which case the estimate becomes
increasingly inaccurate as time progresses. The proposed approach allows extrapolation
by evaluating the polynomial for the current time step at each time step until the next
update is available. At that time the polynomial is re-fit to the available data, and the
process repeated until the next update. The resulting improvement in frequency

estimation should allow better performance in the case of rapidly varying frequencies.
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Figure II-7: Improving the Sine/Cosine Method's Frequency Estimates Using a
Polynomial Curve Fit

The second proposed approach involves forming a hybrid controller that

uses the disturbance effect signal 7n(k) from the Clear Box Algorithm to act as the
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reference signal x(k) for the Multiple Error LMS Algorithm. The block diagram for

such a controller is shown in Figure II-8.
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Figure II-8: Hybrid Controller Block Diagram

The advantages of this approach are that the identification provided by the
Clear Box component allows control of time-varying systems since the Clear Box system
model can be translated into the FIR filter form needed by the LMS algorithm. Control

of unanticipated disturbances and harmonics is possible since this information is
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available in the disturbance effect signal, without the need for the separate sensor to
provide the disturbance correlated signal. At the same time the processing requirements
are significantly less than that of the Clear Box Algorithm, although slightly more than
the Multiple Error LMS Algorithm since the disturbance effect must be calculated at each
time step. Also, the selective control capability is available through filtering of the n(k)
signal.

A disadvantage of the hybrid method is that the order of the FIR model
required to control lightly damped systems may still be impractically large, and thus the
required increase in the order of the model would negate some of the processing gains
associated with this approach. Also, although the selective disturbance control option is
available, the decision regarding which disturbances to control is slightly hindered by the
fact that the magnitude of the control signal needed to control each disturbance is
unknown (since sine & cosine coefficients are not used). The decision would have to be
made based on noted transmission zeros in the system model, and the relative
significance of each disturbance frequency to the total system output (similar to the

approach used with the Adaptive Basis Method).

E. SUMMARY

The wide acceptance of the FXLMS (and extension to the MIMO Multiple Error
LMS) algorithm for active control of sound and vibration is based on its ease of
implementation and adequate performance in many applications. However, the Clear

Box control formulation approaches the problem from a system identification
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perspective, allowing greater insight into the physical processes, and selectivity in
controlling disturbances.

The next chapter discusses the experimental setup, and Chapter IV discusses the
results of the system identification experiments. Both the Multiple Error LMS Algorithm
and Clear Box Algorithm (including both methods discussed above) are implemented on
the UQP in experiments conducted in Chapter V, and the observed advantages and

disadvantages are discussed in Chapter VL
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III. EXPERIMENT SETUP

A. uQP

The “Ultra Quiet Platform”, or UQP, on which the experiments were performed
was built by CSA Engineering of Palo Alto, CA, and is configured similarly to a six
degree of freedom “cubic” Stewart Platform. In such a system, the struts are arranged as
if they were on the edges of a cube, thus providing for three orthogonal pairs of actuators.
The advantage of such an arrangement is that control in six degrees of freedom is

possible using all linear actuators, and actuator coupling is minimized. [ref. 102]

Figure III-1: UQP and Satellite Bus Mockup
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The platform is mounted on a spacecraft bus mockup, to which is mounted an
Aura bass shaker which serves as the disturbance source. The entire experiment sits on
sixteen rubber feet attached to a 3800 1b. Newport RS4000 isolation table. The table is
mounted on four Newport I-2000 series Laminar Flow Isolator pneumatic pedestals

which help to further isolate the experiment from floor vibrations.

1. Smart Struts

The six struts that support the top plate each consist of an actuator, sensor, and a
passive isolation stage (shown in Figure II-2). The struts are mounted on each end using

flexible mounts to minimize the transmission of bending moments.

Flexible
Mount

Figure II1-2: Smart Strut Configuration
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a) Actuators

The piezoceramic stack actuators (PZTs) in each strut convert control
signal voltages to physical movement of the strut. The maximum displacement of the
actuators is 50 pum, which is enough for vibration isolation applications, but not for
platform pointing/steering. Although piezoceramics are considered “hard” actuators, the
intended application is narrowband disturbance rejection and hard or soft actuators work

equally well.

b) Sensors

" The Geospace GS-11D geophone sensors consist of wire coils supported
by soft springs under the influence of a magnetic field, and the sensors provide a signal
proportional to velocity. The GS-11D model has a natural frequency of 14 Hz (double
pole with damping factor {=0.8), above which the sensitivity is fairly constant. Below 14
Hz the response decays rapidly.

The geophone sensors were selected for this experiment because of their
low cost and ruggedness. An aerospace quality accelerometer might be a more logical
choice for an actual spacecraft application, and would extend the pseable control

bandwidth to lower frequencies.
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c) Passive Isolation

A degree of passive isolation is achieved through use of a flexure with
damping material. This passive isolation stage is in series with the active stage, and the
resulting six platform suspension modes have frequencies between 25-80 Hz. An
advantage of this series configuration is that if a flexible structure/payload is mounted on
the top of the platform, the passive stage tends to minimize any control/structure
interaction. Additionally, if a strut experiences on-orbit failure there exists some degree

of isolation from the spacecraft bus.

2. Disturbance Source

The source of disturbances for the disturbance rejection experiments is an Aura
bass shaker (model AST-1B-4, 25 W, 4 ohm). The shaker is mounted to the underside of
the spacecraft bus’ top plate (Figure III-3), and is driven by sinusoidal signals generated
by the digital signal processor (DSP). The disturbance generator code can be modified to
output a variety of disturbance profiles, from single static frequencies to multiple

disturbance frequencies that have time-varying amplitudes and frequencies.

B. SUPPORT ELECTRONICS

1. Hardware Interface

The UQP experiment requires power amplification for the actuators and signal

conditioning for the geophone sensors. These are provided via a PCB Piezotronics

66




790A06 6-channel power amplifier (+ 200 V, £+ 100 mA), and a CSA Engineering Active
Vibration Control System (AVCS) signal conditioning unit supplied with the UQP. The
disturbance generator is powered by a Kepco BOP 20-10M amplifier. Figure III-3 shows

the configuration of the experiment.

To
Actuators

From
Sensors

Shaker

PCB
Amplifier

AVCS Kepco
Signal Amplifier
(6-channel)

Conditioning

dSPACE
Multiprocessor _ L DAC
DSP System f

(“Alpha Combo”)

Figure I1I-3: Experiment Overview
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2. Digital Signal Processor

The control function is performed by the combination of a dASPACE DSP system
and a host PC (see Figure II-4). The dSPACE system includes an “alpha combo”
multiprocessor system consisting of a Texas Instruments C40 50 MHz processor with
512KB of memory, and a Digital Equipment Corporation Alpha 500 MHz processor with
2MB of memory. The C40 performs all of the input/output functions such as interfacing
with the analog to digital converter (ADC) and digital to analog converter (DAC) boards,

and data transfer to and from the host PC.
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Figure III-4: Control Processing
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The ADC is a DS2003 32 channel unit with the resolution set at 12 bits. The
DAC is a DS2103 (also 32 channels), with the resolution fixed at 14 bits. On both units
the input/output voltage range can be selected as either 5 volts, or £10 volts. To prevent
aliasing, the ADC samples data at a rate of 10 kHz and then digital anti-aliasing filters
(3" order Chebyshev) are employed on the C40 board with a corner frequency of 200 Hz.
Analog filtering before the ADC is unnecessary due to the low system response above 5
kHz (see further discussion in Chapter IV). This arrangement provides 5x oversampling
of the highest frequencies passed (unattenuated) by the filters. Low-pass filters are again
employed on the output to smooth the “stair-step” quality of the control signal. This
prevents any excessive excitation of the actuators at the 1 kHz sample rate of the control

signal calculation.

3. Host Personal Computer (PC)
The host PC (A Dell Optiplex GX1, 450MHz) serves several functions. Coding

for the control algorithms is performed in the Matlab/Simulink environment using C-
coded “S-Functions” to perform the more specialized tasks. dSPACE software on the
host PC allows automatic DSP code generation and downloading when working in the
Matlab environment. While the controller is running on the DSP, the host PC performs
supervisory functions and also interfaces with the user.

Before the start of each experiment the user is given the option to perform a
complete system identification (see Chapter IV). Once the identification is complete the

host PC downloads the updated system model to the DSP. While the controller is
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running on the DSP the PC also performs periodic estimates of the disturbance
frequencies (when using the Clear Box Sine/Cosine Method), and downloads these
updated estimates. Experiment data is also captured by the PC using the dSPACE
MTrace utility. Multiple captures can be performed simultaneously allowing data to be
collected for disturbance frequency updates at the same time as different variables are

captured for post-experiment analysis.

C. SOFTWARE

Many different software tools were used during the process of coding,
monitoring, and analysis (summarized in Table III-1). The dSPACE software was
designed to work with Matlab and Simulink, and allows rapid transition from a “block
diagram” representation of the control algorithm to real-time code running on the DSP.
Except for compilation of the C-coded S-Functions, all code generation and downloading
is handled by the dSPACE RTI software (working in combination with the Matlab Real
Time Workshop).

The MLIB and MTrace utilities from dSPACE allows the host PC’s experiment
supervisor (Matlab code) to acquire, process, store, and download data while the DSP
was running. This allows a high degree of automation to be built into the experiment.

The Simulink block diagram is used to divide functions between the C40 and
Alpha processors by separating the tasks with “Inter-Processor Communication” (IPC)

blocks. More details are provided in Chapters IV and V.
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Software Tools Version Function

Matlab 5.2.1.1420

Real-Time Workshop 2.2.1 Real-time code generation

Simulink 2.2.1 Algorithm development

dSPACE RTI 1003 3.2 Real-time interface to Simulink

dSPACE RTI-MP 32 Real-time interface for multiprocessor
systems

MTrace 3.1 Data acquisition from DSP

MLIB 3.1 Data downloading to DSP

Compilers

AXP-GCC GNU 2.7.2 C compiler for DEC Alpha

TMS-320 4.70 Compiler for TI C40

Microsoft Visual C++ 5.0 Compiler for S-Functions

Table III-1 : Software Versions and Functions
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IV. SYSTEM IDENTIFICATION EXPERIMENTS

A. EARLY IDENTIFICATION WORK

System identification experiments performed in [Ref. 103] on the UQP at the
Naval Postgraduate School resulted in six SISO models from the input of each actuator’s
amplifier to the output of the corresponding strut’s sensor. An example of the frequency
response obtained from this work (see Figure IV-1) shows that there is only one lightly
damped mode which dominates the response at 1.4 kHz, and a smaller one just above 1
kHz. The remainder of the response appears well damped. The response lacks some
fidelity below 10 Hz due to 1) sensor noise , 2) limited data record length, and 3) limited
model order. The data record length is limited since a relatively high sample rate (5 kHz)

was needed to capture the 1.4 kHz mode, and the available memory was finite.

Fs=10kHz }
0°

Figure IV-1: Frequency Response, Strut #1 Early Model
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B. SAMPLE RATE SELECTION

The disturbance frequencies of interesf for the UQP application are approximately
20-300 Hz, and the system model must be accurate in that frequency range. To improve
the fidelity of the model at low frequencies the sample rate is reduced, allowing longer
time-duration records. Another contributing factor is that the real time control
calculations are relatively complex, given that a 6-input, 6-output MIMO controller is
used. These factors led to a decision to reduce the sampling rate from 5 kHz (used in the

previous identification work) to 1 kHz.

C. ANTI-ALJASING FILTERS

At sampling frequencies below ~3 kHz aliasing of the 1.4 kHz mode occurs, and
thus it is clear that anti-aliasing filters are needed. As discussed in Chapter III, and
shown in Figure Il-4, the use of a 10 kHz sample rate for the A/D conversion allows
accurate capturing of all frequencies below 5 kHz. This allows digital anti-aliasing filters
to be used before the sample rate is reduced to 1 kHz. The main advantage of using
digital filters is the ability to rapidly reconfigure the filter to any desired type, corner
frequency, and order. The disadvantage is that it requires processing, and for a spacecraft
application where processing power is scarce it may be advantageous to use analog filters
(weight and reliability must also be considered).

For this project we have chosen 3" order Chebyshev filters with 1 dB of passband
ripple and a 200 Hz corner frequency. This configuration gives sufficient attenuation of

the system response above the Nyquist frequency of 500 Hz.

74




D. SYSTEM ID DATA COLLECTION

To facilitate the acquisition of system identification data, a program was coded
for the DSP (controlled by the Host PC) that first turns on a white noise source (input to
all six struts), and then records input-output data as long as possible according to the
available memory. Recording twelve channels of data at a rate of 1 kHz, the longest
allowable data record is 11 seconds.

Figure IV-2 shows the Simulink block diagram which represents the source for
the DSP code. The white noise source is simply a six-channel random number generator
with normal distribution and zero mean. Also present are a disturbance generator which
can generate up to five sinusoidal disturbances. These disturbances can be constant or
time-varying in frequency and amplitude, depending upon user responses to prompts
from the Host PC. An impulse generator function allows the unit pulse response to be
obtained for each strut, enabling comparison with the identified model’s pulse response.

All of these functions are located in “enabled subsystem” Simulink blocks which
allow them to be turned on and off based on commands sent from the Host PC. The Host
PC code also starts and stops all data recording, and returns the data to the workspace for

subsequent system identification calculations.
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Figure I'V-2: System Identification Simulink Diagram

Note in Figure IV-2 that a DC offset is applied to the actuator input signal. This
is needed to keep the drive signal in the middle; of the actuators’ operating range of 0-100
Volts, thus an offset of 50 V is applied. The “IPC” blocks are for InterProcessor
Communication between the Texas Instruments C40 board (the elements below the IPC
blocks) and the Digital Equipment Corp. Alpha board (the elements above the IPC

blocks). The C40 is operating at 10 kHz, and the Alpha is operating at 1 kHz, which
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requires a sampling rate transition when going from one to the other. The zero-order hold
and unit delay blocks provide this transition. The system model identified from the
input-output data takes into account the added delay due to the zero-order hold and unit
delay transition blocks.

The “sensor signal processing” is the anti-alias filtering discussed earlier. Also of
note is the “control signal processing” that occurs prior to D/A conversion. In the case
where there is a sinusoidal input to the actuator, the effect of the sampling rate transition
is a sinusoid with stair steps occurring once every sampling period at the lower rate.
Without filtering, this stair step effect excites the actuators at the slow sampling
frequency (1 kHz) which degrades performance. The solution is to employ digital low
pass filtering in a manner similar to that used for the anti-aliasing filters. After some
experimentation it was determined that good “smoothing” was obtained using a 4™ order
Chebyshev lowpass filter at 400 Hz. The amount of delay caused by the filtering is
frequency dependent, but it is on the order of one half of the lower sampling period
(1/2*%0.001 sec), as can be seen in Figure IV-3. The disturbance signal is also filtered
before it goes to the shaker (2™ order Chebyshev lowpass at 300 Hz) to prevent the

unwanted 1 kHz disturbance from exciting the platform.
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Figure 1V-3: Effect of Low Pass Filtering on Control Signals

E. OKID REFERENCE MODEL

To obtain an initial MIMO model of the UQP system dynamics the
Observer/Kalman Filter Identification (OKID) software is used to generate a state space
model. This model also serves to verify the identification results obtained from the Clear
Box algorithm in the next section. There is extensive literature available on OKID [Ref.s
104,105,106]. Suffice it to say that the technique serves to obtain an accurate estimate of
the system’s state space model from a time history of input-output data. For this reason it
is referred to as a “time-domain” approach.

The desired model order is determined by the selection of p, the equivalent order

of the model for each input-output pair. For the reference model, p has been selected as
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40 which (for g =6) results in a MIMO state space model with an A matrix of dimension

240x240. Shown below in Figure IV-4 is the frequency response at the sensor outputs
of all six struts for an input to the strut #1 actuator (the frequency response is very similar
for inputs to the other struts). The uppermost magnitude plot is for the output at the strut
#1 sensor. This is to be expected since it is most directly coupled to the strut #1 actuator.
The effect of the anti-aliasing filters at 200 Hz can be seen by the sharp reduction of the
response above this frequency.

The remaining five plots in Figure IV-4 show the coupling that exists between the
strut #1 actuator and the sensors on the other five struts. In general the coupling is
strongest with the neighboring struts on either side, and in the frequency range of 30-150
Hz. The realization that this coupling is strongest within the intended control bandwidth
led to a decision to implement a full MIMO controller instead of six SISO controllers.

A notable system characteristic is a steadily decreasing response below the
Geophone sensor’s natural frequency of 14 Hz. This puts a lower limit on the useful
control bandwidth of the UQP. Also notable are several damped modes from 30-100 Hz,
which are suspension modes due to the passive isolation stage on each strut. These
modes may be altered in a zero-g environment, and in a spacecraft application the system

identification would need to be re-accomplished upon reaching orbit.
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Bode Diagram for Input to Strut #1
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Figure IV-4: OKID Reference Model Frequency Response

F. CHECKING THE ACCURACY OF THE REFERENCE MODEL

Two methods are used to verify that the OKID model obtained above is an

accurate representation of the UQP system’s dynamics. First, the true pulse response of
the system is obtained and compared against that of the model. Second, a new set of

input-output data is obtained, and the actual system output is compared to that of the

model (using the same input data).
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1. Pulse Response

Using the pulse response capabilities of the Simulink code shown in Figure IV-2,
the true “UQP pulse response” is obtained by inputting an impulse to one strut at a time.
Using the OKID state space reference model obtained above, the corresponding “model
pulse response” is generated. These responses (36 input-output pairs) match closely, as

can be seen by the examples shown in Figure IV-5 and Figure IV-6 below.

Impulse Response: Input Strut #3, Output Strut #3

——  Actual
------ Ref Model

0.5

L 1 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
time [sec]

Figure IV-5: Impulse Response of Model vs. Actual (#1)
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Impulse Response: Input Strut #2, Output Strut #3
)
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Figure IV-6: Impulse Response of Model vs. Actual (#2)

2. Response to Random Input Data

Another test of the reference model’s accuracy is accomplished through use of a

set of “verification data”, which is different from the data used to generate the identified

model. A second set of UQP response data is obtained using random inputs, and the

input data is then applied to the OKID reference model. If the model is accurate, the

resulting simulated output should match that of the UQP hardware. The samples shown

below in Figure IV-7 show that the outputs of the model match those of the UQP very

well. After the first 0.02 seconds (the system’s settling time), the two plots are almost

indistinguishable. At this point it can be stated that the OKID model is of sufficient

accuracy to serve as a reference against which other identification results can be

compared.
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Simulated vs. Actual Outputs: Strut #1
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Figure IV-7: Actual vs. Simulated Response to Random Inputs

G. DISTURBANCE SOURCE FREQUENCY RESPONSE

Using the same technique as in Section E above, the response of the six strut
sensors to inputs to the Aura bass shaker (the disturbance source) is obtained. None of
the control algorithms implemented require a model of this “primary plant”, but it is
useful for determining which frequencies cause the largest system response.

A set of input-output data is obtained for the shaker-to-sensor system, and the
resulting OKID state space model is used to obtain the frequency response in Figure IV-8

below.
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Figure IV-8: Shaker Frequency Response

From this response it is clear that the sensors are most sensitive to disturbance
frequencies at 50 and 103 Hz. In general, struts 1, 4, 5, and 6 are more sensitive to
disturbances due to their proximity to the shaker. Struts 2 and 3 are on the opposite side
of the platform from the shaker, which explains their lower sensitivity. There is a

significant dip in the response of strut #3 to a 90 Hz disturbance.
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H. CLEAR BOX MODEL

As outlined in Section IL.C.5 on page 32, the Clear Box algorithm takes the
approach of first identifying the system model (even in the presence of periodic
disturbances and sensor noise). The result is a “disturbance free” model which can be
expressed in any chosen form (state space, ARX, etc.).

As a test of the algorithm’s ability to correctly identify the UQP system dynamics
model in the presence of disturbances, a new set of input-output data is obtained while
the shaker (disturbance source) is driven by a signal consisting of two sinusoids at 70 and
103 Hz. These frequencies were chosen to show that the algorithm will detect with equal
accuracy disturbance frequencies to which the system is least and most sensitive (see
Figure IV-8). The data is then used to construct a disturbance-corrupted model, the
frequency response of which is shown in Figure IV-9. Note the effects of the two

disturbance modes at 70 and 103 Hz.
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Figure IV-9: Clear Box System ID, Disturbance-Corrupted

The disturbance-corrupted model is then converted to modal form so that each
mode can be analyzed. The top portion of Figure IV-10 shows the frequencies of the
‘identified modes and their associated damping ratios.
identified by the fact that they are below the damping threshold, which is set by the user.
The bottom portion of Figure IV-10 shows the relative contribution of each mode to the

total system pulse response. The modes with a greater “modal pulse response norm” are

The disturbance modes are

the true system modes, and the remainder are the noise and disturbance modes.
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Figure IV-10: Clear Box System ID, Analysis of Modes

As discussed in Section II.C.5.a) (starts on page 33), there are three types of

modes present; true system modes, disturbance modes, and noise modes. The true system

modes are determined by their large contribution to the system’s pulse response. In this
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case the anti-aliasing filters used at 200 Hz tend to dominate the response due to the
highly damped nature of the UQP in this low frequency region.

After identifying the disturbance modes, they are removed from the system
model. The resulting model has the frequency response shown in Figure IV-11, which
matches very closely with that of the OKID reference model shown earlier in Figure
IV-4. The noise modes can be removed if desired, although retaining them has the effect

of filtering the noise associated with the system response [Ref. 107].
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Figure IV-11: Clear Box System ID, Disturbance-Free
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I CONVERSION TO ARX MODEL

Now that the disturbance-free state space model has been determined (through
elimination of the disturbance modes) the methods of Section II.C.5.c) on page 38 are
used to convert the model to ARX form for implementation on the digital signal

processor. The model has the form

y(k)=0y(k -1+ & y(k-2)+...+a,y(k - p)+

I I ! @-1)
Bulk—1)+ Buk—2)+...+ Bu(k— p)+n(k)

where, again, the & and B coefficients are the disturbance-free system model, and 7(k)
is the disturbance effect. This form of the model is used for the Clear Box algorithm,
which is implemented in the next Chapter. The disturbance effect, which is calculated by

rearranging Eq. (4-1) above such that

nk) = y(k)-ay(k-1)-&,y(k-=2)—...-&,y(k - p)
~Buk =)~ Buk-2)-...- Bu(k - p)

4-2)
plays a key role in both the “Sine/Cosine Method” and the “Adaptive Basis Method” of
the Clear Box algorithm (discussed in Section II.C.6 starting on page 42). It contains all
of the information needed to cancel any disturbance frequency that is not retained in the

system model coefficients.
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J. CONVERSION TO FIR FILTER MODEL

Recall from Section ILB.3 (page 20) that the Multiple Error LMS algorithm
requires a Model in the Form of a Finite Impulse Response (FIR) filter. Such a model is
obtained directly from the disturbance-free state space model obtained earlier in this
Chapter, using either the OKID reference model or the Clear Box model. In practice the
method used to determine the disturbance-free model depends on whether or not the
disturbances can be turned off while data is taken. If the disturbances are always present,
then the Clear Box model is the only alternative which achieves accurate results.

To obtain an FIR model using the disturbance-free state space model, we simply

calculate the system Markov parameters (pulse response coefficients) using the

A, B, C, D matrices. Recall that if there are M actuators and L sensors, then

$(k) = Cpyyott (k) + Cpppte =D+ -+ Cppy (k= (J = 1)) 4-3)
where
C,o=D
e = , 4-4)
C.;=CA™B, j=12,..,J-1
and also
i Cnj Cingj
Chy : Con - vve Core:
Cup=| &0 2 . W j=0,2,..,7-1 4-5)
Crij  Craj Crmj

In the case of the Multiple Error LMS algorithm, the FIR model
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C=[Cuwor Cuurr - Cunyy ) (4-6)

is used to filter the disturbance-correlated reference signal x(k) to give the “filtered-x”

signal r(k) where
J-1
T (k) = Y, Cyx(k = J) @-7)
j=0

This signal, along with the sensor error (k) is used in the LMS algorithm to adapt the

feedforward controller’s filter coefficients w(k) (see Eq. (2-22)).

K. SUMMARY

In this chapter sets of input-output data were used to build a model of the UQP
system dynamics. In this case the “system” includes all subsystems such as the actuators,
struts, sensors, filters, rate transition delays, and any dynamics associated with D/A and
A/D conversion. To obtain a reference model, band-limited white noise inputs were
used, and outputs obtained in the absence of any user-generated, or other disturbances
(there are always some disturbances associated with room and sensor noise). The

resulting OKID model was found to have a pulse response that matched that of the actual
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system, and a set of verification data confirmed that the model and the actual system react
very similarly to random inputs.

The Clear Box algorithm’s system identification routine was used, in the presence
of sinusoidal disturbances, to generate a disturbance-corrupted model which was
converted to a disturbance-free model using disturbance mode elimination. The model
was then converted to ARX form for implementation on the DSP.

Finally, it was shown how the model can be transformed into a Finite Impulse
Response filter, which is the form of the model needed for implementation of the
Multiple Error LMS algorithm. The next chapter will demonstrate how these models are

used in disturbance rejection experiments on the UQP.
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V. DISTURBANCE REJECTION EXPERIMENTS

A.  INTRODUCTION

The experiments performed in this chapter were designed to reveal the strengths
and weaknesses of the three controllers investigated in this research. The Multiple Error
LMS algorithm, the recently developed Clear Box algorithm’s “Sine/Cosine Method”,
and the Clear Box “Adaptive Basis Method” (developed during the course of this
research) are all demonstrated in a vaﬂety of disturbance environments. .

The initial experiments are with static disturbances that do not change their
amplitude or frequency (a variety of single and multiple disturbance cases are explored).
The next set of experiments show how the controllers perform with slowly and rapidly
varying disturbances. Finally, consideration is given to the case of an uncontrollable
system mode, and what happens when the disturbance frequency coincides with that

mode. Discussion of the results of these experiments is presented in Chapter VL.

B. IMPLEMENTATION
1. Multiple Error LMS

The Multiple Error LMS algorithm was implemented on the UQP using the
Matlab/Simulink environment as discussed in Chapter Ill. The Simulink block diagram
is shown in Figure V-1, which contains many of the same building blocks as the code
used for the system identification experiments performed in Chapter IV. In this case the

controller requires a disturbance-correlated signal to function properly. A simple unit

93




delay is used to model a sensor transfer function, and the resulting signal is referred to as
x(k) or “the reference signal”. The “Controller” subsystem in the Simulink diagram
consists of the “C”, “W”, and “LMS Algorithm” blocks in Figure II-5, and uses C code to

implement the Multiple Error LMS Algorithm in accordance with Eq. (2-22).
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:
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£
g i Control Signal
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c Processing
? Q
g g
x
g =
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Figure V-1: Multiple Error LMS Controller Simulink Diagrém

2. Clear Box

The Clear Box Algorithm (either method) is implemented in much the same way
as the Multiple Error LMS Algorithm. The most significant difference is that the Clear

Box controllers do not require a sensor to provide a disturbance correlated reference
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signal (Figure V-2). The algorithm provides its own disturbance correlated signal
through calculation of the disturbance effect, as discussed in Section IL.C.5.c). White
noise excitation is added to the system input when taking data for system identification.
Although system ID can \be accomplished as often as necessary, it is generally only
accomplished at the beginning of an experiment. The Sine/Cosine Method of Clear Box

requires additional processing to identify the disturbance frequencies, and this function is

performed by the host PC using data downloaded from the DSP.
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_ﬂag_dlsturb
Sys_input Disturbance g n
Control App!
\—’ m Inputs n Signals oﬁ‘s)gt
ota eta u
| q Outputs
Disturbance SinCos Controller
Etfect
Actuator
Safety Limit
Enable I Mux
ion

Transition

to higher|

J T |sys_Output samp rate
"""""" o PC2 alpha:1

¢40:0 to c40:1
to alpha:0 IPCH

Contro! Signal

Sensor Signal Processing
Processing

MUX_DAC |— Out  In e

MUX_ADC i In  Out

Figure V-2: UQP Clear Box Controller Simulink Diagram
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C. REJECTING STATIC DISTURBANCES

The first set of experiments demonstrates the relative ability of each controller to
reject a constant sinusoidal disturbance at a single, unchanging frequency. This case
allows a methodical investigation into the effects of altering any of the available
parameters (adaptation rate, recursive forgetting factor, model order, etc.) The second set

of experiments shows behavior in the presence of multiple disturbance frequencies.

1. Single Static Disturbance Frequency

a) Multiple Error LMS

The first experiment attempts to cancel a 120 Hz disturbance which is
imparted on the system by means of the Aura bass shaker mounted to the bottom of the
satellite bus mockup, to which the UQP is mounted. The amplitude of the disturbance is
chosen such that there is a significant output at the strut sensors, without going beyond
the linear range of the shaker. To do so would introduce harmonics of the fundamental
frequency, which is a case that will be explored later. The results of the first experiment
can be seen in Figure V-3, which shows all six strut sensor outputs during the course of
the experiment, with the controller being initiated at approximately 0.5 seconds. The
result is a 40 dB drop in the overall RMS level of the sensor outputs.

A more revealing way to view the result of the control action is to look at
the power spectrum of one of the sensors (strut #1 was selected) before and after the

controller is activated as shown in Figure V-4. Clearly the energy at 120 Hz has been
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removed from the sensor signal. There is, however, some (minor) negative impact on the
frequencies immediately surrounding the disturbance frequency.

The control signals for the six struts, shown in Figure V-5, are determined
by filtering the reference signal. The coefficients for this control filter W converge via
gradient descent to the “optimal” solution at a rate that is determined by the value of the

adaptation rate 4 and (as will be seen later) by the mean square level of the filtered
reference signal r(k). In this experiment the adaptation rate was selected as 0.1. Figure

V-6 shows the coefficients associated with strut #1. In this case a tenth order filter is
used, but for a single, zero-mean disturbance frequency only two are required. Note that

each of the six sensors has a small offset bias that is removed for data display purposes.

Volts

Drop in RMS Level = 40 dB

-4 1 L 1 I 1
0 0.5 1 1.5 2 25 3

Time {[sec]

Figure V-3: Multiple Error LMS Results for a 120 Hz Disturbance

97




40
——  Before Control
- After Control
20F - et e Piiesredraacangenrecaarnans
oy
E o o S R R R R
(]
©
2
c
&
=
g _ook
’g _ )
a
4iTSN
-80 :
() 60 120 180 240 300 360 420
Frequency {Hz]

5 . n .
Lo Q
05 m

g o

o8} U

—

—_—e

—— e e

Figure V-5: Control Signals, Struts 1-6, 120 Hz Disturbance

98




Filter Weights

-15 L L L
) 05 1 15 2 25 3

Time [sec]
Figure V-6: Coefficient Convergence, p= 0.08, 120 Hz Disturbance

The selection of u has a great impact on the performance .of the

controller. To demonstrate this, two more experiments are run using different adaptation
rates. A lower rate of 0.01 (Figure V-7) shows that slower convergence results, and the
coefficient values are also less “noisy”. Increasing the rate to 0.13 results in instability
(Figure V-8), so care must be taken to chose a conservative (low) adaptation rate.

Also important to the selection of the adaptation rate is a knowledge of the
bounds on the disturbance frequencies to be controlled. A given adaptation rate p
results in greatly different performance for high and low frequency disturbances. The

reason for this is that the mean square level 72 of the filtered reference signal r(k)

increases with increasing frequency since the magnitude of the plant model generally
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increases with frequency (Figure IV-11). Recall that the upper bound for u for stable

operation is inversely related to 7~ (Eq. (2-23)), and thus the effective adaptation rate is
affected by the disturbance frequency. As a demonstration, the original adaptation rate of
0.08 is used on two disturbances, one at 40 Hz, and another at 150 Hz. The resulting
coefficient conversion is seen in Figure V-9 and Figure V-10. The controller converges
very slowly for the 40 Hz disturbance, and exhibits instability for any frequency at or

above 150 Hz. In general, the best performance for a given disturbance frequency is

obtained by “tuning” the adaptation rate in a manner inversely proportional to 72,

0.8 T T T T T

(] 1
05 1 15 2 25 3
Time [sec)

Figure V-7: Coefficient Convergence, mu=0.01, 120 Hz Disturbance
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Figure V-10: Coefficient Convergence, mu=0.08, 150 Hz Disturbance (Unstable)

Returning to the case of the 120 Hz disturbance, it is possible to
characterize the steady state performance by looking at the RMS level of c;ach strut’s
sensor, and comparing it to that of the sensor’s background noise level. After each
experiment is completed, a brief pause allows the transients to die out, and a reading of
the “background” sensor noise levels is taken. These noise levels change depending on
the vibration and acoustic environment in the room, but the RMS level is generally from
0.012 — 0.016 Volts. Figure V-11 shows that the overall sensor output RMS level is

reduced to a level just above that of the sensor noise, down 40 dB from the pre-control

level of 1.61 Volts.
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Figure V-11: Steady State and Sensor Noise Levels, 120 Hz Disturbance

To fully characterize the performance of the Multiple Error LMS
algorithm for a single static frequency disturbance, experiments are run over a range of
frequencies using three different values for I, the control filter order. In each experiment,
the adaptation rate is tuned for best performance. The results are shown in Figure V-12,
which shows both the dB reduction in the RMS level for each frequency, and the relative
“position” of the steady state levels in comparison to the sensor noise level (positive
levels are above the noise level). Note that the amount of dB drop is related to the initial
level of the disturbance, so if the same voltage signal is sent to the shaker for each
frequency, then the response will vary according to the frequency response of the shaker
(Figure IV-8 on page 84). Clearly the dB drop in Figure V-12 is related to this shaker

frequency response. Thus the more accurate measure of the performance of the controller
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is to compare the steady state noise level with the sensor noise level. Note that the filter
order has little effect on the controller performance for a single, static disturbance

frequency.
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Figure V-12: Multiple Error LMS Performance vs. Frequency

Finally, to test the stability of the Multiple Error LMS Algorithm, an
impulsive disturbance is imparted to the experiment while the controller is operating.
Return of the control coefficients to pre-control levels would give an indication of
stability. Figure V-13 and Figure V-14 show the resulting sensor outputs and control
coefficients, respectively. They indicate that the Multiple Error LMS Algorithm is stable

for this type of disturbance.
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Figure V-13: Multiple Error LMS, Sensor Outputs - Impulsive Disturbance
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Figure V-14: Multiple Error LMS, Control Coefficients - Impulsive Disturbance
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Also tested was the impact of plant modification on the controller’s
performance by adding a significant amount of mass to the top of the platform. This had
very little impact on the performance of the Multiple Error LMS controller, and the filter
weights were able to adapt to new optimal values. Similar experiments to those
performed above will be performed on the UQP in the next two sections using the Clear
Box Algorithm (both methods), and comparisons between controllers will be made in

Chapter VL

b) Clear Box, Sine/Cosine Method

The implementation of the Clear Box algorithm was presented briefly in
Section B.2. Recall from Section IL.C.6.b) starting on page 44 that the Sine/Cosine
Method forms a control signal by recursively estimating the coefficients of sine/cosine
pairs (one pair for each disturbance frequency). The steady state values of the
coefficients should result in a minimization of the error signals at the sensor outputs.

The first experiment using the Sine/Cosine Method uses the same 120 Hz
constant disturbance frequency as that used earlier with the Multiple Error LMS
algorithm. The recursive estimation process uses a “forgetting factor” A described in Eq.
(2-74), and an initial covariance associated with the coefficients. Also a “threshold level”
for the damping ratio must be selected, below which the identified frequency component
of the disturbance effect signal is considered a disturbance.

The results of the first experiment (controlling a static 120 Hz disturbance)
can be seen in Figure V-15, where the control action is initiated at #=0.5 seconds.

Similar results to the Multiple Error LMS algorithm are achieved, including a rapid
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convergence and reduction of the disturbance by, in this case, 40 dB. In the frequency
domain (Figure V-16) it is seen that a similar (perhaps more narrow) notch is formed at
the disturbance frequency as was seen in Figure V-4. However, there is less of an

adverse impact of the controller on frequencies immediately surrounding the disturbance.

Drop in RMS Leve! = 40 dB
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0
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Figure V-15: Clear Box Sine/Cosine Sensor Outputs, 120 Hz Disturbance
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Figure V-16: Sine/Cosine Spectral Comparison, 120 Hz Disturbance

The control signals used to drive the six actuators are shown together in
Figure V-17. Each strut’s control signal is generated by a sine/cosine pair for each
disturbance frequency, so in this case there are twelve coefficients (two per strut) that
must be recursively estimated. For the single, 120 Hz disturbance the time histories of
the two recursively calculated coefficients for strut #1 are shown in Figure V-18. In this
case A (the forgetting factor) was set to 0.98. A value closer to 1 gives a “smoother”
history that responds less quickly to changes in the calculated disturbance effect, and a
smaller value gives a more “noisy” history. For a static disturbance, the choice of
forgetting factor does not have a great deal of impact on the performance, unless the

disturbance frequency estimate is incorrect (demonstrated later in this section).
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Figure V-17: Sine/Cosine Control Signals, 120 Hz Disturbance
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Figure V-18: Sine/Cosine Control Coefficients, Strut #1, 120 Hz Disturbance
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In a manner similar to that used with the Multiple Error LMS experiments,
the RMS level of the steady state sensor outputs is calculated for each strut, and overall.
As is seen in Figure V-19 the results are similar to those obtained using Multiple Error
LMS. The overall RMS level is only slightly higher than the level of the noise.

Similar experiments were performed over a range of frequencies, and the
results are plotted in Figure V-ZO. The performance is very similar to that of the Multiple
Error LMS controller, controlling the disturbance close to the noise level in all
frequencies tested. Again, the dB drop is seen to correspond roughly to the shaker
frequency response. In general, there are no parameters that need to be “tuned” to achieve
good performance, in contrast to the Multiple Error LMS algorithm where the adaptation

rate must be selected based on the frequency of the disturbance (see previous section).
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Figure V-19: Steady State and Sensor Noise Levels, 120 Hz Disturbance
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Figure V-20: Clear Box Sine/Cosine Method, Performance vs. Frequency

The stability of the Sine/Cosine Method is tested by imparting
disturbances to the platform. The controller is very robust with respect to disturbances,
and even heavy shaking of the platform does not cause instability. A sample of the six
sensor outputs and the strut #1 control coefficients are shown in Figure V-21 and Figure
V-22, respectively.

Also tested was the impact of plant modification on the controller
performance. Addition of significant mass to the top of the platform had very little
impact on the performance of the Sine/Cosine Method controller, and the coefficients

were able to adapt to new optimal values.
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Figure V-21: Sine/Cosine Method, Sensor Outputs - Impulsive Disturbances
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Figure V-22: Sine/Cosine Method, Control Coefficients - Impulsive Disturbances
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The role that the forgetting factor plays in the performance of the
Sine/Cosine controller depends on the accuracy of the disturbance frequency estimate. To
demonstrate this, a static disturbance frequency of 150 Hz is used, and the estimate of the
frequency is deliberately set at various values (identified by percent error). The result is
seen in Figure V-23, which shows that more accurate disturbance frequency estimates
help improve performance.

The forgetting factor becomes an important tool for improving
performance of the Sine/Cosine controller when the frequency estimate is incorrect.
“Forgetting” more of the past data allows the control signal coefficients to “cycle” and
minimize the sensor error (see discussion in Section II.C.6.b). A demonstration of the
effect is accomplished with a static disturbance by keeping the error of the frequency
estimate constant, and then using a variety of forgetting factors to see how performance is
effected. Figure V-24 uses data for four different error levels to show that improved
performance is obtained by using a smaller forgetting factor (recall that a smaller
forgetting factor provides more “data forgetting”). Use of a forgetting factor lower than
0.65 has little additional impact, however. The coefficient “cycling”, discussed earlier in
Section II.C .4, is shown in Figure V-25 demonstrating that the coefficients oscillate at a
frequency equal to the differeﬁce between the actual and the estimated frequency (in this

case the frequency estimate was off by 1% of 100 Hz, so the cycling was at 1 Hz).

113




(4]
o

Drop in RMS Level [dB}
8 8 3

—
(=2

(=]

-

o
=

[=4
[

RMS Level Rel. to Noise [V]
o
N

0.2
0 B
o2l F . . ; ; ; ; ; i
0 0.1 0.2 0.3 0.4 05 07 0.8 09 1

Frequency Estimate Err¢.>r [%]

Figure V-23: Effect of Frequency Error on Sine/Cosine Method Performance

50T . . : : . . .
Bl
& aols
0 N
=
@ 201
£
g«[o T A T P
0 i 1 1 I
0.65 0.7 0.75 08
1 T T T T T T T T

08| —o— Exact Frequency
—d— 0.25% Ermror
— 0.5% Error
04| —¥*— 2.0% Error

RMS Level Rel. to Noise [V]

1 L i
0.65 07 0756 08 0.85 0.9 0.95 1
Forgetting Factor

Figure V-24: Effect of Forgetting Factor on Sine/Cosine Method Performance
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Figure V-25: Demonstration of Coefficient Cycling

Note that during the course of the single static disturbance frequency
experiments using the Sine/Cosine controller, a typical error in the estimate of the
disturbance frequency was 0.001% and was always less than 0.02%. Thus for static
frequencies the kissue is not critical. However, if the disturbance frequency is changing
rapidly, then the forgetting factor plays an important role in achieving good performance,

as will be demonstrated in Section D.1.b) starting on page 134.

c) Clear Box, Adaptive Basis Method

The Adaptive Basis Method controller is implemented in a fashion
identical to that of the Sine/Cosine Method. The difference between the two is that the

Adaptive Basis Method’s recursive algorithm estimates control signal coefficients for a
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basis that consists of the time-shifted disturbance effect signal, instead of pairs of sine
and cosine functions. Estimation of the disturbance frequency(ies) is not required since
this information is included in the disturbance effect signal.

The first experiment with the Adaptive Basis controller is identical to that
conducted in the previous sections. A constant 120 Hz disturbance is imparted to the
UQP via the bass shaker. Recursive estimation of the control coefficients results in
minimization of the error signal at the sensor outputs, as shown by the time history of the
six sensor outputs in Figure V-26. Inspection of the spectral content of the strut #1 error
signal before and after the controller is activated (Figure V-27) reveals that the 120 Hz
signal is completely eliminated. A small amount of amplification is present in frequency

bands centered around AC power frequency multiples (i.e., 60 Hz xk, k=1,2,...).

Drop in RMS Level = 42 dB
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Figure V-26: Clear Box Adaptive Basis Controller Results for a 120 Hz Disturbance
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Figure V-27: Power Spectrum Comparison, 120 Hz Disturbance

The sinusoidal control signals for the six actuators are shown in Figure
V-28. The control signals represent a linear combination of the 1 shifted time histories.
As discussed in II.C.6.c), a single strut’s disturbance effect tifne history can serve as the
basis for all six actuators’ control signals. The coefficients for each strut adapt as needed
to account for unique gain and phase requirements. In this experiment six time-shifted 7
signals are employed (N =6), and the convergence of their associated coefficients is
shown in Figure V-29. If the sensor signals and the calculated 7 signal are noise-free
and zero-mean, two time-shifted signals are sufficient to completely cancel the
disturbance. In this case performance is improved by using redundant time shifted

signals (demonstrated later).
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Figure V-29: Adaptive Basis Method Control Coefficients, 120 Hz Disturbance
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In a manner similar to the experiments with the other controllers, the
steady state RMS level of the sensor signals can be compared with the sensor noise level,
which can vary as the room environment changes. Thus, the sensor noise level may be at
different levels for different experiments. Figure V-30 reveals that for this experiment,
the steady state sensor RMS level was actually below the sensor noise level (discussed in
Chapter VI).

One parameter that the user can choose is the number of time shifted
disturbance effect signals N to use in forming the control signal. Since the coefficients
must be estimated for each time shifted signal, increasing the number of shifts also
increases the computational burden on the processor. Using a model order p of 15 the
maximum number of time shifts that can be handled by the alpha processor operating at 1
kHz is 6. Performing experiments at various disturbance frequencies using

N =2,4,and 6 allows the overall performance of the Adaptive Basis controller to be

characterized, and is shown in Figure V-31. Clearly, using more time shifts improves the
performance and extends the frequency range over which disturbances can be effectively

controlled.
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Figure V-31: Adaptive Basis Method Performance vs. Frequency
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To assess the stability of the controller while in operation, an impulsive
disturbance is applied to the top of the UQP platform while controlling a 120 Hz
disturbance. Figure V-32 and Figure V-33 show the sensor output and control coefficient
time histories, respectively, and reveal that pre-impulse conditions are re-established after
a short adjustment period. Using a forgetting factor less than one reduces the time
required to recover, but may adversely effect steady-state performance. Note that very
large impulsive disturbances were observed to cause instability of the controller. The
effects of plant modification (addition of mass to the platform) were also tested on the

Adaptive Basis Method controller, with very little impact on performance.

10 ! ! s T ! ; ! !

1 2 3 4 5 6 7 8 9
Time [sec)

Figure V-32: Adaptive Basis Method, Sensor Outputs — Impulsive Disturbance
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Figure V-33: Adaptive Basis Method, Control Coefficients — Impulsive Disturbance

Recall that for the Sine/Cosine Controller the recursive algorithm’s
forgetting factor greatly effects performance when the disturbance frequency estimate is
in error, but not when the estimate is exact (Figure V-24 on page 114). In the case of the
Adaptive Basis controller there are no frequency estimates required, but the recursive
algorithm can still use a forgetting factor, allowing recent data to be more heavily
weighted than past data. Using the same dB drop and RMS level comparisons used
earlier, Figure V-34 shows the performance of the Adaptive Basis Method against a static
150 Hz disturbance using various forgetting factors. The results indicate that using all
past data improves performance in the case of a disturbance with constant frequency (to

be discussed in Chapter VI).
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Figure V-34: Effect of Forgetting Factor, 150 Hz Disturbance

Another factor that can affect the Adaptive Basis controller’s performance
is the accuracy of the identified system model, since the model is used in the calculation
of the disturbance effect and the control signal coefficients. The accuracy of the model is
improved by using a larger model order p. The effect on controller performance can be
seen from the data in Figure V-35 which was compiled from two sets of experiments
against disturbances at 90 Hz and 140 Hz. The disturbance amplitudes were adjusted so
that the magnitude of the sensor response (without control) was the same for both
disturbances. In both sets of data the model order is increased from one experiment to
the next. The general trend is toward improved performance with larger p, especially at

the lower frequency (90 Hz). In general, performance improves with increasing p and N.
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Figure V-35: Adaptive Basis Method, Performance vs. Model Order

2. Multiple Static Disturbance Frequencies

There are two cases of “multiple static disturbances” that are explored in this
section. The first demonstrates how each controller can handle the case of two distinct
disturbance frequencies. The second is a case where there is a single disturbance

frequency that also generates harmonic disturbances.

a) Multiple Error LMS

Two disturbance frequencies, at 95 and 160 Hz, are present for the first
experiment. For the Multiple Error LMS algorithm the adaptation rate must be chosen
based on the highest frequency (so that the system will remain stable). Figure V-36 and

Figure V-37 below show the output history and spectral content of the sensor signals,
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respectively. The conservative choice of adaptation rate results in a slightly lengthened
period of convergence, but it is still less than 0.5 seconds. Once again the disturbances
are reduced to a level comparable to the sensor noise level. The spectral comparisons
show complete elimination of the disturbance energy at the two disturbance frequencies

of 95 Hz and 160 Hz.
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Figure V-36: Multiple Error LMS Sensor Outputs, 2 Static Disturbances
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Figure V-37: Multiple Error LMS Spectral Comparison, 2 Static Disturbances

The second experiment with multiple disturbances is a case where the
fundamental disturbance frequency is 50 Hz, and two harmonics are present at 100 Hz
and 150 Hz. In such a case the 50 Hz signal is sent to the shaker and also acts as the
reference signal x(k), after passing through the unit delay which represents the sensor
transfer function (Figure V-1 on page 94). The dynamics of the shaker-to-sensor system
at 50 Hz are such that harmonic disturbances are also generated. These harmonic
frequencies are not present in the x(k) signal. Figure V-38 below shows the before/after
comparison of the spectral content of the sensor signal for strut #1. Clearly the

fundamental frequency is controlled, but the harmonics at 100 Hz and 150 Hz are not.
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Figure V-38: Spectral Comparison, Multiple Error LMS Controlling Harmonics

b) Clear Box, Sine/Cosine Method

The same two cases used above are tested using the Sine/Cosine Method
of the Clear Box algorithm. The first experiment is with two distinct frequencies at 95
Hz and 160 Hz. The sensor outputs are shown in Figure V-39, and the before/after
spectral content of the strut #1 sensor is shown in Figure V-40. Use of a forgetting factor
less than one helps improve performance, and in this case the value was set to 0.99. The
fact that the control signal is formed from sine and cosine functions results in no impacts

at frequencies other than the disturbance frequencies.
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Figure V-39: Sine/Cosine Method Sensor Outputs, 2 Static Disturbances
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Figure V-40: Sine/Cosine Method Spectral Comparison, 2 Static Disturbances
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For the case of harmonic disturbances, the Clear Box Algorithm (either
method) has an advantage over the Multiple Error LMS algorithm since it uses the
calculated disturbance effect signal. In calculating the disturbance effect signal, the
controller essentially estimates the outputs that are not caused by the known actuator
inputs. As such, the fundamental disturbance and its harmonics are present in the

disturbance effect signal n(k). The Sine/Cosine Method estimates the disturbance
frequencies based on the m(k) signal, and controls each one as if it were a separate

disturbance. The before/after spectral comparison (again using the strut #1 sensor) in

Figure V-41 clearly indicates complete control of all three disturbances.
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Figure V-41: Spectral Comparison, Sine/Cosine Method Controlling Harmonics
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c) Clear Box, Adaptive Basis Method

The same two cases of multiple frequency disturbances are tested using
the Adaptive Basis Method of the Clear Box algorithm. For the case of two distinct
disturbances the six sensor outputs are shown in Figure V-42, and the before/after
spectral content of the strut #1 sensor is shown in Figure V-43. Note there is still a small
amount of energy at the two disturbance frequencies. This is likely due to the fact that
there are not as many “redundant shifts” available since there are now two disturbances
present (discussed further in Chapter VI). As in the single, static frequency case the use
of a forgetting factor equal to 1.0 helps improve performance when the disturbance

frequencies are not varying with time.
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Figure V-42: Adaptive Basis Method Sensor Outputs, 2 Static Disturbances
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Figure V-43: Adaptive Basis Method Spectral Comparison, 2 Static Disturbances

The case of harmonic disturbances was also tested using the Adaptive
Basis Method. In this case a fundamental frequency of 105 Hz is chosen, which
generates harmonics at 210 Hz and 315 Hz. The 210 Hz disturbance is not very strong,
and in fact the controller causes slight amplification at this frequency, but there is clear

reduction of the energy present in the fundamental disturbance and the harmonic at 315

Hz, as seen in Figure V-44.
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Figure V-44: Spectral Comparison, Adaptive Basis Method Controlling Harmonics

D. REJECTING TIME-VARYING DISTURBANCES

Now that all three controllers have been tested against disturbances that do not

vary with time, we move our attention to the case of time-varying disturbances.

1. Single, Time-Varying Disturbance Frequency

To test the controllers against a single, time-varying disturbance frequency a
standard frequency variation profile is uséd. This profile, shown in Figure V-45, starts at
120 Hz and is held constant for 1 second. Then the frequency ramps up at a “rapid” rate
of 2 Hz/sec for four seconds, and is held constant at 128 Hz for one second. Then the

frequency ramps down at a “slow” 0.1 Hz/sec for four more seconds, and is finally held
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constant at 127.6 Hz for two seconds to complete the experiment. In all cases the

controller is activated at 0.5 seconds.

6
Time [sec]

Figure V-45: Frequency Variation Profile, Single Disturbance

a) Multiple Error LMS

With knowledge of the exact disturbance frequency, provided by the x(k)

signal, the Multiple Error LMS algorithm performs quite well over the course of the
frequency variation profile, as shown in Figure V-46. Only a slight drop in performance

is noted during the rapid frequency variation phase.
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Figure V-46: Multiple Error LMS Sensor Outputs, 1 Varying Frequency

b) Clear Box, Sine/Cosine Method

The Sine/Cosine controller’s performance during the frequency variation
profile is shown in Figure V-47. In the UQP implementation of the Sine/Cosine Method
the disturbance frequencies are updated once per second using batch processing of the
most recent 7(k) time history. Thus, as the true disturbance frequency strays from the
estimated frequency the performance begins to degrade. The coefficient cycling, shown
in Figure V-48 for the strut #1 coefficients, is unable to compensate for the frequency
variation during the rapid ramp-up phase. In Section C.1.b) starting on page 106, it was
shown how the use of a smaller forgetting factor improves performance when the

frequency estimate is incorrect. Unfortunately, use of a forgetting factor below 0.9
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during the frequency variation profile resulted in excessive noise in the control

coefficients and led to instability. The results in the two figures below are obtained using

a forgetting factor of 0.95.
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Figure V-47: Sine/Cosine Method Sensor Outputs, 1 Varying Frequency
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Figure V-48: Sine/Cosine Method Strut #1 Coefficients, 1 Varying Frequency

c) Clear Box, Adaptive Basis Method

Finally, the frequency variation profile is used while controlling the UQP
with the Adaptive Basis Method. Again, this controller does not need to estimate the
disturbance frequencies since the information is present in the 7(k) signal. The
performance is very good during the entire profile, as shown in Figure V-49. Note that

this performance is obtained without the use of a sensor-provided reference signal.
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Figure V-49: Adaptive Basis Method Sensor Outputs, 1 Varying Frequency

2. Multiple Time-Varying Disturbance Frequencies

The next set of experiments involves the use of two time-varying frequencies.
The variation profile is shown in Figure V-50. The first frequency starts at 140 Hz and
ramps up at a rate of 0.5 Hz/sec. The second starts at 144 Hz and ramps down at 0.5
Hz/sec. The two frequencies “converge” at 142 Hz at four seconds into the experiment
(which lasts for a total of nine seconds). The two frequencies combine to form a
disturbance that pulsates; more slowly as the frequencies converge, and more rapidly as

they diverge. When they cross at 142 Hz they appear to be a single disturbance.
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Figure V-50: Frequency Variation Profile, 2 Varying Disturbances

a) Multiple Error LMS

The Multiple Error LMS algorithm is tested first against the two time-
varying disturbances, and the six sensor outputs and the strut #1 control coefficients are
shown in Figure V-51 and Figure V-52, respectively. The pulsating nature of the
disturbances results in short periods of degraded performance where the coefficients
cannot adapt quickly enough to keep performance at an optimum. The adaptation rate
used for this experiment is 0.01, which can be tuned to a more aggressive value for better
performance, but at the risk of instability. Recall from earlier experiments that higher
frequency disturbances cause larger 7> levels, resulting in instability at lower values of

the adaptation rate.
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Figure V-51: Multiple Error LMS Sensor Outputs, 2 Varying Disturbances
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Figure V-52: Multiple Error LMS Control Coefficients, 2 Varying Disturbances
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b) Clear Box, Sine/Cosine Method

Next, the Sine/Cosine Method is tested against the two time-varying
disturbances. The resulting sensor outputs and control coefficient histories are shown in
Figure V-53 and Figure V-54, respectively, and show that the controller has difficulty
maintaining optimal performance. The forgetting factor is again key in improving
performance since the true frequencies are constantly drifting from the frequency
estimates (updated once per second). In this experiment a forgetting factor of 0.99 is
used. A lower value improves performance but instability is observed for values below
0.95. During the period from 5.5 to 6.5 seconds the Host PC frequency estimation code
is unable to detect a mode in the disturbance effect signal that has a damping ratio below
the pre-set threshold, resulting in all control coefficients being set to zero, and

performance returning to an uncontrolled state.
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Figure V-53: Sine/Cosine Method Sensor Outputs, 2 Varying Disturbances
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Figure V-54: Sine/Cosine Method Control Coefficients, 2 Varying Disturbances

c) Clear Box, Adaptive Basis Method

Finally, the Adaptive Basis Method is tested against the two time-varying
disturbances. The six sensor outputs and the strut #1 control coefficients are shown in
Figure V-55 and Figure V-56, respectively, and show relatively good performance with a
pulsating nature similar to that observed with the Multiple Error LMS controller. The
forgetting féctor used in this experiment is 0.99 (the same as the Sine/Cosine Method’s
experiment). Performance is not affected greatly by using a lower value, and stability is
also not affected by a lower forgetting factor, in contrast to the Sine/Cosine Method

which is sporadically unstable for values below 0.95.
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Figure V-55: Adaptive Basis Method Sensor Outputs, 2 Varying Disturbances
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Figure V-56: Adaptive Basis Method Control Coefficients, 2 Varying Disturbances
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E. THE CASE OF AN UNCONTROLLABLE MODE

One of the primary advantages of the Clear Box algorithm is the ability to
selectively control disturbances. This is important in the case where kit is undesirable to
attempt control of an uncontrollable or weakly controllable mode, since actuator
saturation and instability may result. The Multiple Error LMS algorithm is, in general,
nof capable of selective disturbance control.

The experiments in this section show that both methods of the Clear Box
algorithm allow selective disturbance control. The capability is inherent in the
Sine/Cosine Method, but is also shown with the Adaptive Basis Method through the use

of filtering of the disturbance effect signal.

1. Clear Box, Sine/Cosine Method

The experiment used to demonstrate selective disturbance control employs two
static disturbances at 110 Hz and 140 Hz. Since the highly damped UQP system does not
have any modes that are “uncontrollable” in the frequency range of interest, it is
necessary to artificially designate the 140 Hz disturbance as being uncontrollable.

The results are shown in the three figures that follow. Figure V-57 shows The
sensor outputs for all six struts. Before the controller is initiated the outputs contain the
effects of both disturbances. In the disturbance identification portion of the code, logic is
implemented that “de-selects” any identified disturbance that is close to 140 Hz. This
approach is valid for a system with time-invariant dynamics, but in general (for systemé

with time-varying dynamics) the magnitude of the required control action can be
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analyzed to determine if a particular disturbance is, in fact, “uncontrollable”. Figure
V-58 simply shows a close up view of the sensor outputs, showing that the signal that
remains is a 140 Hz signal. The before/after spectral comparison is shown in Figure
V-59, indicating control action effectively removes the disturbance at 110 Hz, but does

nothing at 140 Hz. There are no significant adverse effects at any other frequencies.

Time (sec]

Figure V-57: Sine/Cosine Method Sensor Outputs, Selective Disturbance Control
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Figure V-58: Sine/Cosine Method Sensor Outputs (Zoom in)
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Figure V-59: Sine/Cosine Method Spectral Comparison, Selective Control
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2. Clear Box, Adaptive Basis Method

The same experiment described above for the Sine/Cosine Method is tested using
the Adaptive Basis Method. A digital filter, with frequency response shown in Figure
V-60, is employed to filter the disturbance effect signal, and effectively eliminate the
information at the 140 Hz frequency. Thus, the time shifted disturbance effect basis
functions are unable to control the disturbance at 140 Hz. The results are shown in the
three figures that follow. The before/after spectral comparison in Figure V-63 shows
effective control of the 110 Hz disturbance, but no control of the 140 Hz disturbance.

Some minor effects at other frequencies are noted.
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Figure V-60: 2nd Order Butterworth Notch Filter for Selective Control
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Figure V-61: Adaptive Basis Method Sensor Outputs, Selective Disturbance Control
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Figure V-62: Adaptive Basis Method Sensor Outputs (Zoom in)
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Figure V-63: Adaptive Basis Method Spectral Comparison, Selective Control
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VI. DISCUSSION OF RESULTS

In this chapter the performance characteristics of the Multiple Error LMS, Clear
Box Sine/Cosine, and Clear Box Adaptive Basis controllers are compared across the
various experiments performed in Chapter V. The comparisons are divided into the two

broad categories of "performance" and "implementation issues".
p

A. PERFORMANCE
1. General

The experiments that demonstrate control of a single static disturbance (conducted
in Chapter V) reveal several key characteristics of the three controllers. All three are able
to control the disturbance to the noise level across the entire selected control bandwidth
(20-300 Hz). The three controllers also demonstrate that they impart very little energy to
the system at frequencies other than the disturbance frequency. This is especially true in
the case of the Sine/Cosine Method since the control signal consists of pure sine & cosine
functions at the estimated disturbance frequencies.

The experiments with two static disturbances reveal that the Multiple Error LMS
Algorithm and the Clear Box Sine/Cosine Method achieve slightly better performance
than the Clear Box Adaptive Basis Method. The Adaptive Basis Method increases the
energy at frequencies other than the disturbance frequency (Figure V-43), indicating that

these unintended frequency components are present in the disturbance effect signal and

149




thus in the basis functions. The available processing power only allows a maximum of
N =6 when using the Adaptive Basis Method, which limits control to three frequencies
(or two frequencies and an offset bias). The existence of additional low-level frequency
components is the most likely reason the controller is unable to completely cancel the two
static disturbances. A 36 dB drop is achieved, in comparison with the 40 dB drop of the
Sine/Cosine Method.

An advantage of the Clear Box Algorithm is the inherent ability to control
unexpected disturbances and harmonics. Again, the disturbance effect signal reveals all
system outputs ‘that are not predicted by the past input/output data as applied to the
disturbance-free system model (Eq.s (2-60) and (2-62)). These disturbances are
controlled without difficulty since the two Clear Box methods use the disturbance effect
signal as either a source for the disturbance frequency estimates (Sine/Cosine Method) or
as a basis function source (Adaptive Basis Method). In contrast, controlling harmonics
with the Multiple Error LMS Algorithm requires prior knowledge of the number of
harmonics that need control. Periodic signals at the harmonic frequencies can then be
artificially generated and added to the original reference signal (from which the
frequency information is obtained). This process is computationally inefficient since not
all disturbance frequencies have harmonics that significantly affect the system output. In
addition, unexpected disturbances may not be controllable with the Multiple Error‘LMS
Algorithm since the pre-selected sensor locations may yield a very weak signal.

Experiments controlling time-varying disturbance frequencies reveal that the

Clear Box Sine/Cosine Method is unable to control rapidly changing disturbances.
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Although coefficient cycling allows some improvement from the uncontrolled condition,
excessive rates of change cannot be compensated for. Typically the disturbances present
on spacecraft are not varying rapidly with time, with the exception of momentum wheels
that often change rates rapidly during slew or momentum dumping maneuvers. However,
the general applicability of the Clear Box Algorithm is improved if it can control rapidly
changing disturbances. The Adaptive Basis Method addresses this need, as shown in the
time-varying disturbance experiments in Chapter V. An alternative approach is to |
improve the Sine/Cosine Method’s ability to estimate frequencies accurately (discussed
in Section IL.D) or increase the rate with which the updated frequencies are provided, or a
combination of both.

Selective disturbance control is a feature unique to the Clear Box Algorithm, and
is demonstrated on a hypothetical "uncontrollable mode" in Chapter V using both Clear
Box methods. The Multiple Error LMS Algorithm does not provide for selective mode
control. The only possible modification that would allow a degree of selective control
would be to implement a comb filter for the reference signal x(k) (frequencies that are
de-selected for control are filtered out of x(k)). This implies adding some form of
system identification capability to the LMS control implementation. Even so, the only
way to determine which frequencies are weakly controllable is by finding the system
transmission zeros. There is no capability to determine what portion of the control signal
is due to a particular frequency, or how much of the system output is due to a particular
disturbance. Without this information the disturbance control selections cannot be made

as intelligently as with Clear Box.
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2, Tuning Requirements

A drawback of the Multiple Error LMS Algorithm is that tuning of the adaptation
rate is required to achieve optimal convergence to the steady-state filter weight solution.
For a given adaptation rate, instability is more likely as the disturbance frequency
increases, and convergence is slower as the disturbance frequency decreases. The
adaptation rate must be chosen conservatively (i.e., a low rate) to guarantee that stability
is maintained, and thus rapid convergence is not possible for every disturbance.

By comparison, the Clear Box methods require relatively little tuning. The
forgetting factor's effect on performance has no dependence on the disturbance
frequency. For the Sine/Cosine Method a forgetting factor of 0.95 yields stable
performance (even with rapidly varying disturbances) and reduction to the noise level
when typical frequency estimation errors are present. The Adaptive Basis Method
performs well in all cases (static or varying disturbances) when a forgetting factor of 0.99

is used.

3. Processing Requirements

A quantitative comparison of the processing required for the investigated
algorithms reveals the relative efficiency of each. There is no way to directly compare
the Multiple Error LMS Algorithm to the Clear Box Algorithm since one uses an FIR
filter model and the other uses an ARX model. Although there is no way to use the same

“model order”, it is revealing to note that using p =10 for the Clear Box Algorithm, and

J =20 for the Multiple Error LMS Algorithm both yield system models with 720
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coefficients (for 6 inputs and 6 outputs). This may be misleading for lightly-damped
systems, however, since the FIR model order would need to be much larger to match the
accuracy that is possible with a relatively low order ARX model.

The tables below indicate the percentage of available processing power used by
each algorithm for various model orders, and employing different numbers of filter
weights or control coefficients. The cases that offer an approximate comparison

(assuming a well-damped system) are circled.

Number of Filter Weights per strut, I
5 10 15
~ 2] Q@D 317 43.4
g
et
o 30 23.6 442 61.3
3
p=
g 40 30.5 57.4 80.0

Table VI-1: Multiple Error LMS Algorithm, Processing Required (%)
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Number of Frequencies Controlled, f
1 2 3
10 193 41.1 G23)
o~
)
g 15 22.5 45.8 79.0
3
p= 20 25.3 50.5 85.0

Table VI-2: Clear Box Sine/Cosine Method, Processing Required (%)

Number of Basis Functions, N
2 4 6
10 21.2 4.2 D)
-~
o)
b= 15 24.6 51.5 84.3
o)
g
p= 20 273 55.8 92.9

Table VI-3: Clear Box Adaptive Basis Method, Processing Required (%)

4.  Stability

The experiments performed in Chapter V demonstrate that the three algorithms
are sufficiently stable while operating under normal conditions, and adapt to situations
where the plant model is altered by the addition of mass to the top of the platform.

Impulsive disturbances to the platform are handled very well by the Multiple Error LMS
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Algorithm, and also by the Clear Box Sine/Cosine Method, with coefficients rapidly
returning to pre-impulse values. While the Clear Box Adaptive Basis Method can handle
small impulsive disturbances, very large disturbances tend to cause instability. The
immediate presence of the disturbance information in the basis functions of the controller
results in an attempt by the control coefficients to cancel the disturbance, and the PZT
actuators are quickly saturated due to their small displacement capability (50 microns).
The extremely nonlinear nature of the Adaptive Basis Method hinders analytical
proof of the algorithm’s stability for cases other than single disturbance frequencies with
slow adaptation on SISO systems. The Clear Box Sine/Cosine Method was shown to be
stable under such assumptions in the presence of small perturbations in the system model
parameters [Ref. 108], and has an effective phase margin of 90 degrees. The single
channel Filtered-x LMS Algorithm has been shown to be stable theoretically (also with a
190 degree phase margin) [Ref.s 109, 110], while the Multiple Error LMS Algorithm has
only been theoretically proven stable for restricted disturbance cases [Ref.s 111,112].
Despite this lack of proven stability (for the general case) adaptive feedforward
algorithms have been successfully applied to many applications with good observed

stability, even using rapid adaptation rates.

B. IMPLEMENTATION ISSUES

The UQP system is a highly damped system with dynamics that do not vary
significantly with time. Implementing adaptive feedforward control for a different

application first requires a determination of several characteristics of the system and the
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expected disturbances. The factors affecting controller selection for a given application
include; 1) the nature of the system dynamics, 2) the nature of the disturbances, 3) the
availability of processing resources, 4) the cost associated with additional sensors, 5) the
control authority of the selected actuators, and 6) the importance of reliability and fault

tolerance.

1. System Dynamics Considerations

If the system dynamics (from actuator input to sensor output) vary with time, then
periodic re-identification is required to maintain optimal performance. The system
identification approach inherent in the Clear Box Algorithm is well-suited to such
systems, allowing operation without any prior knowledge of the nature of the physical
plant.

If the system is lightly damped then the required model order is much less when
using an ARX model (as with Clear Box) than with an FIR filter model (as with LMS
algorithms). A lower model order, in general, translates into reduced processing
requirements. Typically, lightly damped systems have transmission zeros that translate
into weakly controllable modes. The required control signal at these frequencies is very
large since the low gain of the system must be compensated for. Since it is desirable to
use light weight (generally less capable) actuators for space applications, a large control
signal will likely cause actuator saturation, leading to possible system instability. The
selective control capability unique to the Clear Box Algorithm is indispensable in such

cases. Equations (2-66) and (2-85) are used to determine the magnitude of the required
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control signal, and the effect of each disturbance on the system output, respectively. If
control authority is limited, logic statements are used to de-select disturbances for control
if the magnitude of the required control signal is too large (thus preventing actuator
saturation) or if the impact on the system output is very small (preventing inefficient use

of processor resources on insignificant disturbances).

2. Disturbance Considerations

If it is impossible (or undesirable) to turn off disturbance sources when
performing system identification the resulting model will be disturbance-corrupted. In
such cases the Clear Box Algorithm is the only alternative for obtaining a disturbance-
free system model. In fact, in 50% of all cases, finite length data records result in
identified disturbance modes having slightly negative damping ratios. This results in the
identified model being unstable, and unusable for control.

For the case of a system with time-invariant dynamics (such as the UQP), periodic
disturbances that have slowly varying frequencies (i.e., change less than 0.1 Hz per
second) can be controlled equally well by the three controllers implemented in this
research. A slight edge is given to the Clear Box Sine/Cosine Method due to its complete
lack of negative impact at frequencies other than those of the controlled disturbances.

Rapidly varying disturbances are more effectively controlled by the methods that
do not require estimates of the_ disturbance frequencies (the Multiple Error LMS
Algorithm and the new Clear Box Adaptive Basis Method). However, the performance

of the Sine/Cosine Method against rapidly time-varying disturbances could be greatly
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improved by implementing a polynomial curve fit for the time-history of each
disturbance’s frequency. This would allow a more accurate estimate of the frequency at
the time steps between frequency updates. More efficient processing techniques would

also shorten the time required between updates.

3. Coding and Processing

The Multiple Error LMS Algorithm requires the least amount of coding, mainly
due to the fact that it does not require recursive estimation of its control parameters.
Instead it uses a simple filter weight update consisting of an adaptation rate “gain”, and
the product of the error signals and the filtered reference signal, as shown in Eq. (2-22).
The result is that the Multiple Error LMS Algorithm requires the least amount of
processing power.

The computational requirements of the two Clear Box methods are similar, but
there are some differences worthy of discussion. The number of basis functions used in
the Sine/Cosine Method is always twice the number of disturbance frequencies that have
been identified and selected for control, since a sine/cosine pair is assigned to each
- estimated disturbance frequency. Thus, if new disturbances emerge the required
processing power will increase as sine/cosine pairs are added. For the Adaptive Basis
Method, the number of basis functions N is selected ahead of time, so an upper bound on
the number of disturbance frequencies f is required to assess the correct value of N
according to Eq. (2-87). For this reason, the processing requirements of the Adaptive

Basis Method are constant, and do not depend on the number of disturbances present.
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The Sine/Cosine Method is the only controller (of the three) that requires
estimates of the disturbance frequencies (a process that must be done in batch mode using
modal decomposition and logic statements). This process, performed by the host PC
during the UQP experiments, represents additional computation required for this method.

For systems with time-varying dynamics, or to add fault tolerance to the system,
re-identification of the system model is required periodically. To perform disturbance-
free system identification using disturbance-corrupted data (via the Clear Box Algorithm)
requires selective elimination of disturbance modes using logic statements, which must
also be done in batch mode using an additional processor. Again, this function is
performed by the host PC for the UQP experiment.

As space qualified processors become more capable (and require less power,
weight, and volume) the additional processing burden required by the Clear Box
Algorithm will be less of a consideration. The added capabilities (identification in the
presence of disturbances, control of time-varying systems, and selective mode control)
represent features not included in the Multiple Error LMS Algorithm. Thus the added

processing required by the Clear Box Algorithm is not without added benefit.

4, Cost Associated with Additional Sensors

A primary advantage of the Clear Box Algorithm is the ability to control any
periodic disturbance (including unexpected disturbances and harmonics) without
requiring an additional sensor to provide a disturbance-correlated signal. Addition of

sensors to provide this signal for the Multiple Error LMS Algorithm is accompanied by
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the addition of power supplies, signal conditioning, wiring, a signal combiner (to provide
a single disturbance signal from all of the sensors) and mounting hardware. Also to be
considered are the additional weight, volume, and integration & test costs associated with

these components.

S. Reliability and Fault Tolerance

The ability to rapidly re-accomplish system identification is important for
handling unexpected situations such as a mechanical failure of the system. For example,
if the UQP experienced a strut actuator failure it is possible the system model for the
remaining struts would be affected. Since the Clear Box Algorithm requires no
knowledge of the system dynamics, the next system identification performed'on the
system would account for any changes induced by the failure. For the case of the UQP
the strut with the failed actuator would still offer passive isolation capability. In this
manner, the system identification approach to the control problem adds a degree of fault

tolerance to the controller that is not present with the LMS Algorithm.
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VII. CONCLUSIONS

The Multiple Error LMS Algorithm is widely accepted for use with MIMO
systems that require vibration control/disturbance rejection. However, the need to supply
the algorithm with a disturbance correlated signal is undesirable for space applications
since additional sensor hardware and wiring is required. Also, traditional methods allow
no capability to selectively assign control action to specific disturbances, and thus the
actuators must be sized to handle control of all expected disturbances simultaneously.

The Clear Box Algorithm approaches active disturbance rejection from a system
identification perspective, allowing intelligent operation in an information-rich
environment. The algorithm can handle systems with time-varying dynamics, does not
require a measured disturbance-correlated signal, and can handle unanticipated
disturbances and harmonics. The selective disturbance control feature of the Clear Box
Algorithm allows intelligent assignment of actuator resources based on available
information about the size of the required control signal and the impact 0f each
disturbance on the system output. Thus, smaller light-weight actuators can be used since
selective control can prevént actuator saturation. Fault tolerance and adaptability are
enhanced by the Clear Box Algorithm through the use of frequent system identification.

The Clear Box Sine/Cosine Method requires estimates of the disturbance
frequencies, and performance suffers if the frequencies drift significantly before the next

update is available. Efficient processing techniques can reduce the time between updates,
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but eliminating the need for frequency estimation is preferable. A new Adaptive Basis
Method is presented that uses the disturbance effect signal directly as a computed basis
for the control signal. This new method addresses the problem of controlling rapidly
varying frequencies (since frequency estimates are not required), and maintains the
attractive features associated with the Clear Box Algorithm.

Extensive experiments employing the three control techniques on the Ultra Quiet
Platform demonstrate the attractiveness of Clear Box methods for active vibration
isolation and disturbance rejection. Performance meets or exceeds that of the Multiple
Error LMS Algorithm while requiring neither prior knowledge of the system dynamics

nor a measured disturbance-correlated signal.

A. CONTRIBUTIONS

The Multiple Error LMS algorithm has been demonstrated in many different
applications of noise and vibration control. The Clear Box algorithm, however, has only
been implemented using the Sine/Cosine Method for purposes of controlling structural
vibrations on a truss [Ref. 113]. Thus, this is the first application of Clear Box on a
vibration isolation platform, and the first experimental implementation using greater than
two inputs and two outputs. The utility of Clear Box for spacecraft vibration isolation
comes from eliminating the requirement for additional sensors, allowing the use of lighter
weight actuators, and adding a greater degree of fault tolerance and adaptability by

employing frequent system identification.
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The Sine/Cosine Method’s coefficient cycling (when frequency estimates are
incorrect) had been observed, but not explained. The theoretical prediction of this
cycling is offered for the first time in this dissertation.

The Adaptive Basis Method was developed during the course of this research. It
has the capability to control rapidly varying disturbances to a degree not currently
possible with the Sine/Cosine Method, and is still capable of selective disturbance
control. Thus, all of the attractive features of the Clear Box Algorithm are retained while
adding an improved capability to control rapidly varying frequencies.

The data acquisition and control system for the UQP experiment was also
implemented dﬁring the course of this research. All coding was developed so that the
user can easily change the number of inputs, outputs, and sample rate. Thus, either the
LMS or Clear Box controllers could be easily adapted and applied to other experiments.
The equipment remains in the Spacecraft R&D Center’s Smart Structures Laboratory at

the Naval Postgraduate School for follow-on work.

B. RECOMMENDATIONS FOR FURTHER STUDY

The effectiveness of the Adaptive Basis Method could be improved by adding
more shifted basis functions (i.e. N >6). This could be verified by adding additional
processing to the UQP control hardware, or by implementing the controller on a system
with fewer inputs & outputs. It is quite possible that any periodicity to the sensor “noise”
would be controlled by using more shifted basis functions, allowing consistent control to

a level below the typical RMS noise levels encountered in this research.
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The instability induced by large impulsive disturbances while using the Adaptive
Basis Method could be controlled through logic statements that effectively turn off the
adaptation of the basis functions if a large disturbance is sensed. Typically such
disturbances are of very short duration, and the impact to performance would be minimal.
Implementation of such a “smart switch” would improve the overall stability properties
of the controller.

An alternative solution to the rapidly varying frequency problem is to
significantly improve the frequency estimation accuracy of the Sine/Cosine Method.
Implementing polynomial curves fit to past frequency estimates would allow more
accurate extrapolation of the disturbance frequencies to the time steps prior to the next
update. This would allow more precise control of rapidly varying disturbances, while
rﬁaintaining the desirable performance of the Sine/Cosine Method.

Since the Clear Box Algorithm provides an accurate system dynamics model, this
model could be used to implement a feedback controller for broadband disturbances. The
two controllers working together would provide a total solution for disturbance rejection,
and could be implemented on the UQP or another experimental apparatus.

An ideal adaptive feedforward controller would have the intelligence of the Clear
Box Algorithm and the computational efficiency of the LMS Algorithm. Creating a
“hybrid” controller is possible by using the system identification information from Clear
Box to improve the intelligence of the LMS Algorithm, while also eliminating the need
for a separate sensor to provide the disturbance-correlated signal. This would be

accomplished by using the calculated disturbance effect signal n(k) as the reference
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signal x(k). Selective disturbance control would be accomplished through filtering of

the disturbance effect signal, as with the Adaptive Basis Method. Preliminary efforts to

accomplish this met with some success, but more work is required to refine the technique.
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APPENDIX A: COMPUTER CODE

The following code listings are provided for the Clear Box Algorithm’s
implementation on the Ultra Quiet Platform. Some of the more simple subroutines have

been omitted for brevity. A description of each file and its function are provided below.

File Name Description Type Page
#
init_ugqp.m Initializes variables needed by the Clear Box Mfile | 168
Algorithm (script)
start_uqp.m Host PC supervisory code that interfaces with the user, M file 171
controls the order of tasks accomplished by the DSP, (script)
and initiates system and disturbance identification.
cbox_sys_id.m System identification code M file 178
(function)
eta2freq_id.m Frequency identification from disturbance effect data M file 181
(function)
arx2ss.m Conversion from ARX form to state-space form M file 183
(function)
ss2modal.m Diagonalization of state-space model M file 184
(function)
ss2arx.m Conversion from state-space form to ARX form M file 186
(function)
elim_dist.m Elimination of disturbances from corrupted model M file 188
(function)
analyze_modes.m System ID mode analysis to determine which modes M file 189
are disturbances (used for subsequent elimination of (function)
disturbance modes from the system model)
analyze_eta_model.m | Frequency ID mode analysis to determine which M file 191
modes are disturbances (used for controlling the (function)
disturbances using the Sine/Cosine Method)
dist_gen.c Disturbance generator C code 192
(S-function)
eta.c Disturbance Effect Calculation C code 198
(S-function)
u_ff.c Feedforward Control Calculation — Sine/Cosine Ccode 202
Method (S-function)
u_ff_eta.c Feedforward Control Calculation — Adaptive Basis C code 214
Method (S-function)

Table A-1: Index of Computer Code Listings
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VARIABLE INITIALIZATION

$ init_ugp.m Stephen Edwards 10 May 99
%

% This script file initializes the variables and parameters needed
% for the UQP control experiment "ugp.mdl®

clear
close all % Closes all open figure windows

% Initialize the parameters & parameter sizes needed for the S-
Functions that calculate
the disturbance effect and the feedforward control signal(s).

P = Order of ARX model
m = Number of inputs to UQP (actuators)
a = Number of outputs from UQP (sensors)
theta_bar = Disturbance-free ARX model coefficients

= [alpha_bar' ; beta_bar']
- each alpha_bar "coefficient" has dimension qxq
- each beta_bar "coefficient" has dimension gxm
- there are p of each, so the dimensions of theta
. are [(p*qg + p*m) x q]
nfreq = The number of freq’s to be controlled currently
max_freq = The max possible number of freq’'s to be controlled
control_fregs = Identified frequencies to control

00 0P 0P OP 9P 0P O@ JP OP dP OP OP dP df
|

fprintf( '\n \n \n Welcome to the UQP Control Experiment... \n \a')
m =input( '\n How many input channels? [eg. 61]: ')
q =input( '\n How many output channels? [eg. 6]: ')
P =input (['\n What value for p (options below)?', .

'\n [5,6,7,8,9,10,15,20,30 or 40]: '1);

1

% Initialize variables for Recursive Least Squares
lambda =0.999; % Forgetting Factor
p_init =lel; % Initial RLS covariance

% Initialize variables for u_ff.c

nfreq =0;
max_freq =3;
control_freqs =zeros(l,max_freq); % Initialize to zero

% Initialize variables for u_ff_eta_Nx.c

basis =3; % Strut number chosen as basis
filt_order =8;

filt_alpha =zeros(l,filt_order+l);

filt_beta =zeros(1l,filt_order+l);
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% Initialize the ARX model to reference values

switch p
case 5

load models\cbox_p05_10sec theta_bar alpha_bar beta_bar
case 10

load models\cbox_pl0_1l0sec theta_bar alpha_bar beta_bar
case 15

load models\cbox_pl5_1l0sec theta_bar alpha_bar beta_bar
case 20 :

load models\cbox p20_l0sec theta_bar alpha_bar beta_bar
case 25

load models\cbox_p25_10sec theta_bar alpha_bar beta_bar
case 30

load models\cbox p30_l0sec theta_bar alpha_bar beta_bar
case 40

load models\cbox_p40_1l0sec theta_bar alpha_bar beta_bar

end

$ Initialize the enable/disable flags (on=1,

off=0)

flag update =0; Feedforward coefficient update
flag control =0; Feedforward control

flag noise =0; Excitation white noise

flag disturb =0; Sinusoidal disturbance(s)

flag dist_var =0;
flag_reset =0;
flag _wrong_freg=0;
flag _eta_filter=0;

flag_archive =0;

amplifier).

0 0P o P dO dO of

DC_offset
AC_limit

=50.0;
=10.0;

dg@ oP odP of oe

amplifier input.

Dist_limit =4.0;

d0 O° P I 0P 9P o

%

%

Volts at most. Note:
The gain associated with the D/A converter and the
amplifier are accounted for using a gain block in the "Control Signal
Processing" Subsystem in ugp.mdl (Simulink Diagram) .

closely could get too high.

Time variation of disturbance(s)

Reset for controller RLS algorithm
For experiments where the ID'd freq. Is
deliberately set incorrectly

For eta-controller experiments where not all

frequencies are controlled
Archive data from the experiment run

Initialize the DC offset and the AC limit.
be operated in the 0-100 Volt region,
Volts is used, and the limit on the AC signal should be set to +/- 20

The UQP actuators should
so typically an offset of 50

Levels are voltage at actuator (after

Initialize the limit of the Disturbance generator voltage.
protects the bass shaker from exposure to excessive voltage levels as
amplitudes are sometimes varying with time, and if not monitored
Limit expressed in +/- volts at the

This

%
%
%
%

Initialize the sizes of the disturbance related parameter vectors.
This way, the set_dist.m file can be used while the DSP is running to
change the number of disturbances frequencies that are present (a
maximum of 5 unless these vectors are made bigger, and the
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build/download

%

%

% dist_amp0
$ amp_rate

% dist_freqgl
% freq_rate
% phase

dist_amp0 =[
amp_rate =[
dist_freqO=[
freq rate =[
phase =

process

= injitial

OO OO0
OO O OO0

rate of
initial
rate of
Initial

OO OO O
O OO OO

is repeated).

amplitude (volts at Kepco amplifier input)
amplitude change (volts/sec)

frequencies conv. to rad/sec

frequency change (Hz/sec) conv. to rad/sec/sec
phase angle of sinusoid conv. to radians

0.0 0.0 0.0 1;

0.0 0.0 0.0 1;

0.0 0.0 0.0 1*2*pi;
0.0 0.0 0.0 1*2*pi;
0.0 0.0 0.0 1*pi/180;

% Initialize the sample rate of the controller and I/O functions
sample_rate =1000;
dt=1/sample_rate;

io_rate=10*sample_rate;
dt_io=1/io_rate;

% Controller sample rate (Hz)
% Sample period

% Sample rate of A/D & D/A
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HOST PC SUPERVISORY CODE

start_ugp.m Stephen Edwards 10 May 99

This script file is the Matlab code that oversees execution of the
control experiments on the Ultra Quiet Platform using the clear box
method.

%
%
%
%
%
%
% To use this file you must:

% 1) At the matlab prompt type "ugp" (in directory c:\sge\cbox)

% - this opens the Simulink diagram that represents the DSP
% code

% - it also automatically initializes the variables defined
% in the file "init_ugp.m"

% 2) "Download" the DSP code from the Simulink model "ugp.mdl"

% using the Multiprocessor Setup window in the Simulink Diagram
% (not RTW build!)

% 3) At the Matlab prompt type "start_ugp", and follow the prompts

First initialize the MLIB and MTRACE environments. This gets the
trace file variable descriptions (addresses) for the various
parameters used in the DSP code (flags, disturbance levels, etc).
Once this routine is run, the various Matlab prompt commands can be
used (i.e. "noise_on", "control_off", etc.)

0P 00 9P oP of

I R R A A A R R R R R R R R AR A R R AR R R R R R LR LR R AL LA 2 A
% Prompt for ID/Control Selections and Initialize DSP %
I A A R A AR R R AL A L L T LR R R R L R LR L LR R R SRR T T R LR LR L L AL K 1

fprintf ('\n\n\n WELCOME TO THE UQP CONTROLLER - GOOD LUCK! \n\n')

data_duration = 600; % Duration of exp data
experiment_duration data_duration + 1; $ Duration in seconds

$ Ask the user what type of experiment to perform

exp_type =input(['\n',...
'\n What Type of Experiment?\n',...
‘\n 1 = Perform system ID before initiating controller',...
'\n 2 = Initiate controller using the stored reference model',...
'\n 3 = Initiate controller using model from last experiment', ...
'\n Choice = '1);

control_type =input(['\n',...
'\n What Type of Controller are you set up for?\n',...
‘\n 1 = Sine / Cosine Method', ...
'\n 2 = Eta Method', ...
'\n Choice = ']);
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switch control_type

case 1 % sine/cosine-controller
freq _id_meth =input(['\n',...
'\n What Type of Frequency ID? \n',...
‘\n 1 = Perform disturbance freq ID using input/output data‘',...
'‘\n 2 = Perform disturbance freq ID using disturb. effect',...
'data [recommended]', ...

'\n 3 = Deliberately assign incorrect frequency(ies)',...
'\n Choice = ']);

switch freq id_meth

case 1
dist_loop_duration = 10; $ seconds (choose larger value
% since the controller must be
% turned off to identify the dist.
% frequencies, so you don't want to
% do it as often)
case 2
dist_loop_duration =1.0; $ seconds (choose smaller value
% since the controller can stay on
% while identifying the disturbance
% frequencies)
case 3

dist_loop_duration = experiment_duration; % Prevents looping
freq error =input(['\n',...
'\n Enter the percent error to use for the disturbance',...

' frequency:',...
‘\n [i.e. "1" equals 1 percent, negative values OKl]',...
'\n Choice = '1);

end

case 2 % eta-controller )
% Set variables used in eta controller

N=input('\n What is Value of N you are using? : ');
basis_set_code=1; $ set #1 = {2, 7, 9, 12, 16, 22, 23, 30}
% this code stored in archive data file.
flag_eta_filter =input(['\n', ...
'\n Do you want to filter the eta signalz\n',...
'\n 1 = yes', ...
'‘\n 0 = no',...

'‘\n Choice = ']);

switch flag eta_filter

case 0
% do nothing - filter not used in eta controller S-Function

case 1
[filt_order,filt_alpha,filt_betal=filter_design_butter(dt);
% This is a simple function to design a Butterworth filter
% using the Matlab Signal Processing Toolbox commands
% (not provided here)

end

end
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% Initialize the environment for ASPACE MLIB and MTRACE commands
init_mlib
% This is a Matlab script file to assign variable names to the
% addresses of required DSP variables, allowing the passing of
% variables to and from the DSP

% Make sure configuration is initialized (simple Matlab script file
% files not included here).

reset_ugp

control_off

update_off

noise_off

% Load filter if appropriate
if flag eta_filter ==

. load_filter
end

% Select RLS parameters best suited to control method
% Future option - can use set_lambda (forgetting factor) and set_p_init
% - (covariance) to modify variable in DSP

% Set up the disturbances
fprintf ('\n\n\n DISTURBANCE SET-UP FOR THIS EXPERIMENT: \n\n')
set_dist

T IR T LR E TR R R TR R R T R T L LT L E R R R R L XL EEEE R EE E L TR L L 14 £ 1]
% Perform System Identification, if Selected Above %
A R A A R R A A R R A R A AR AR R R R AR LA R R L R R R L L L L LA L L L L L ELELE L L L4

switch exp_type
case 1 %$%% case = Do ID First, then Control %%%

fprintf('\n >>> Starting System ID \n')

% Initialize and turn on the excitation noise (all 6 struts at once)

id_type='system '; % field must have the same number of spaces
% as the word "disturbance"

dist_on
set_noise_auto % Set levels of white noise
pause(l) ; % Let initial turn-on transients die out

% Get the input & output data and store in the variable name
% 'trace_data'

num_sec=10.0; % The duration of the data capture
get_sys_id_data % A Matlab script file (not provided)
noise_off % Turn off the 6-strut excitation

% Use a batch version of the Clear Box method to get the system

% disturbance-free model, the disturbance frequency(ies) and damping

% ratio(s), and the chosen model order, p.

[alpha_bar,beta_bar, theta_bar,d_freqgs,d_damps,pl=...
cbox_sys_id(trace_data,p,dt);
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% Download Disturbance-Free Model to DSP
load_model

% Note: Model data is saved during cbox_batch function to:
% c:\sge\cbox\models\current_cbox_model

case 2 % Start controller using reference model loaded earlier %

id_type='none '; % field must have the same number of spaces
% as the word "disturbance"

switch p
case 5

load models\cbox_p05_10sec theta_bar alpha_bar beta_bar
case 10

load models\cbox_pl0_10sec theta_bar alpha_bar beta_bar
case 15

load models\cbox_pl5_10sec theta_bar alpha_bar beta_bar
case 20

load models\cbox_p20_1l0sec theta_bar alpha_bar beta_bar
case 25

load models\cbox_p25_10sec theta_bar alpha_bar beta_bar
case 30

load models\cbox_p30_10sec theta_bar alpha_bar beta_bar
case 40

load models\cbox_pd0_l0sec theta_bar alpha_bar beta_bar
end
load_model % Download Disturbance-Free Model to the DSP

case 3 % Start controller using model identified in last experiment %

id_type='none '; % field must have the same number of spaces
% as the word "disturbance"

load models\current_cbox_model theta_bar beta_bar

% Download Disturbance-Free Model (loaded in init_ugp.m or done in
% prior experiment) to the DSP

load_model

end % switch for experiment type
I I I R R R R R R R R R R R R R R R LR R R L LR R R R X R R R LR LR PR P LR LS S L 12 1 1

% Start Selected Controller %
A AR AR R R R A A A A R R R R R A R AR A R R R R R R R LA AR R LR R L LR R L L LT LT L L1

start_time=clock; $ Mark this time as the start of the experiment
first_time = 1; % Used to control output to screen using eta

$ freq ID method
dist_on % Turn on the disturbance, if not already on
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while (etime(clock,start_time) <
begin_loop=clock;

switch control_type
case 1 % Controller using s
switch freq id_meth
case 1 %
%

id_type='disturbance';

update_off
control_off
set_noise_auto
pause (1) ;

90 dP 0P P

num_sec=3.0;
get_in_out_data

9P d0 d@ of

noise_off

% Do disturbance ID

p_dist=10;

[d_freqgs,d_damps]=...
cbox_freq id(t

“cbox_sys_id”, exc

9P 0P 0P of

resources. (thus t

% Determine disturbance
nfreq

control_freqs

| control_freqgs(l:nfreq)

load_freqgs %

experiment_duration)

ine/cosine basis

Sine/cosine - Disturbance freq ID via
input/output data

Disable control coefficient updating
Turn off control signal

Set white noise levels

Let initial turn-on transients die out

Duration of data capture

Get the input & output data and store
in the variable name 'trace_data'
Turn off the 6-strut excitation

race_data,p_dist,dt_data,max_£freq) ;

Note: the above function is essentially the same as

ept the routine stops as soon as the

frequencies are identified, thus saving computational

his routine is not provided)

info from cbox_freq id output
=length(d_freqgs);

=zeros (1,max_freq) ;

=d_freqgs;

Download frequencies to DSP

$ If first time through start data acquisition

if first_time ==
dist_reset %
%
%
dist_on %

If disturbances are using a variation
profile, this will reset them back to
their initial conditions. '

Turn on the disturbance

num_sec=data_duration;
dt_exper_data=ceil (num_sec/3) *dt; % Prevents overflow of

get_exper_data %
end

control_on %
update_on

% memory buffer.
Capture data

Turn on controller
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% Pause until time for the next frequency update

% (dist_loop_duration set at beginning of "start_ugp.m" )
while(etime(clock,begin_loop) < dist_loop_duration), end
first_time = 0;

case 2 % Sine/Cosine Method -
% Disturbance freq ID via disturbance effect data

num_sec=dist_loop_duration-0.5;
dt_eta_data=ceil (num_sec/3) *dt; % Prevents memory overflow
get_eta_data % Get the disturbance effect
% data and store in the
% variable name 'eta_hist'

% Do disturbance frequency ID (AR model order = tau)
tau=10;
[d_fregs,d_damps]l=...
eta2freq id(eta_hist, tau,dt_eta_data,max_freq, first_time);

% Determine disturbance info from eta2freq _id output
nfreg=length(d_freqs) ;
control_fregs=zeros(l,max_£freq);
control_freqgs(l:nfreq)=d_fregs;

load_fregs % Download frequencies to DSP
% If first time through start data acquisition, and turn on

% controller/update
if first_time ==

dist_reset_no_echo % These versions prevent
dist_on_no_echo % output to the screen
num_sec=data_duration;

dt_exper_data=ceil (num_sec/3) *dt; % Prevents overflow of

% memory buffer
get_exper_data
control_on_no_echo
update_on_no_echo
end

% Pause until time for the next frequency update
while(etime(clock,begin_loop) < dist_loop_duration), end
first_time = 0;

case 3 % Sine/Cosine Method -
$ Deliberately load the incorrect frequency

d_£fregs =dist_freq0(l:num_dist)* (1 + freq error/100);
nfreq =]length(d_£freqgs) ;

control_fregs =zeros(l,max_freq);

control_freqgs(l:nfreq) =d_fregs;

load_freqgs % Download frequencies to DSP
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% If first time through start data acquisition
if first_time ==
num_sec=data_duration;
dt_exper_data=ceil (num_sec/3) *dt; % Prevents overflow of
% memory buffer
get_exper_data
end

% Turn on controller
control_on
update_on

% Pause until time for the next frequency update
while (etime (clock,begin_loop) < dist_loop_duration), end
first_time = 0;

end
case 2 % Adaptive Basis Method

num_sec=data_duration;

dt_exper_data=ceil (num_sec/3) *dt; $ Prevents overflow of
% memory buffer

get_exper_data

control_on

update_on

while(etime (clock,begin_loop) < experiment_duration), end

% Do nothing - S-Function uses eta time history as the basis for
% the control signal, so the frequencies do not need to be
% estimated.

end
end % Experiment Complete

% Get and save the experiment data (script file not provided)
fetch_exper_data

% Turn off disturbance, noise (if present), controller, and updates
stop

% Let transients die out, then take noise level readings

pause(2);

num_sec=3.0;

dt_noise_data=ceil (num_sec/3) *dt;

get_noise_data % saved in variable ‘noise_data’
save models\current_noise_data noise_data dt_noise_data

plot_experiment_results % Plot results

fprintf ('\n\n\n STOP TIME REACHED - EXPERIMENT COMPLETE \n\n')
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SYSTEM IDENTIFICATION

function [alpha_bar,beta_bar, theta_bar,d_freqgs,d_damps,pl=...

cbox_sys_id(trace_data,p,dt)

% Do system id based on "noisy" input / output data using the

% "clear box" method of Phan & Goodzeit.

% alpha, beta: ARX model coefficients

% theta: [alpha beta] coefficients combined into one matrix
% p: order of ARX model ’
$ f: number of disturbance frequencies to eliminate

% u, y, dt: Input / output data, sample time

% Ap, Bp, Cp: State space model in observer canonical form

$ T: Eigenvector Matrix of Ap

% lambda: Eigenvalue matrix (block diagonals = eigenvalues)

$ Lambda: Ap transformed to modal form

% Gamma: Bp transformed to modal form

% Omega: Cp transformed to modal form

% Determine DARMA & State Space Models from the data, diagonalize, and
% find the disturbance frequency(ies). The wn vector is sorted by

% lowest to highest damping ratio, so the first wn is the most likely
% to be a disturbance.

% Calculate the DARMA model coefficients associated with the input/

% output data supplied:

%

% yv(k) = alpha(l)*y(k-1) + alpha(2)*y(k-2) + ... + alpha(p)*y(k-p)
% + beta(l) *u(k-1) + beta(2)*u(k-2) + ... + beta(p)*u(k-p)

%

% Assume number of inputs and outputs is 6 each (Full MIMO for UQP).
% Routine is coded for general MIMO with m inputs and g outputs.
in_struts =[1 2 3 45 6];

out_struts =[1 3 6]1;

m=length( in_struts); % Number of Inputs
g=length(out_struts); % Number of Outputs
u=trace_data(in_struts,:); % Each row is time history of inputs
y=trace_data(out_struts+6,:); % Each row is time history of outputs
L=length(u)-1; % number of data points in

% input/output data (k=0,1,2,..L)

n_imp=100; % The number of impulse response data

% points to calculate
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% Set the damping threshold (below which a mode is considered a
% disturbance) - the threshold should usually be set lower for higher
% model order.

switch p
case 5
damp_thresh=le-1;
case 10
damp_thresh=1le-1;
case 15
damp_thresh=5e-3;
case 20
damp_thresh=5e-3;
case 25
damp_thresh=le-4;
case 30
damp_thresh=1e-4;
case 40
damp_thresh=le-4;
otherwise
damp_thresh=5e-2;
end

% Build Y & V (See Goodzeit & Phan MAE Tech Report #2096 -
% Princeton University)

fprintf('\n\n >>> Organizing input/output data \n')
Y=y (:,p+1:L+1);
V=zeros (p*q+p*m, L-p+1) ;

for j=1:p
V{( (3-1) *m+1 : j*m,:) = u(:,j:L-p+3);
V(p*m + (j-1)*qg+l : p*m+j*q,:) = y(:,J:L-p+J);
end

% Use the pseudoinverse to determine the ARX model coefficients, alpha
% and beta

fprintf('\n >>> Calculating ARX model coefficients \n')
K =Y*V' *pinv(V*V') ;

CC_MT =K(:, l:p*m);
Minus_CM =K(:,p*m+l:p*m+p*q);
clear K Y V $ save memory space
alpha =[1];
beta =[1];
for j=1:p
alpha =[alpha Minus_CM(:,p*qg-j*qg+l:p*qg-(j-1)*q)];
beta =[beta CC_MT(:,p*m-j*m+l:p*m-(j-1)*m)];
end

clear Minus_CM CC_MT
theta=[alpha';beta'l;
fprintf('\n >>> ARX model complete \n ')
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% Transform to State Space Observable Canonical form
[Ap,Bp,Cp,Dpl=arx2ss(theta,p);
fprintf('\n >>> Converted to State Space form \n ')

% Transform to Modal (Block Diagonal) Form and calculate
% wn & zeta for all modes
[Am, Bm, Cm, Dm, num_modes,wn, zeta,m_idx] = ss2modal (2p,Bp,Cp,Dp,dt);

% Determine which modes are disturbance modes (by index), and how much
% each mode impacts the total pulse response of the system
[dist_modes,mode_norms]=...
analyze_modes (Am, Bm, Cm, Dm, num_modes,wn, zeta, m_idx, ...
damp_thresh,n_imp,dt);

% Output frequency information to the screen
fprintf('\n >>> Frequencies identified as disturbances are: \n')
for i=l:length(dist_modes)
fprintf('%104d - $9.4f Hz \n',i,wn(dist_modes(i))/2/pi)
end

% Eliminate the disturbance modes from the state space model
[A_bar,B_bar,C_bar,D_bar]=elim_dist (Am,Bm,Cm,Dm,wn,dist_modes,m_idx) ;
fprintf('\n >>> Disturbances Eliminated from State Space Model \n ')

% Return model to ARX form (keep its order = p)
fprintf('\n >>> Computing disturbance-free ARX model \n ')
[alpha_bar,beta_bar]l=ss2arx(A_bar,B_bar,C_bar,p);

theta_bar=[alpha_bar';beta_bar'];

% Save the model and data

save models\current_cbox_model alpha_bar beta bar theta_bar p dt A_bar
B_bar C_bar D_bar trace_data

save models\current_model_data trace_data dt

save models\thesis_dist_corrupt_model Ap Bp Cp Dp dt

d_fregs=wn(dist_modes) ;
d_damps=zeta(dist_modes) ;

plot_damp_and norm % Plots damping ratio and pulse response

% norms for each mode of the system
% (not provided)
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FREQUENCY IDENTIFICATION FROM DISTURBANCE EFFECT DATA

function [d_fregs,d_damps]=...
eta2freq id(eta_hist,p,dt,max_freq, first_time)

% Stephen Edwards May 1999

% Identify an AR model for the disturbance effect data

$ p: order of ARX model

% £f: number of disturbance frequencies to eliminate

% vy, dt: eta data, sample time

% max_freq The maximum number of disturbance frequencies that
% can be controlled

% Assume number of outputs is 6 (Full MIMO for UQP). The routine is
% coded for general MIMO with m inputs and g outputs.

out_struts =[1 2 3 4 5 6];

g=length(out_struts); % Number of Outputs

y=eta_hist (out_struts, :); % Each row is time histoy of outputs

L=length(y)-1; % number of data points in eta data
% (k=0,1,2,..L)

damp_thresh=1e-3; % Set the damping threshold (below
% which a mode is considered a
% disturbance)

if first_time ==
fprintf('\n >>> Estimating disturbance frequencies.... \n')
fprintf ('\n >>> Identified disturbance Frequencies are [Hz]: \n')
end

% Build ¥ & V

% (See Goodzeit & Phan MAE Tech Report #2096 - Princeton University)
Y=y (:,p+1:L+1);

V=zeros (p*q,L-p+1) ;

for j=1:p
rows = [(j-1)*qg+l : j*ql;
cols = [j:L-p+3jl;
V(rows , : ) =y( : , cols );
end

clear rows cols
% Use the pseudoinverse to determine the AR model coefficients, gamma

K =Y*V'*pinv(V*V');
gamma =[];
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for j=1:p
gamma =[gamma K(:,p*g-j*qg+l:p*q-(j-1)*q)];
end

clear K Y V

% Transform to State Space Observable Canonical form
[Am, num_modes,wn, zeta,m_idx] = ar2modal (gamma,p,dt);

% Determine which modes are disturbance modes (by index)
[dist_modes,not_controlled]=...
analyze eta_model (wn, zeta,damp_thresh,max_freq) ;

% Print out info to the screen
if isempty(dist_modes)
fprintf ('\n None')
else
fprintf('\n ')
for i=1l:length(dist_modes)
fprintf(' %$11.4f',wn(dist_modes(i))/2/pi)
end
if ~isempty(not_controlled)
fprintf (' *** Dist Freqgs Not Controlled = ')
for i=1l:length(not_controlled)
fprintf(' %11.4f',wn(not_controlled(i))/2/pi)
end
end
end

d_fregs=wn (dist_modes) ;
d_damps=zeta(dist_modes) ;

% Plot mode damping ratios
figure(2)
semilogy(wn/2/pi,abs(zeta), 'bx', ...
wn (dist_modes) /2/pi,abs(zeta(dist_modes)), 'ro', ...
[0 500], [damp_thresh damp_thresh], 'r--"')
title(['Disturbance ID Mode: Damping Ratio vs. Frequency, tau =.',...
num2str(p)])
text (300, damp_thresh*1.5, 'Damping Ratio Threshold')
axis ([0 500 le-7 max(abs(zeta))l])
grid on
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CONVERSION FROM ARX TO STATE SPACE FORM

function [A,B,C,D]l=arx2ss(theta,p)

% File provided courtesy of Neil Goodzeit, Lockheed Martin Missiles &
% Space (© Copyright by Neil E. Goodzeit, 1998, All Rights Reserved)

% .... Calculate the number of inputs and outputs
n_out = min(size(theta)) ;
n_in = (length(theta) - p*n_out) / p ;

% .... The ARX model response coefficients
idx = p*n_out ;

alpha = theta(l:idx,1l:n_out)"' ;

% .... The ARX model input coefficients
beta = theta(idx+l:idx+p*n_in,l:n_out)' ;

$ .... Construct the state space model in observable canonical form
A =11
B =11
for j = 1:p
jl1 = 3j-1;
idx = j1 * n_out + 1 ;
if j<p
A = [ A; [ alpha(:,idx:idx+n_out-1),
zeros(n_out,jl*n_out), eye(n_out,n_out),
zeros(n_out, (p-j-1)*n_out) ] 1 ;
else
A = [ A ; [ alpha(:,idx:idx+n_out-1),
zeros (n_out, jl*n_out) 11 ;
end
B = [ B ; beta(:,idx:idx+n_out-1) ] ;
end
C = [ eye(n_out,n_out), zeros(n_out,n_out*(p-1)) 1 ;
D = zeros(n_out,n_in) ;
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DIAGONALIZATION OF STATE SPACE MODEL

function [Am,Bm,Cm,Dm,n_mode,w_mode, z_mode,m_idx] =

ss2modal (Ap, Bp,Cp,Dp, dt)

% ss2modal.m

0 0P JP 9P P O° P O IP 0P OP 0P OP O dO OP OF dP OPF I P P of

90

. File provided courtesy of Neil Goodzeit, Lockheed Martin Missiles

& Space (© Copyright by Neil E. Goodzeit, 1998, All Rights
Reserved)

. Modified by Stephen Edwards 4 May 99

. Convert the input state-space model to modal form

Input parameters:

. Ap, Bp, Cp, Dp the input state-space model
. dt the sampling interval

. Output parameters:

. Am, Bm, Cm, Dm the state-space model matrices in modal form
.. n_mode the number of modes
.. w_mode the mode frequency (rad/sec)
z_mode the mode damping ratio
.om_idx the mode index matrix (n_mode, 2)

. Transform the model to modal coordinates

[V,Am] = eig(Ap);

i_eig = 1;

n_mode = 0;

for j = 1l:length(V) % Iterate on each eigenvector column

if imag(v(1l,3j)) == 0 % Real Eigenvector (lst order mode)

n_mode = n_mode + 1;
s = log(Am(j,j))/dt; % See annotations below
w_mode (n_mode) = abs(s);
z_mode (n_mode) = -real(s)/w_mode (n_mode) ;
m_idx (n_mode, 1:2) = [ 3 , 3 1:

% continued on next page
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else
if i_eig ==1

% Complex Eigenvector (2nd order mode)
% 1lst column of complex conjugate

V(:,3) = real(V{(:,3));
i_eig = 2;

n_mode = n_mode + 1;

s =

w_mode (n_mode)

z_mode (n_mode)

m_idx (n_mode, 1:

elseif i_eig ==

vi{:,3)
i_eig

imag (V(
1;

end

end

end

% Take real part

log(Am(j,j))/dt; % z=e”(s*T) --> s=(1ln(z))/T

% s=-sigma+j*wd

abs(s); % wn=sqgrt (sigma”2+wd"2)

-real

2) =

:,3))

(s) /w_mode (n_mode) ;
% zeta=sigma/wn
[ 3., 3+1 1;
% 2nd column of complex conj.

% Take imaginary part

. Calculate the poles and the modal coordinate state-space matrices

Am = inv (V) *Ap*V
Bm = inv (V) *Bp
Cm = Cp*V

Dm =
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CONVERSION FROM STATE SPACE TO ARX FORM

function [alpha,betal=ss2arx(A,B,C,p)

$ ss2arx.m Stephen Edwards May 1999
% Some elements of the code provided by Neil Goodzeit, Lockheed
% Martin Missiles & Space

% (© Copyright by Neil E. Goodzelt 1998, All Rights Reserved)

o

Calculate the order p ARX model coefficients
% from the state-space model matrices A, B, C

o0

alpha is the coefficient matrix of the past response
% beta is the coefficient matrix of the past input

n_in = min(size(B)) ;
n_out = min(size(C)) ;
n = length(a) ;

% Initialize matrices

Ap = eye(size(d)) ;
Op = C ;
Cp =B ;
Tp = [ zeros(n_out,n_in) ; C*B ] ;
% Raise A to the p power
for i = 1:p
if 1 ~= 1

% The observability and controlability matrices
Op = [ Op; C*Ap ] ;

Cp = [ Ap*B, Cp 1
% The Toeplitz Matrix
if i~=p
Tp = [ Tp ; C*Ap*B ] ;
end
end

Ap = Ap * A ;
end

% Construct the toeplitz matrix from the first column
for i = 2:p

% The row and column indices
col (i-2)*n_in + 1 ;
row (i-1)*n_out + 1 ;
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n_rows = (p - i)*n_out ;

if i ==p
Tp = [ Tp, zeros(p*n_out,n_in) ] ;
else
Tp = [ Tp, [zeros(i*n_out,n_in) ; Tp(row:row+n_rows-
1,col:col+n_in-1) 1 1 ;
end
end

% Calculate the observer gain matrix
M = -Ap*pinv(Op) ;

% Calculate the ARX model coefficients ( ordered from k-p to k-1)
% a's are coefficients of y, b's are coefficients of u

a = -C*M ;

b = C*(Cp + M*Tp) ;

[1 ;
[1 ;

alpha
beta

% Reorder the coefficients
for i = 1:p

id_a (p-i) *n_out+1 ;

non

id_b (p-i) *n_in+1 ;

alpha = [alpha, a(:,id_a:id_a+n_out-1) ] ;

beta = [beta, Db(:,id_b:id_b+n_in-1) ] ;
end
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ELIMINATION OF DISTURBANCE MODES

function
[A_bar,B_bar,C_bar,D_bar]l=elim_dist (Am,Bm,Cm,Dm,wn,dist_modes,m_idx)

% elim_dist.m Stephen Edwards 5 May 99

%

% A function to eliminate the disturbance modes from the modal state
% space model.

%

% Input Parameters:

%

% Am,Bm,Cm,Dm ..... State Space model in modal form

EJ 77 o U Natural frequencies of the modes

% dist_modes ...... A vector of the indeces for the disturbance modes
% (each 2nd order mode has one index value)

$ midx ........... Identified the states associated with each mode
% (one row for each mode)

%

$ Output Parameters:

%

% A_bar,B_bar,

% C_bar,D _bar ..... Disturbance-free State Space model

$ pbar ........... p value of disturbance free model

A_bar=Am;

B_bar=Bm;

C_bar=Cm;

D_bar=Dm;

num_dist=length(dist_modes) ;
states_to_elim=[];

for i=1l:num_dist
% Identify disturbance mode rows and columns
states_to_elim=[states_to_elim, m idx(dist_modes(i),:)];
fprintf ('\n >>> %9.4f Hz mode eliminated \n',wn(dist_modes(i))/2/pi)
end

A_bar(states_to_elim, :)=[1; % Remove rows
B_bar (states_to_elim, :)=[];
A_bar(:,states_to_elim)=[]; $ Remove columns

C_bar(:,states_to_elim)=[];
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SYSTEM MODE ANALYSIS

function [dist_modes,mode_norms]l=...
analyze_modes (Am, Bm, Cm, Dm, num_modes,wn, zeta,m_idx, damp_thresh,n_imp, dt)

% analyze_modes.m

% ______________________________________________________________________
% Original file provided courtesy of Neil Goodzeit, Lockheed Martin
% Missiles & Space (© Copyright by Neil E. Goodzeit, 1998,
% All Rights Reserved)
%
% . Modified by Stephen Edwards, May 99
%
% Input parameters:
% . Am, Bm, Cm, Dm the state-space model matrices in modal form
% . num_modes the number of modes
$ ... wn, zeta the modal frequencies (rad/sec), damping ratios
% ... m idx the mode index matrix (num_modes, 2)
% the starting and ending state for each mode
% damp_thresh the damping ratio threshold (below threshold
% means it's a disturbance)
% . n_imp the number of impulse response samples
% dt the sampling interval (seconds)
%
%
% Output parameters:
% dist_modes Indeces of modes that are disturbances (have
% damping ratios below the threshold passed into
% the function (damp_thresh) ).
% . mode_norms Inner product of total pulse response and modal
% pulse response - gives the correlation/
% contribution of each mode to the total output.
B —
% ... The number of inputs, outputs, and states
n_out = gsize(Cm, 1) ; % The number of rows of C
n_in = size(Bm, 2) ; % The number of columns of B
n_state = length(Am) ;
% ... Set the direct transmission matrix to zero
D_mode = zeros (num_modes*n_out, n_in ) ;
% ... Calculate the modal output matrix

C_mode = zeros (num_modes*n_out, n_state) ;

for i = 1:num_modes
idx = n_out*(i-1) + 1 ;
C_mode (idx:n_out*i , m_idx(i,1):m_idx(i,2)) = Cm(l:n_out,
m_idx(i,1):m_idx{(i,2)) ;
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end
mode_norms = zeros (num_modes,l) ;
for i = 1:n_in

..... The modal impulse responses
y = dimpulse(Am,Bm,C_mode,D_mode,i,n_imp) ;

..... The total impulse response
y_t= dimpulse (Am, Bm,Cm, Dm, i,n_imp) ;

..... Sum the impulse responses for each mode
for j = 1l:num_modes

idx = n_out*(j-1) + 1 ;
for jj = 1l:n_out
y2 (idx+jj-1) = y_t{(:,33) "' * y(:,idx+jj-1) ;

end
mode_norms(j) = mode_norms(j) + sum(y2(idx:idx+n_out-1))
mode_norms(j) = mode_norms(j) + max(y2(idx:idx+n_out-1))

end
- end

mode_norms=mode_norms';
clear idx

Sort modes from min to max damping ratio
[sorted_zeta,idx]=sort (abs(zeta));
sorted_wn=wn (idx) ;

Find the indeces of those below the damping threshold - assume
no first order modes will meet the criteria.

dist_modes=[];

i=1;

current_zeta=sorted_zeta(i);

while (current_zeta < damp_thresh)
dist_modes=[dist_modes idx(i)];
i=i+1;
current_zeta=sorted_zeta(i);
end
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DISTURBANCE MODE ANALYSIS

function [dist_modes,not_controlled]=...

analyze_eta_model (wn, zeta, damp_thresh, max_freq)

% analyze_eta_model.m Stephen Edwards Jul 1999

0P oP 0P of of 90 P OF I°P O° OP of o

e

9P o

o0 of

Input parameters:

. wn The natural frequencies

zeta The modal damping ratios
damp_thresh The damping ratio threshold (below threshold
means it's a disturbance)

. max_£freq The maximum number of frequencies that can be

handled by the processor
Output parameters:

dist_modes Indeces of modes that are disturbances (have
damping ratios below the threshold)

. not_controlled Modes that qualify as disturbances but are not

controlled (due to excessive number of them)

Sort modes from min to max damping ratio
[sorted_zeta, idx]=sort(abs(zeta));

Find the indeces of those below the damping threshold - assume

. no first order modes will meet the criteria.

dist_modes=[];
i=1;
current_zeta=sorted_zeta(i);

while (current_zeta < damp_thresh)
dist_modes=[dist_modes idx(i)];
i=i+1;
current_zeta=sorted_zeta(i);
end

Sort identified modes from lowest to highest frequency
(to prevent flip-flopping)
[sorted_wn, idx]=sort (wn({dist_modes)) ;
dist_modes=dist_modes (idx) ;

Only take the number of modes that the processor can handle
if length(dist_modes) > max_freqg
dist_modes =dist_modes (l:max_freq); .
not_controlled =dist_modes (max_freqg+l:length(dist_modes));
else
not_controlled =[];
end
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DISTURBANCE GENERATION

/'k

* dist_gen.c Generates time varying disturbances.

* The parameters are initialized in the Simulink

* initialization file (i.e. "init_id mimo", etc.)

*

*

* Passed Parameters:

* FLAG_DISTURB = Logic flag (1 = enable disturbances)

* FLAG_DIST VAR = Logic flag (1 = enable disturbance time-variaton)
* DIST AMP = The initial amplitude(s) of the disturbance(s)

* AMP_RATE = Rate of change of the amplitude(s)

* DIST_FREQ = The initial frequency(ies) of the disturbance(s)
* FREQ_RATE = Rate of change of the frequency(ies)

* PHASE = The phase angles of the dist. sinusiod(s)

* DT = Sample time (step size)

*

* Other Variables:

* NUM_DIST = The number of disturbance frequencies

*

*/

#define S_FUNCTION_NAME dist_gen
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define FLAG_DISTURB(S) ssGetSFcnParam(S, 0)
#define FLAG_DIST VAR(S) ssGetSFcnParam(S, 1)
#define DIST_AMP(S) ssGetSFcnParam(S, 2)
#define AMP_RATE(S) ssGetSFcnParam(S, 3)
#define DIST_FREQ(S) ssGetSFcnParam(S, 4)
#define FREQ_RATE(S) ssGetSFcnParam(S,5)
#define PHASE(S) ssGetSFcnParam(S, 6)
#define DT(S) ssGetSFcnParam(S, 7)
#define N_PARAM 8

#define TWO_PI 6.28318530717959
#define NUM_DIST mxGetN(DIST FREQ(S))
#define NUM_SECTIONS 5

#define WK_TIMER 3*NUM_DIST

static void mdlInitializeSizes (SimStruct *S)
{
int_T num_xrwork;
num_xwork=3*NUM_DIST+1; /* See ssSetNumRWork below */

ssSetNumSFcnParams (S, N_PARAM) ;
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if (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S))
{
/* Return if expected number != actual number */
return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 0)) return;
if (!ssSetNumOutputPorts(S, 2)) return;
ssSetOutputPortWidth(s, 0, 1);

/* The first output is a sum of all the
disturbances generated -- it contains
all of the diturbance frequencies. */

ssSetOutputPortWidth(S, 1, NUM_DIST);

/* The second output is a vector of the
actual disturbance frequencies. */

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, num_rwork) ;

/* RWork[0..n_dist-1]=Current dist. amplitudes.
RWork[n_dist..2*n_dist-1]=Current dist. fregs.
RWork[2*n_dist..3*n_dist-1]=Current dist. angles
RWork[3*n_dist]=Amount of time in profile section */

ssSetNumIWork (s, 1);
/* IWork[0]=Current Section Number */
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes

* Abstract:
* This function is used to specify the sample time(s) for your
* S-function.
*/
static void mdlInitializeSampleTimes (SimStruct *S)
{
real_T dt;
4at =mxGetPr (DT(S)) [0];
ssSetSampleTime (S, 0, dt);
ssSetOffsetTime(S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS
#if defined(MDL_INITIALIZE_CONDITIONS)
/* Note, this routine will be called at the start of simulation and
* if it is present in an enabled subsystem configured to reset
* gtates, it will be call when the enabled subsystem restarts
* execution to reset the states.
*/
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static void mdlInitializeConditions (SimStruct *S)

{
int_T i;
real T *amp =mxGetPr (DIST_AMP(S));
real T *freq =mxGetPr (DIST _FREQ(S));
real_T *phase =mxGetPr (PHASE(S) ) ;
real_T *RWork =ssGetRWork(S) ;
int_T *IWork =ssGetIWork(S);

for (i=0 ; i<NUM_DIST ; i++)

{ /* Initialize the amplitudes of
the disturbance frequencies

RWork[i]=amp({i];

/* Initialize the angles of
the disturbance frequencies
to their corresponding phase

angles

RWork[i+NUM_DIST]=freqli];

/* Initialize the angles of
the disturbance frequencies
to their corresponding phase

angles

RWork [i+2*NUM_DIST]=phase[i];

}

RWork [WK_TIMER] =0.0; /* Set timer to zero

IWork([0] =0; /* Counter for time-varying profile
that keeps track of the time
so that different sections of
the profile can have different
frequency variation rates

}
#endif /* MDL_INITIALIZE_CONDITIONS */

#undef MDIL_START /* Change to #define to add function */

#if defined(MDL_START)
static void mdlStart(SimStruct *S)
{

}
#endif /* MDL_START */

/*
* Function: mdlOutputs
*/
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static void mdlOutputs (SimStruct *S, int_T tid)

{
int_T i;
int_T flag_disturb =mxGetPr (FLAG_DISTURB(S)) [0];
int_T flag_dist_var =mxGetPr (FLAG_DIST VAR(S))I[0];
int_T *IWork =ssGetIWork(S) ;
int. T current_section;
real_T section_duration[NUM_SECTIONS]=
{1.075,4.0,1.0,4.0,100.0};
real_T section_freq rate[NUM_SECTIONS]=
{0.0,12.5664,0.0,-0.6283,0.0};
real_ T time_in_section;
real_T dt =mxGetPr (DT(S)) [0];
real_T *amp_rate =mxGetPr (AMP_RATE(S)) ;
real T *freq rate =mxGetPr (FREQ _RATE(S));
real_T *RWork =ssGetRWork (S) ;
real_ T *yl =ssGetOutputPortRealSignal (S, 0);
real T *y2 =gsGetOutputPortRealSignal (S, 1)
/*

* If the disturbance is enabled, update and output disturbance signal
*/
if (flag_disturb == 1)
{
switch(flag dist_var)
/* Update the amplitude, frequency, and angle if
variation enabled or if the time-varying
profile is being used */

case(0):
{ /* Update only the angle if time
variation is disabled */

for (i=0 ; i<NUM_DIST ; i++)
RWork[i+2*NUM_DIST] += RWork[i+NUM_DIST] *dt;

break;

}

case(l):

{ /* Use linear variation amounts in
set_dist.m to adjust the
amplitude, frequency, and angle */

for (i=0 ; i<NUM_DIST ; i++)

{
RWork[i] +=amp_rate[i] *dt;
RWork [1+NUM_DIST] +=freq rate([i]*dt;
RWork[i+2*NUM_DIST] +=RWork [1i+NUM_DIST] *dt;

}

break;

}

195




case(2):

{ /* Keep amplitude constant, but update
frequency using the pre-set rates
(by profile section) defined at the
beginning of this file, and also
update angle. This is only valid
for single disturbance frequencies

(i.e., 1i=0) */
current_section =IWork[0];
RWork [0+NUM_DIST] +=

section_freq rate[current_section] *dt;
RWork [0+2*NUM_DIST] +=RWork [0+NUM_DIST] *dt;

time_in_section =RWork [WK_TIMER];
time_in_section+=dt;

if (time_in_section > ]
section_duration[current_section])

{
current_section += 1;
time_in_section = 0.0;
}

IWork[O0] =current_section;

RWork [WK_TIMER] =time_in_section;

}
} /* End of amplitude, frequency, and angle updates */

/* Calculate disturbance (one signal includes all fregs) */
v1[0]1=0.0;
for (i=0 ; i<NUM_DIST ; i++)
{
/* Keep the angle between -2*pi and 2*pi radians */
if ( RWork[i+2*NUM_DIST] > TWO_PI )

{ RWork[i+2*NUM_DIST]-=TWO_PI;
if ( RWOfk[i+2*NUM_DIST] < -TWO_PI )
{ RWork[i+2*NUM_DIST]+=TWO_PI;
/* Out;ut disturbance signal */
y1{0] += RWork([i]*sin (RWork[i+2*NUM_DIST]) ;

/* Output true disturbance frequencies */
v2[i] = RWork[i+NUM_DIST] ;
} ,
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else /* Set output to zero if disturbance disabled */
y1[01=0.0; /* Output no disturbance */

for (i=0 ; i1<NUM_DIST ; i++)
y2[i]=0.0; /* Output fregs = 0 */

}

/* Disturbance calculations complete */

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)

static void mdlUpdate(SimStruct *S, int_T tid)

{

}
#endif /* MDL_UPDATE */

#define MDL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)

static void mdlDerivatives (SimStruct *S)

{

}
#endif /* MDL_DERIVATIVES */

static void mdlTerminate(SimStruct *S)

}
* Required S-function trailer *
¥roooooo=sz=mm===o==—zz=========%/

#ifdef MATLAB_MEX FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif
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DISTURBANCE EFFECT CALCULATION

/*
* eta.c S-function to calculate the disturbance effect

from input-output data and user supplied model coefficients
*/

#define S_FUNCTION_NAME eta
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

#define THETA_MATRIX(S) ssGetSFcnParam(S, 0)
#define P_MOD(S) ssGetSFcnParam(S, 1)
#define DT(S) ssGetSFcnParam(S, 2)
#define N_PARAM 3

static void mdlInitializeSizes(SimStruct *S)
{
int_T o) =mxGetPr (P_MOD(S)) [0];
/* order of ARX model */

int_T pg_pm =mxGetM (THETA_MATRIX(S)):;
/* coefficient matrix row dimension = p*qg + p*m */

int_T g =mxGetN(THETA_ MATRIX(S));
/* coefficient matrix column dimension =g */

int_T m;

m=(pqg_pm/p) -q;
ssSetNumSFcnParams (S, N_PARAM);
if (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount(S))

{
/* Return if expected number != actual number */

return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 2)) return;
ssSetInputPortWidth(S, 0, m);
/* 1lst Input = Inputs (to Actuators) */

ssSetInputPortWidth(S, 1, q):
/* 2nd Input = Outputs (from Sensors) . */

ssSetInputPortDirectFeedThrough(S, 0, 1);
ssSetInputPortDirectFeedThrough(s, 1, 1);
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if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(s, 0, q); /* Dist. Effect */

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, pqg _pm);
ssSetNumIWork (S, 0);
ssSetNumPWork (S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;
} .

static void mdlInitializeSampleTimes (SimStruct *S)

{
real_T dt =mxGetPr(DT(S))[0];

ssSetSampleTime (S, 0, dt);
ssSetOffsetTime (S, 0, 0.0);
}

#define MDL_INITIALIZE_CONDITIONS
#if defined (MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions(SimStruct *S)

{
int i;
real T *RWork =ssGetRWork(S):;
for (i =0 ; i < ssGetNumRWork(S) ; i++ )
{
RWork([i] = 0.0;
}
}

#endif /* MDL_INITIALIZE_CONDITIONS */

/* Function: mdlOutputs
* In this function, you compute the outputs of your S-function
* block. Generally outputs are placed in the output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T *theta =mxGetPr (THETA_MATRIX(S)):
/* pointer to the model coefficients matrix structure */

int_T P =mxGetPr (P_MOD(S)) [0];
/* order of ARX model */

int_T Pg_pm =mxGetM (THETA_MATRIX(S)) ;
/* coefficient matrix row dimension = p*g + p*m */

int_T q =mxGetN (THETA_MATRIX(S)) ;
/* coefficient matrix column dimension =g */
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/*

/*

int_T i, 3, m;

InputRealPtrsType ul =ssGetInputPortRealSignalPtrs(S,0)}

InputRealPtrsType u2 =ssGetInputPortRealSignalPtrs(S,1);
real T *y =ssGetOutputPortRealSignal (S, 0);
real_T *Rwork =ssGetRWork(S);

The RWork vector indeces are set up as follows:

[0] = yl(k-1) 1st sensor output, delayed by one time step
[1] = y2(k-1) 2nd sensor output, " " "

| .

[g-1] = ya(k-1) gth sensor output, " " "

[qg] = yl(k-2) 1st sensor output, delayed by two time steps

[2*g-1]1= ya(k-2) gth sensor output, " "

[p*g-1]= ya(k-p) gth sensor output, delayed by p time steps

"

[p*gq] = ul(k-1) 1st actuator input, delayed by one time step
[p*g+1]l= u2(k-1) 2nd actuator input, " " "

|

[p*g+m-1] = um(k-1) mth actuator input, " " "
[p*qg+m] = ul(k-2) 1st actuator input, delayed by two time stéps
[p*g+2*m-1] = um(k-2) mth actuator input, " " "

|

[p*g+p*m-1] = um(k-p) mth actuator input, delayed by p time steps

m=(pqg_pm/p) -q;

Shift the memory */
for (i = pgpm-1 ; i > p*q+m-1 ; i-- )
RWork[i] = RWork[i-m];

for (i = p*q-1 ; 1 > g-1 ; i--)
RWork[i] RWork[i-gl;

Save the current input */
for (i =0 ; i < qg ; i++)
RWork [i] = *u2[i];

for (i =0 ; i <m ; i++ )
RWork[p*g+i] = *ul[i];
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/* Calculate the disturbance effect — eta */

for (i =0; i< g ; i++ )
{
y[i] = 0.0;
for { j =0 ; j < pgpm ; j++ )
{
y[i] += theta[i*pg pm+j] * RWork[j];
}

#define MDL_UPDATE /* Change to #undef to remove function */
#if defined(MDL_UPDATE)

static void mdlUpdate(SimStruct *S, int_T tid)

{

}
#endif /* MDL_UPDATE */

#define MDI_DERIVATIVES /* Change to #undef to remove function */
#if defined (MDL_DERIVATIVES) '
static void mdlDerivatives (SimStruct *S)
{
} .
#endif /* MDL_DERIVATIVES */

static void mdlTerminate(SimStruct *S)

{
}
* Required S-function trailer *
¥om=mozooossmsmsoo==ozz========%/

#ifdef MATLAB_MEX FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

201




CONTROL CALCULATION - SINE/COSINE METHOD
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/

#define S_FUNCTION_NAME u_ff

u_f£f.

control signals'

C

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define

#define
#define
#define

#define

#define

#define

S-function to calculate the feedforward control signals

using the disturbance effect and the disturbance-free model.
Recursive Least Squares is used to converge on the feedforward
sine & cosine coefficients.

Some of the elements of this S-Function were modeled after

or taken from code developed by Neil Goodzeit (formerly at Princeton
University) in his file named "ff_fast.c", but were enhanced

to allow more than two control inputs.

David Marco (NPS) supplied a C-code routine to do matrix inversion
using the LU decompostion method.

FLAG_CONTROL(S) ssGetSFcnParam(S,0)

ssGetSFcnParam(S, 1)

ssGetSFcnParam(S, 2)

ssGetSFcnParam(S, 3)

ssGetSFcnParam(S,4) /* Covariance */
ssGetSFcnParam(S,5) /* Forgetting Factor */
ssGetSFcnParam(S, 6)

ssGetSFcnParam(S,7) /* Number of Inputs */
ssGetSFcnParam(S, 8)

ssGetSFcnParam(S, 9)

FLAG_UPDATE(S)
FLAG_FILTER(S)
BETA (S)
P_INIT(S)
LAMBDA (S)

DT(S)

M(S)

NFREQ(S)
FREQ(S)

N_PARAM
MAX_ COEF

MAX_FREQ
MAX_2_FR
MAX_CNTL

WK_COEF

WK_ANGL

WK_SC

10
36

3

6

6

1296

1332

1335

/*
/*

/*

/*

/*

/*

/*

/*

Number of S-Function parameters */
Maximum number of feedforward
coefficients = 2*m*MAX FREQ */
Maximum number of controlled
frequencies */

Two times the max number of
frequencies */

Maximum number of feedforward
controls */

The work vector location of the
feedforward coefficients
(MAX_COEF"2 elements) */

The work vector location of the
feedforward angles

(MAX_FREQ elements) */

The work vector location of the sines
and cosines (2*p*NFREQ elements) */
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#define N_IWORK 2 /* Number of integer work vector

elements */

#define TWO_PI 6.283185307

static void mdlInitializeSizes(SimStruct *S)

{

}

int_T p, n_in, n_outl, n_out2, n_out3, n_work;

int_T nctl =mxGetPr(M(S))([0]; /* The number of f£ff controls */
int_T g =mxGetM (BETA(S)); /* Number of rows of Beta = g */
int_T n_col =mxGetN(BETA(S)); /* Number of columns of Beta */

o) = n_col/nctl; . /* ARX model order */

n_in = q;

n_outl = nctl; /* feeforward signals */
n_out2 = q; /* residuals */

n_out3 = MAX COEF; /* feedforward coefficients */
n_work =

MAX_COEF*MAX_COEF + MAX COEF + MAX FREQ + 2*p*MAX_FREQ;

ssSetNumSFcnParams (S, N_PARAM) ; .
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount (S))
{
/* Return if expected number != actual number */
return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, n_in);

/* Input = Disturbance Effect (g channels) */
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 3)) return;
ssSetOutputPortWidth(S, 0, n_outl);
ssSetOutputPortWidth(S, 1, n_out2);
ssSetOutputPortWidth(S, 2, n_out3);
ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, n_work) ;
ssSetNumIWork (S, N_IWORK) ;
ssSetNumPWork (s, 0);

ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes

*
*
*

*/

This function is used to specify the sample time(s) for your
S-function. You must register the same number of sample times as
specified in ssSetNumSampleTimes.

203




static void mdlInitializeSampleTimes (SimStruct *S)

{
real_ T tstep =mxGetPr (DT(S)) [0];
ssSetSampleTime (S, 0, tstep);
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS
#if defined(MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)

{

int_ T i;

int_T *IWork =ssGetIWork(S) ;

real_ T *RWork =ssGetRWork (S) ;

real T p_init =mxGetPr (P_INIT(S)) [0];
/*

* Tnitilize covariance matrix, feedforward coef,
* and feedforward angles
*/

/* Zero the real work vector elements */
for (i =0 ; i < ssGetNumRWork(S) ; i++ )
RWork[i] = 0.0;

/* Initialize the cov matrix diagonal elements */ .
for (i =0 ; i < MAX_COEF ; i++ )
RWork [i+MAX_COEF*i] = p_init;

/* Zero the_integer work vector elements */
for (i =0 ; i < ssGetNumIWork(S) ; i++ )

IWork([i] = 0;

}
#endif /* MDL_INITIALIZE_CONDITIONS */

/* Function: mdlOutputs

* In this function, you compute the outputs of your S-function
* block.
*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

/*************** II\ype declarations **********************************/

InputRealPtrsType u =ssGetInputPortRealSignalPtrs(S,0);
real T *y_cont =gsGetOutputPortRealSignal (s, 0);
real_T *y_res =ssGetOutputPortRealSignal (S,1);
real T *y_coef =ssGetOutputPortRealSignal (S, 2);
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real_T
real T
real T
real_T
real_T

int_T
int_T
int_T
int_T
int_T
int_T
int_T

int_T
int_T
int_T
int_T
int_T

/* Temporary

real_T
real_T

real_T
real_T

real_T
real_T
real_T

real_ T
real_ T
real T
real_T
real_T
real_T

int_T
/* Variables
int_T
real T

real_T
real T

*RWork

=ssGetRWork(S)

*freq =mxGetPr (FREQ(S)) ;
*beta =mxGetPr (BETA(S)) ;
lambda =mxGetPr (LAMBDA(S)) [0] :
tstep =mxGetPr (DT(S)) [0] i
*IWork =ssGetIWork(S) ;
n_row =mxGetM (BETA(S)) ;
n_col =mxGetN (BETA(S) ) ;
nctl =mxGetPr (M(S)) [0] ;
nfreq =mxGetPr (NFREQ(S)) [0] ;
on_off =mxGetPr (FLAG_CONTROL(S)) [0] ;
enable =mxGetPr (FLAG_UPDATE (S)) [0] ;
enable_upd ;

counter ; /* The enable counter */
i, 3, k, 1, m /* Loop indices */

P
variables */

angle[MAX_2_FR]
coef [MAX_CNTL] [MAX_COEF]

idx, idx_c¢, idx_s, idx_f;

7

H

.
1

/*
/*

/*
/*

ff_angle A
c_angle_k A
s_angle_k A
c_temp A
s_temp ; /*

v_k[MAX CNTL]

res [MAX_CNTL]
gain[MAX_ COEF] [MAX_CNTL]
temp [MAX_COEF] [MAX_CNTL]
det

p_del

ncoef
for matrix inversion */

n, ki, sing_flag
b, bl, b2

.
14

.
14

/*
/*

/*

Work indexes */
The ARX model order */

ff sines/cosines */
The coefficient matrix
for the feedforward
recursion */

The ff angle */

The cosine of shifted
feedforward angle */
The sine of shifted
feedforward angle */
Temporary storage for
cosine */

Temporary storage for
sine */

The update gains */
P*coef' */

The update to cov
matrix elements */

a_local [MAX_CNTL+1] [MAX_CNTL+1]; /* [71[7]1 */
ainv[MAX_CNTL+1] [MAX_CNTL+1];
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/* Determine the ARX model order */
p = n_col / nctl ;

/*********** Evaluate the enable lOgiC ***************************/

IwWork = ssGetIWork(S); /* pointer to integer work vector */
enable_upd = IWork[0] ;
counter = IWork[1] ;

if ( enable != enable_upd )

{
if (enable == 0 )
{
enable_upd = 0 ; /* Disable the coefficient updates
immediately when commanded */
counter =0 ; /* Reset enable delay counter */
}
if (enable == 1)
{
if ( counter > p )
enable_upd = 1 ; /* Enable logic after a
p step delay */
else
counter += 1 ; /* Otherwise increment
the counter */
}
} /* End of enable logic */
IWork([0] = enable_upd ;
IWork{[1l] = counter ;

[*xxxxxxkxxx Zoro the feedforward equation coefficients ***¥*xxikdkxy
for (i =0 ; i < MAX CNTL ; i++ )

{
for ( § = 0 ; j < MAX_COEF ; j++ )
coef[i][j] = 0.0 ; /* Zero the feedforward
equation coefficients */
}

/******* Calculate the feedforward angles *************************/
for (i =0 ; i < nfreq ; i++ )

{
idx_f =2 * i ;
ff_angle = RWork[WK_ANGL + 1i] ;
ff_angle += freqg[i] * tstep;

if ( £ff_angle > TWO_PI )

ff_angle -= TWO_PI;
anglelidx_f 1 cos (ff_angle);
anglef{idx_f + 1] sin(ff_angle);
RWork [WK_ANGL + i] ff_angle;
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/****xxxx (Cglculate the linear equation coefficients *******xkkkskkk/

idx. c =2 * i * nctl; /* starting column index in coef
matrix for cosine terms */
idx_s = idx_c + nctl; /* starting column index in coef

matrix for sine terms */

for (k=0 ; k <p ; kt+t )
{

if (( k '= 0 )

{
c_temp = c_angle_k;
s_temp = s_angle_k;

}
if (( k == 0 )
{
c_temp = anglel[idx_f 1];
s_temp = angle[idx_f+1];
}

c_angle_k = RWork[WK_SC + k + idx_£f*p ];>/* Retrieve
cosines from
the table */

s_angle_k = RWork[WK_SC + k + (idx_£f+1)*pl; /* Retrieve
sines from

the table */

RWork [WK_SC + k + idx_f*p ]

c_temp; /* Shift the
cos table */

RWork[WK_SC + k + (idx_f+1) *p] s_temp; /* Shift the
sine table */

idx = k * nctl ; /* starting column index for beta matrix */

for ( j =0 ; j < n_xrow ; j++ )
{ for (1 =0 ; 1 < nctl ; 1++ )
{ coef[j] [idx_c+1l] += beta[j+(idx+1l)*n_row] * c_angle_k;
coef[j][idx_s+1] += betal[j+(idx+1l)*n_row] * s_angle_k;
} }

} /* End loop for p */

} /* End loop for nfreqg */
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[*x¥**xxxxxxxxx Update the feedforward control coefficients ***x*k*ixk%/
/***************** Calculate the eta residual **********************/

ncoef = nctl * 2 * nfreq ; /* Number of feedforward
coefficients to solve for */

for (i =0; i < n_row ; i++ )

{
y_k[i] = 0.0;
for ( j =0 ; j < ncoef ; j++ )
- k[i] += coef[il[j] * RWork[WK_COEF + jl;

/* The expected value of the disturbance effect */
res[i] = *u(i] - y_kI[il; /* Calculate the residuals */
v_res[i] = resl[i]; /* Output the residuals */

}

/************ Calculate the update gain matrix *********************/
for (i =0 ; i < ncoef ; i++ )

{
for ( j =0 ; j < n_row ; j++ )
{
temp[il[j] = 0.0;
for ( k = 0 ; k < ncoef ; k++ )
temp[i] [j] += RWork[i + MAX_COEF*k] * coef[j][k] ;
/* P*fi = P*coef' (ncoef x n_row) */
}
}

/* Prepare matrix "a_local" (fi'*P*fi + lambda*eye(n_row, n_row)) for
* jnversion. This routine uses indeces from 1..n (as opposed to
* 0..n-1), so the first row and column will be zeroed out before

* proceding. */

for (i =0 ; i <= n_row ; i++ )
a_locall0][i] = 0.0;

for (i =1 ; i <= n_row ; i++ )
a_local[i] [0] = 0.0;

for (i =1 ; i <= n_row ; i++ )
{
for ((j =1 ; j <= n_row ; Jj++ )
{
a_locallil[j] = 0.0;
if (i == 3)
a_locall(i]l[j] = lambda;

for ( k = 0 ; k < ncoef ; k++ )
a_locall[i]l[j] += coef[i-1]1[k] * templ[k][j-1];
/* fi'*P*fi + lambda*eye(n_row, n_row) */
/* = coef*P*coef'+lambda*eye(n_row, n_row) */
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/* Calculate matrix inverse and update gain only if logic is enabled.
* The matrix being inverted is equivalent to:

inv(fi'*pP*fi + lambda*eye(n_row, n_row))
*/

if ( enable upd == 1)
{

sing_flag = 0;

n = n_row;

for (i=1;i<=n;++i)
{
for (j=1;j<=n;++3j)
{
ainv[il[j] = 0.0;
} .
}

for (i=l;i<=n;++i)
{

ainv[i][i] = 1.0;
}

for (k=1;k<=n-1;++k)
{

b = a_locallk][k];
ki = k;

for (i=k+1l;i<=n;++i)

{
if( (fabs(b) - fabs(a_locall[i][k])) >= 0.0 )
{
}

else

{
b = a_localli] [k];
ki = i;

}

if( fabs(b) < 0.0001)
{
sing flag = 1;
break;

}

if( (ki-k) == 0)
{

}

else

{

for (j=k;j<=n;++3j)
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bl = a_locallk][jl;
a_locallk]{j] = a_locallki][3j1:
a_locallkil[j] = bl;

}

for (j=1;j<=n;++3j)

{

b2 = ainvIk]l[j];

ainv[k] [j] = ainv[kil[]j];
ainv(kil [j] = b2;

}
}
for (j=k+1;j<=n;++3j)
{
a_locallk]l[j] = a_locallk][j]/b;
}
for (j=1;j<=n;++3)
{
ainv([k][j] = ainvIk]([j]/b;
}
for (i=k+1;i<=n;++i)
{
for (j=k+1;j<=n;++3j)
{
a_local(i]l[j] = a_locall[il[j] -
a_locall(i][kl*a_locallk]l[j]:
}
for (j=1;j<=n;++3j)
{
ainv[il [j] = ainv[i][j] - a_localli]lk]*ainv[k][j]l;
}
}

}

if(sing_flag == 0)

{
for (j=1;j<=n;++3j)
{
ainv[n] [j] = ainv[n][j]/a_localln](n];
}

for (k=n-1;k>=1;--k)

{ for (j=1;j<=n;++3j)
) { for (i=k+l;i<=n;++i)
{ ainv(k][j] = ainv[k]l[j] - a_locallk][i]*ainv[i]l[]];
: }
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/% mexPrintf ("Singular or Ill-Conditioned Matrix\n"); */

/*
* MATRIX INVERSION COMPLETE *
* Now that Inversion is done, continue with Gain update
* (Remember that *ai pointer is 7x7, not 6x6 (when m=6))
*/
for (i =0 ; i < ncoef ; i++ )
{
for ( j =0 ; j < n_row ; Jj++ )
{
gain[i] [j] = 0.0;
for (k=0 ; k < n_row ; k++ )
gain[i] [j] += temp[il[k] * ainv[k+1][j+1];
/* L=P*fi'*inv(fi'*P*fi + lambda*eye(n_row, n_row)) */
}
}

}

/* End coefficient update enable (starts prior to matrix inversion) */

/* Update the parameter estimates */
for (i =0 ; i < ncoef ; i++ )

{
if ( enable_upd == 1 )
{
for ((j =0 ; j < n_row ; j++ )
RWork [WK_COEF + i] += gain[i][j] * res([J]:
} /* End coefficient update enable */

y_coef[i] = RWork[WK_COEF + il;
/* Put the coefficients in the output vector */

}

for ( i = ncoef ; i < MAX_COEF ; i++ )
y_coef[i] = 0.0;

/************ Update the covariance matrix *************************/
if ( enable _upd == 1 )
{ .
for (i =0 ; i < ncoef ; i++ )

{
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for ( j =1 ; j < ncoef ; j++ )

{
p_del = 0.0;
for (k=0 ; k < n_row ; k++ )
p_del += gain[i][k] * temp[j][k];
RWork[i + MAX_COEF*j] -= p_del;
RWork[i + MAX_COEF*j] /= lambda;
if (1 1=3)
RWork([j + MAX COEF*i] = RWork[i + MAX_COEF*j];
}
}
} /*End coefficient update enable */

/*¥*** Calculate the feedforward control, if enabled (else = 0) ****/
if ( on_off == 1)

{
for (i =0 ; 1

{

A

nctl ; i++ )

y_cont[i] 0.0;
for ( j =0 ; j < 2*nfreq ; j++ )
{
idx = j * nctl + i;
y_cont[i] += RWork[WK_COEF + idx] * anglel[jl;
}
}
else
{
for (i =0 ; i < nectl ; i++ )
{
y_cont[i] = 0.0;
}
}

} /******* End of mdloutputs *******/

#define MDI._UPDATE

#if defined (MDL_UPDATE)
static void mdlUpdate(SimStruct *S, int_T tid)
{

}
#endif /* MDL_UPDATE */

#define MDIL_DERIVATIVES /* Change to #undef to remove function */
#if defined(MDL_DERIVATIVES)

static void mdlDerivatives (SimStruct *S)

{

}
#endif /* MDL_DERIVATIVES */
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static void mdlTerminate(SimStruct *S)

}

/*==z=========================c=%
* Required S-function trailer *
fom==m=m======-cocozzzzsm====zzz==%/

#ifdef MATLAB MEX FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif :
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CONTROL CALCULATION - ADAPTIVE BASIS METHOD

/*
*
*
*
*
*
*
*
*
*
*
*
*

/

u_ff_eta.c

S-function to calculate the feedforward control signals
using the Clear Box Adaptive Basis Method. Recursive
Least Squares is used to converge on the feedforward
control signals' coefficients.

This version employs filtering of the eta signal to remove
frequencies associated with modes de-selected for control.

David Marco (NPS) supplied a C-code routine to do matrix inversion
using the LU decompostion method.

#define S_FUNCTION_NAME u_f£ff_eta_N6
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define

#define

#define

#define

FLAG_CONTROL (S) ssGetSFcnParam(S,0)

FLAG_UPDATE(S)
FLAG_FILTER(S)
BETA (S)
P_INIT(S)
LAMBDA (S)

DT (S)

BASIS(S)

FILT _ORDER(S)
FILT_ALPHA(S)
FILT_BETA(S)
N_PARAM

M

Q

N

MAX DEL
N_COEF
WK_COEF

WK_ETA

WK_FILT_ETA

N_IWORK

ssGetSFcnParam(S, 1)
ssGetSFcnParam(S, 2)
ssGetSFcnParam(S, 3)
ssGetSFcnParam(S, 4)
ssGetSFcnParam(S, 5)
ssGetSFcnParam(S, 6)
ssGetSFcnParam(S, 7)
ssGetSFcnParam(S, 8)
ssGetSFcnParam(S, 9)
ssGetSFcnParam(S, 10)

11 /* Number of S-Function parameters */

6 /* m = Number of inputs */

6 /* g = Number of outputs */

6 /* N = Number of basis sets needed =
2*Number of controlled frequencies */

72 /* Maximum amout of delay used in eta
history =

LIN] + pmax + 2 = 30 + 40 + 2 */

36 /* Number of ff coefficients=(m*N) */

1296 /* The work vector location of the ff
coefficients (N_COEF"2) */

1332 /* Start of the time history of the
disturbance effect, eta
(N_COEF~2 + N_COEF) */

1764 /* Start of the time history of the
filtered eta signal */

2 /* Number of integer work vector elems */

/* Function: mdlInitializeSizes */
static void mdlInitializeSizes(SimStruct *S)

{
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int_T p, n_in, n_outl, n_out2, n_out3, n_work ;

int_T pm =mxGetN (BETA(S)) ;
int_T delay[N] ={2, 7, 9, 12, 16, 22} ;
int_T 1_max =delay[N-1] ;
jo) = pm/M ;
n_in = Q ;
n_outl =M ;
n_out2 = Q ;
n_out3 = N_COEF ;
n_work = WK_FILT_ETA + MAX_ DEL ; /* */

/* Variable Definitions

*

delay Basis time shifts - defined here and in mdlOutputs

1_max Maximum amount of time history delay

o) ARX model order

n_in Number of inputs to S-function

n_outl " Number of elements in first output vector

n_out?2 Number of elements in second output vector

n_out3 Number of elements in third output vector

n_work Number of work vector elements; covariance,
coefficients, unfiltered eta time histories for all
six struts, and filtered scalar eta history for basis
strut - see comments at end of declarations in
mdlOutputs function.

* % F Ok ¥ X X X O X F ¥ *

ssSetNumSFcnParams (S, N_PARAM) ;
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))
{
return; /* Return if expected number != actual number */

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(sS, 0, n_in);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 3)) return;
ssSetOutputPortWidth(S, 0, n_outl);
ssSetOutputPortWidth (S, 1, n_out2);
ssSetOutputPortWidth(S, 2, n_out3);
ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, n_work) ;
ssSetNumIWork (S, N_IWORK) ;
ssSetNumPWork (S, 0):

ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0):;

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

215




/* Function: mdlInitializeSampleTimes */
static void mdlInitializeSampleTimes (SimStruct *S)

{
real T dt =mxGetPr(DT(S)) [0];
ssSetSampleTime (S, 0, dt);
ssSetOffsetTime(S, 0, 0.0);

}

#define MDL_INITIALIZE_CONDITIONS
#if defined(MDL_INITIALIZE_CONDITIONS)
static void mdlInitializeConditions(SimStruct *S)

{

int_T i;

int_T *IWork =gsGetIWork(S) ;

real T *RWork =gsGetRWork(S) ;

real_T p_init =mxGetPr (P_INIT(S)) [0];

/*
* Initilize the cov matrix, feedforward coef, and feedforward angles
*/

/* Zero all real work vector elements */
for (i =0 ; i < ssGetNumRWork(S) ; i++ )
RWork({i]l = 0.0;

/* Initialize the cov matrix diagonal elements */
for (i =0 ; i < N_COEF ; i++ )
RWork[i+N_COEF*i] = p_init;

/* Zero the integer work vector elements */
for (i = 0 ; i < ssGetNumIWork(S) ; i++ )
Iwork{il = 0;
}
#endif /* MDL_INITIALIZE_CONDITIONS */

/* Function: mdlOutputs */
‘static void mdlOutputs (SimStruct *S, int_T tid)
{

/*************** Type declarations **********************************/

‘InputRealPtrsType u =ssGetInputPortRealSignalPtrs(S,0);
real_T *y_cont =ssGetOutputPortRealSignal(S,0);
real_T *y_res =ssGetOutputPortRealSignal (S, 1) ;
real T *y_coef =ssGetOutputPortRealSignal (S, 2);
real T *RWork =ssGetRWork (S) ;

real T *beta =mxGetPr (BETA(S)) :

real T lambda =mxGetPr (LAMBDA(S)) [0]

real T max_del; /* Maximum delay of eta history */

real_ T dt =mxGetPr (DT(S)) [0] :

int_T *TIWork =gsGetIWork (S) ;

int_T basis =mxGetPr (BASIS(S)) [0] ; /* Basis strut # */
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int_T pm =mxXGetN (BETA(S)) H
int_T delay[N]1={2, 7, 9, 12, 16, 22} ; /* Time shifts */
int_T 1_max =delay[N-1] ;  /* Max delay */
int_T on_off =mxGetPr (FLAG_CONTROL(S))[0];
int_T enable =mxGetPr (FLAG_UPDATE(S))[0] ;

/* The externally commanded coefficient update enable */

int_T enable_upd;
/* The internal feedforward coefficient update enable */

int_T counter;
int_T i, j, k, 1 ; /* Loop indices */
int_T P ; /* ARX model order */

/* Variables for eta filtering */
int_T filt_enable=mxGetPr (FLAG_FILTER(S)) [0];
/* The enable for the filtering of eta */

int_T filt_ord =mxGetPr (FILT_ORDER(S))[0];
/* Order of ARX model for eta filter */

real_T *filt_beta =mxGetPr (FILT_BETA(S)):;
real_T *filt_alpha=mxGetPr (FILT_ALPHA(S));
/* Pointers to filter's ARX model coeff’'s */

/* Temporary variables */

real_T Phi [N_COEF] [Q] ; /* Phi matrix */
real_ T eta_star[MAX_DEL+1] ; /* Scalar eta history */
real T eta_hat [M] ; /* Estimated eta */
real T res [M] ;

/* residual = -eta + eta_hat =y - y_ hat (y = -eta ) */
real_T gain[N_COEF] [Q] ;

/* The update gain matrix = P*Phi*inv[Phi'*P*Phi+R] */
real_T temp [N_COEF] [Q] ; /* P*Phi */
real_ T  det ;
real_ T p_del ;

/* The update to each covariance matrix element */

/* Variables for matrix inversion */

int_T n, ki, sing_flag ;
real T b, bl, b2 ;
real T a_local[Q+1][Q+1] ; /* [71(07]1 */
real T ainv[Q+1]1[Q+1] ; /* L7107]1 */

/*The RWork vector indeces are set up as follows:

* RWork[0 to N_COEF”~2-1] -- The feedforward coefficient cov matrix
* (stored following Matlab convention)

* RWork([last +1 to last + N_COEF] -- The feedforward coeff’s
* RWork[last +1 to last + MAX_DEL*(] ~-- The eta time history

* RWork[last +1 to 1last + MAX DEL] -- History of filtered eta
*/
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/* Determine the ARX model order */
p=pm/ M;

/*********** Evaluate the enable lOgiC ************/

IWork = ssGetIWork(S) ;
enable_upd = IWork([O0] ;
counter = IWork{l] ;

if ( enable != enable_upd )

{
if (enable == 0 )
{
enable_upd = 0 ;
counter =0 ;

}

if (enable == 1 )
{
/* Enable control updates after a delay of (l_max+p) steps */
if ( counter > 1l_max + p )
enable_upd = 1 ;

/* Otherwise increment the counter */

else
counter += 1 ;
}
} © /* End of enable logic */
IWork[0] = enable_upd ;
IWork[1l] = counter :

/********** Shift the eta time history ***********/
max_del = 1_max+p+2;
for (i = (max_del)*Q-1 ; i > Q-1 ; i-- )

RWork [WK_ETA+i] = RWork[WK_ETA+i-Q];

/************ Store the new eta data *************/

for (i =0; 1i<Q ; i++ )
RWork [WK_ETA+i] = *ufi];

/********** Filter eta if enabled ***************/

if ( filt_enable == 1 )

{

/* Shift filtered eta history, then calc. new filtered value */

for (i = max_del ; 1i > 0 ; i--)
RWork [WK_FILT ETA+i] = RWork[WK_FILT ETA+i-1];

RWork [WK_FILT_ETA] = 0.0;
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for (i =1 ; i <= filt_oxd ; i++ )
RWork [WK_FILT ETA] -= filt_alphal[i] * RWork[WK_FILT ETA+i];

for (i =0 ; i <= filt_ord ; i++ )
RWork [WK_FILT ETA] += filt_betal[i] *
RWork [WK_ETA+Q*i+basis-1];

/* Form Basis vector from filtered scalar eta basis */

for (i =0 ; i < max_del ; i++ )
eta_star[i] = RWork[WK_FILT ETA+i];
}

else

{

/* Form scalar basis vector directly from unfiltered eta basis */
for (i =0 ; 1 < max_del ; i++ )

eta_star[i] = RWork[WK_ETA+Q*i+basis-1];
}

/**xkxkx%kx Calculate the phi matrix ****xxx*xkx/

for (1 =1 ; 1 <=N; 1++ )

{
for (i =0 ; i< Q ; i++ ) /* rows */
{
for (3 =0 ; j<M; j++ ) /* columns */
{
Phi[(1-1)*M+3j1[i] = 0.0;
for (k=0 ; k<p ; kt+ )
{
Phi[(1-1)*M+j]1[i] += betalk*Q*M + j*Q +i]
*eta_star([delay[1-1]+k+1];
}
}
}
}

/*********** Calculate the eta residual ************/
for (i =0 ; i<0Q; i++ )
{
eta_hat[i] = 0.0;
for ( j =0 ; j < N_COEF ; j++ )
eta_hat[i] += Phi[3j][i] * RWork[WK_COEF + 3j];
/* The expected value of the disturbance effect */

res[i] = -(*ul[i]) - eta_hatl[il;
/* Calculate the residuals */

y_res[i] = resl[i];
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/* Output the residuals */
}

/************ Calculate the update gain matrix *********************/

for (i =0 ; i < N_COEF ; i++ )

{
for (J =0 ; 3 <Q; j++)
{
temp[i] [j] = 0.0;
for ( k = 0 ; k < N_COEF ; k++ )
temp{i] [j] += RWork[i + N_COEF*k] * Phi[k]l[jl;
/* = P*¥Phi (N_COEF x Q) */
}
}

/* Prepare "a_local" (fi'*P*fi + lambda*eye(q, q)) for inversion.
* This routine uses indeces from 1..n (as opposed to 0..n-1),
* go the first row and column will be zeroed out before proceding.

*/

for (i =0 ; i<=Q ; i++ )

a_local[0][i] = 0.0;
for (i =1; i<=0Q ; i++ )
a_localli]l[0] = 0.0;
for (i =1 ; i<=0Q ; i++ )
{
for ((§ =1 ; 3 <=0Q ; j++ )
{
a_localli]l[j] = 0.0;
if (i == 3J)
a_local[il{j] = lambda;
for ( k = 0 ; k < N_COEF ; k++ )
a_local[il[j] += Phi[k][i-1]) * templ[k][j-11;
/* Phi'*pP*Phi + lambda*eye(q, q) */
}
}

/* Matrix Inversion code omitted - it is exactly the same as
* that in the Sine/Cosine Method’s code.

*/

/* Now that Inversion is done, contihue with Gain update
* (Remember that *ai pointer is 7x7, not 6x6 (when m=6)
*

/ for (i =0 ; i < N_COEF ; i++ )
{ for (J =0; 3 <Q; j++)
;ain[i][j] = 0.0;
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for (k=0 ; k< Q ; k+t+ )
gain[il [j] += temp[i] [k] * ainv[k+1][j+1];
/* L=P*fi'*inv(fi'*P*fi + lambda*eye(q, q)) */
}
}

} /* End coeff update enable (starts prior to matrix inv) */

/****%%%%% Update the parameter estimates ****¥*¥¥kk¥k/
for (i =0 ; i < N_COEF ; i++ )

{
if ( enable_upd == 1 )
{
for (J =0; j<Q; j++ )
RWork [WK_COEF + i] += gain[il[j] * res([jl:
} /* End coefficient update enable */

y_coef[i] = RWork[WK_COEF + i];
/* Put the coefficients in the output vector */

}

[r*xxxkxkkkk Update the covariance matrix ***&xdxdkxdx/
if ( enable_upd == 1)
{
for (i =0 ; i < N_COEF ; i++ )

{
for ( j =1 ; j < N_COEF ; j++ )
{
p_del = 0.0;
for (k=0 ; k< Q ; k++ )
p_del += gain[i][k] * temp[j][k];
/* Assumes cov matrix is symmetric */
/* ie, temp[j]l([k] represents Phi'*P */
RWork[i + N_COEF*j] -= p_del;
RWork[i + N_COEF*j] /= lambda;
/* Employ forgetting factor */
if (i1=3)
RWork[j + N_COEF*i] = RWork[i + N_COEF*j];
/* Force Symmetry */
}
}
} /*End coefficient update enable */

/* Calculate the feedforward control, if enabled (else = 0) */
if ( on_off == 1)
{
for (4 =0 ; 3 <M ; j++ )
{
y_cont[j] =
for (i =0 ;
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y_cont[j] -= RWork[WK_COEF + (i)*M +j] *
eta_star([delay([il];
/* Note: Minus sign (-=) above is to counteract */
/* minus sign in summing block in Simulink diagram */
}
}
else
{
for ( j =0 ; J <M; j++ )
{
y_cont[j] = 0.0;
}
}

} /********** End of mdloutputs ***************/

#define MDL_UPDATE

#if defined(MDL_UPDATE)
static void mdlUpdate (SimStruct *S, int_T tid)
{

}
#endif /* MDL_UPDATE */

#define MDI,_DERIVATIVES

#if defined (MDL_DERIVATIVES)
static void mdlDerivatives (SimStruct *S)
{

}
#endif /* MDL_DERIVATIVES */

static void mdlTerminate (SimStruct *3)

* Required S-function trailer *
*=============================*/

#ifdef MATLAB MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif
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