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ABSTRACT

This research concerns the development of cooperative control of two spacecraft
mounted two-link manipulators as they reposition a common payload. Lagrangian formu-
lation is used to determine the system equations of motion. Lyapunov stability theory is
used to develop the cooperative control by using a reference trajectory and reference actu-
ator torques. Polynomial curves represent potential reference trajectories. Numerical
methods select specific reference trajectories to minimize the disturbance torque transmit-
ted to the spacecraft during the payload repositioning maneuver. The reference actuator
torques are selected to minimize weighted norms of the torques. Analytical and experi-
mental models of planar motion are used to study the performance of different cooperative
controllers. The fifth order polynomial reference trajectory leads to superior performance
in terms of spacecraft attitude accuracy, actuator torque magnitude, payload repositioning
accuracy, and maneuver time. The higher order polynomial reference trajectory results in
only minor improvement in performance. The experimental results verify the concept of

cooperative control.
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I. INTRODUCTION

A. BACKGROUND AND LITERATURE SURVEY

Robots are presently an integral part of industrial processes. They perform tasks with
high precision, speed and reliability. These same features make robots attractive with
regards to space applications.

Space based robotics platforms experience conditions unlike those of their terrestrial
counterparts. With respect to the dynamics of the systems, the most notable difference is
the absence of a fixed base on which to locate the manipulators. The consequence of the
difference is that the motion of the space based manipulator transmits forces and moments
to its mounting base resulting in translation and rotation of the base itself. This of course
impacts the location of the manipulator’s end effector. The problem is further complicated
in that the disturbances are not simply a function of the present manipulator joint angles
but are also a function of the joint angle histories preceding the current configuration.
(Ref. 1)

A number of approaches have been used for dealing with this coupling of joint angle
histories and spacecraft main body attitude. Wang (Ref. 2) eliminates the problem by
carefully defining what he expects of his dual-arm maneuverable space robot. He preposi-
tions the manipulators such that they are configured to grasp the payload once the vehicle
moves within range. After the manipulators are in position, their joints are locked while
the spacecraft maneuvers to a location and attitude near the payload. Next, the vehicle
approaches the payload in a straight line until the end effectors can grasp the payload.
While the manipulator joints remain locked, the vehicle repositions the entire rigid body

system to the desired payload destination. At this point, the payload is released and the




vehicle backs away along a straight line. The repositioning of the payload is accom-
plished by means of the vehicle attitude control rather than altering the joint angles in the
manipulators. The manipulators themselves are not moved except when the attitude dis-
turbance they impart to the vehicle is of no importance. Maintaining vehicle attitude dur-
ing manipulator motion is not a requirement.

Longman, Lindberg and Zedd (Ref. 3) calculate the disturbance torques caused by
manipulator motion. This information is used to calculate reaction wheel commands
which will compensate for the disturbance torques. In this way, spacecraft attitude control
is maintained while the manipulator is repositioned.

If the vehicle does not contain reaction wheels, the primary source of attitude control
is probably reaction control thrusters. Because fuel is consumable and hence mission lim-
iting, firing thrusters to hold spacecraft attitude should be avoided whenever possible.
Vafa and Dubowsky (Ref. 4) and Longman (Ref. 5) use similar approaches to eliminate
the need for reaction thruster firings. Both techniques involve constructing a manipulator
trajectory which involves revolving the manipulator in a small coning motion at interme-
diate stages of the payload repositioning maneuver. This motion imparts a slow rotation
of the spacecraft about the coning axis. Careful use of the coning locations permits repo-
sitioning of the payload between any arbitrary locations (within manipulator reach) and
attitudes while also changing the spacecraft to any desired attitude without the need for
thruster firings. This technique does not, however. maintain a particular spacecraft atti-
tude during the maneuver.

Nakamura and Mukherjee (Ref. 6) use a technique called the bi-directional approach.
This method represents a six degree of freedom (DOF) manipulator mounted on a space
vehicle as a nine variable system (six joint angles and three spacecraft attitude angles)
with six inputs (the manipulator joint torques). They attack the problem from both ends

by integrating forward from the initial conditions and backwards from the desired final




conditions. A Lyapunov function guarantees that the two solutions will converge at some
intermediate time during the maneuver. As in Ref 4 and Ref 5, the payload is reposi-
tioned to the desired location and attitude and the attitude of the spacecraft main body is
changed to its desired orientation. However. the main body attitude during the maneuver
is not controlled. Furthermore, the joint angle trajectories calculated by this method con-
tain rapid, large oscillations near the maneuver start and stop times and noncontinuous
derivatives at the convergence time.

Vafa (Ref. 7) succeeds in using a single space-based manipulator to control spacecraft
attitude during a repositioning maneuver. He does this by employing a nine DOF manipu-
lator. This manipulator has enough redundancy in its kinematics to control the end etfec-
tor location and attitude and the spacecraft attitude. Six DOF are allocated to
repositioning the payload and the remaining three DOF are used to control the spacecraft
attitude.

Like Ref. 7, the primary objective of Chung, Desa and deSilva (Ref. 8) is to address
the disturbances transmitted to the spacecraft by the manipulator motion. They also use a
single manipulator with redundant kinematics. Because they use inverse kinematics to
find the joint torques, the manipulator redundancy prevents the existence of a unique solu-
tion. A solution is selected from among the infinity of possible solutions by means of
minimizing a cost function of the magnitudes of the forces and torques transmitted to the
base.

Torres and Dubowsky (Ref. 9) also focus on the spacecraft attitude disturbances
caused by manipulator motion. They recognize that for any given point in joint space,
there is a direction of motion which produces minimum spacecraft attitude disturbance
and a perpendicular direction of motion which produces maximum spacecraft attitude dis-
turbance. A tool called the enhanced disturbance map (EDM) depicts these directions

graphically. The FDM permits users to plan manipulator trajectories that lie on or near




zero disturbance paths. For non redundant manipulators, this may involve repositioning
the spacecraft itself prior to the manipulator repositioning maneuver. If the manipulator
has redundant kinematics, one can find a zero disturbance path to connect the manipulator
trajectory endpoints without having to reposition the spacecratt initially. This technique
considers only the location of the manipulator endpoint and not its attitude.

Configurations with multiple manipulators have also been explored. The closed chain
nature of these configurations prevent the use of some of the techniques already discussed.
In addition, controlling multiple manipulators raises the issue of cooperation between the
manipulators.

Nguyen, Pooran and Premack (Ref. 10) develop a PD controller for a fixed base, two
DOF, closed chain manipulator system. The system is linearized by means of Taylor
series expansion about a point designated as the robot’s “home” point. Pole placement is
then used to select controller gains.

Hu and Goldenberg (Ref. 11) derive an adaptive control scheme for multiple nonre-
dundant manipulators mnounted to a fixed base. In this reference, coordinated control
involves controlling the motion of the grasped object, the contact forces between the
object and its environment, and the internal forces within the object caused from being
held by more than one manipulator.

For a space based system, contact forces between the payload and its environment are
less likely to be imponant. Walker, Kim and Dionise (Ref. 12) present just such an adap-
tive controller.

Coordinated control of multiple manipulators assumes a different meaning according
to Yoshida, Kurazume and Umetani (Ref. 13). Although they propose a system with two
manipulators, only one actually grasps the payload. The other is used to provide counter-

balancing torques to the spacecraft main body. The role of the second manipulator is sim-




ilar to a reaction wheel in that its primary function is to control spacecraft attitude rather
than reposition a payload.

Ahmad and Zribi (Ref. 14) apply a Lyapunov controller to a fixed base, multiple
manipulator system. As in Ref. 12, they are concerned with controlling the payload posi-
tion and its internal forces. To do so, the method requires sensors to measure the forces
and moments created by each manipulator. They also present an adaptive version to con-
trol this system.

While still addressing payload position and internal forces, Schneider and Cannon
(Ref. 15) use a technique called object impedance control to achieve coordinated control
among the manipulators. This method views the payload as being anchored to a desired

location by a spring/damper system.

B. DISSERTATION OVERVIEW AND OBJECTIVES

This research is concerned with the cooperative control of a space based manipulator
system with multiple manipulators handling a common payload. The scope is limited to
planar motion in which the spacecraft is allowed to rotate but not to translate. These
restrictions permit experimental verification in the Spacecraft Dynamics and Control Lab-
oratory at the Naval Postgraduate School. The objectives of this research are to 1) develop
a stable control law which facilitates cooperation among the manipulators as they reposi-
tion the payload, 2) minimize joint actuator effort, 3) reduce the disturbance torque trans-
mitted to the spacecraft main body by the manipulator motion, and 4) validate the
analytical development with experimental results.

Chapter II develops the analytical model in detail. Coordinate systems are defined and
the equations of motion are derived. A technique for finding control torques which mini-

mizes a weighted norm is presented. A globally stable control law is developed using




Lyapunov methods. The idea of using a reference trajectory to describe the motion is
applied as are methods for choosing the reference trajectory.

Chapter III verifies the analytical model with several test cases. The model is evalu-
ated for compliance with the principles of conservation of kinetic energy and angular
momentum. After establishing the validity of the model, results from simulations are pre-
sented. The stability of the controller is illustrated as is the dramatic improvement in per-
formance when a reference trajectory is included. Results from a simplified control law
which is more practical to implement are included and compared to the complete control
law version.

Discussion of the experimental work is contained in Chapter [V. This chapter includes
a description of the experimental setup. As might be expected, actual hardware demon-
strated that there are differences between the ideal world of the analytical model and the
real world of hardware implementation.

The summary and concluding remarks are presented in Chapter V. This chapter also

contains suggestions for future work in this field.




II. ANALYTICAL MODEL

The analytical model represents a spacecraft with two manipulators attached. The
manipulators have already firmly grasped an object hereafter referred to as the payload.
The manipulators are about to reposition the payload with respect to the spacecraft. The
ensuing dynamics between the spacecraft, manipulators, and payload are the topic of this
research. What occurs before the manipulators grasp the payload and after they release it
is beyond the scope of this investigation. The scope is narrowed further by confining the
motion to be two dimensional and allowing the spacecraft to rotate but not translate.
These assumptions are consistent with hardware restrictions during experimental verifica-

tion.

A. COORDINATE SYSTEMS

Figure 1 shows a schematic of the overall system. This diagram illustrates the rela-
tionship between the coordinate frames used to develop the equations of motion. All
angles are measured positive counterclockwise. The centerbody, manipulator links, and
payload are assumed to be rigid bodies. Therefore, member lengths (¢ |, { 5. &1, {r2, and
{p), distances to member centers of mass (4, &1 1. &1.2. {r1» &r2> and &p), and the loca-
tion of the left and right shoulders (¢, 0; (. {0, and Og() remain constant. An inertial
axis system is located on the centerbedy at the point of rotation. A body fixed coordinate
frame uses the same origin as the inertial frame but rotates with the spacecraft centerbody.
The x-axis of this frame points to the centerbody center of mass. The centerbody attitude,
0y, is the angle between the inertial x-axis and the spacecraft centerbody x-axis. Each

manipulator link has its own set of body axes. A coordinate frame attached to the left
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Figure 1: Dual Two-Link Manipulator Configuration




shoulder aligns its x-axis along the longitudinal axis of manipulator Link L1. The attitude
of this link, 6; |, is zero when the link lies on a ray extending from the inertial ornigin
through the left shoulder. The attitude of Link L2 is defined by a coordinate trame
attached to the left elbow. The attitude of this link, | 5, is zero when the link is parallel
with the proceeding link, Link L1. Similar coordinate frames and definitions apply to the
right manipulator. The payload attitude, Oy, is referenced to the inertial frame. The Carte-
sian coordinates of the payload center of mass are also with respect to the inertial frame.
A set of generalized coordinates which describe the system include the centerbody atti-
tude, joint angles for all of the manipulator links, and payload attitude and position.

T

l
9]) X]) Yl)[ (l)

q= 19,006, ,0;, 0

Six joint actuators apply torques at the shoulder, elbow, and wrist of each manipulator.
A reaction wheel applies a torque to the centerbody. The actuators can be grouped into a

control vector

T
u= l:uwh ULs Uie Yw Urs YRE ”Rw-j @
where the first element is the reaction wheel torque. The remaining elements are joint
actuator torques. The first letter of their torque subscripts indicates left or right arm. The

second subscript indicates shoulder (S), elbow (E) or wrist (W).

B. EQUATIONS OF MOTION
The equations of motion for this system are developed using Lagrange’s equations for
a dynamic system with holonomic constraints.

2 .
i(a_Lj—"L:Q+A1x 3)
dt a4 oq ; -

subject to constraints




AG+A, =0 4)

where L=T-V
T is kinetic energy
V is potential energy
q is the generalized coordinates vector
q is the generalized velocities vector
Q is the vector of applied nonconservative forces
ATZ\ are the constraint forces
Beginning with Lagrange’s equation, the equations of motion can be rearranged into
an alternate form. The inertia matrix, M, is a function of the generalized coordinates.
Since the potential energy is a function of only the generalized coordinates, the partial of
the Lagrangian with respect to the generalized velocities does not contain any potential
energy terms.

JL 3

oq

Mq )

Differentiating Eq. (5) with respect to time leads to

d (OL TdM . TOM
a = Md . = Md + 6
dt(aq) ER R 79 3¢9 ©)

Replacing the Lagrangian with expressions for kinetic energy and potential energy

results in

oL 17 1éM Y ¢V
oL _ 1 (ql (7{ 'F]) N (;_ %)
oqg 2 oq cq
Eq. (6) and Eq. (7) can be substituted back into Eq. (3) to produce

1/ T 'V T

Ma+ (4" M)+ Y = @A™ )

T2\ 0q- aq - -
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The second term on the left-hand side of Eq. (8) contains the centnipetal and Coriolis

torques. Replacing this with the G matrix leads to
Mg+G(q,q)+ . =Q+A A 9)
¢ q
After substituting the matrix form of the generalized forces into the equations of
motion, one has
AV .
Ma+G+ - = Bu+A'A (10)
cq
The following sections develop expressions for the inertia matrix, Coriolis and cen-
tripetal accelerations, generalized forces, and constraints imposed by the closed chain
geometry of the system.
I. Inertia Matrix, M

The inertia matrix is found by calculating the system kinetic energy and expressing

it in the form
1T 1
T= 4 [M(@]d (i)

The inertia matrix is the term bracketed by the generalized velocity vectors. The

total system kinetic energy is the sum of the kinetic energy of all the pieces.
T = T0+TLl +Tl,2+TRl +TR2+TI’ (12)
Kinetic energy of individual components can be found from

12 1 L
T, = iliwi +émi(_r-r) (13)

I; is the member moment of inertia about its center of mass
; is the angular velocity
m, is the mass

f is the inertial velocity of the center of mass

11




The centerbody angular rate and center of mass position vector are given by

m . = 4, (l“)
ro=1L N, (15)
Ditterentiating Eq. (15) results in the velocity of the centerbody center of mass

r =4 il, (16)

Substituting Eq. (14) and Eq. (16) back into the expression for kinetic energy (Eq.

(13)) and collecting on the angular rate term leads to

. | N 2
T, = | t,+m € 4, (17)

-

Similar developments are used for each of the remaining pieces in the system. For
the left manipulator link between the shoulder and elbow (Link L1), the angular velocity is
a combination of centerbody rotation and rotation of the link with respect to the center-
body.

= 0, +0,, (18)

(l)Ll

The position vector to the center of mass is

Lalo +{ sl

vo+l (19)

"= £ ,cost Lo

‘L “Hil.l

The first two terms in the position vector represent the location of the left shoulder.
Differentiating the position vector gives the expression for the velocity vector. Because
none of the coordinate axes used in the position vector expression are inertial, their rota-

tion must be included as well.
r'u =4 o 088 (Fo=l o snb 3, +lcl.l(')l.|§l | (20)

After Eqs. (18) and (20) are substituted into Eq. (13) and terms are grouped by

angular rates, the kinetic energy is

.2 2 2
T, =805, +m & +m L) 1)
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+mLILLUlcLl (sinB sin (0 +9, ) +cost cos 0+ 00))

+0.58 (ll,l + 111“1;“)

. N 3
+0,,HL,(ll_l+mL.t" +m, ¢ ll {sing, LS

e TG 0 ) +cos8 jcos (B, +U,,)))

I U
The angular rate for the left forearm includes the centerbody angular rate as well as

the angular rates of the body axes on Links L1 and L2.

o, = Oy 40, +0) 5 (22)

L2

This link’s center of mass position vector is

r,= ¢ ,c0s8 (X, +¢ sind) v, +tHiH o8 23)

Differentiating the position vector gives the velocity vector.

La = 4g®e088) (Fo=b (o sind) Ko+ 0§ H oy T (24)

L1 L1

The kinetic energy expression for Link L2 is found after substituting Egs. (22) and

(24) into Eq. (13) and collecting terms with common angular rates.

.2 2 2 2 i
TL: = (051, + I“LZtcLZ +m .,tLl + '"l.:lm) (25)

+mL2LLOIU (sinGLOsin GULO +0 )+ cost),  cos H)w +0, 1)) + mLzlLlchzcosBL2

+m (sine sin (0 +0,) + cost (cos (8, +9Ll +9,.)))

L2‘L0ch2 I ot l 1

+ 9{:, (0.5 (lLz + mL:‘il + mLzlsz) + mLzlL]chzcos()u)
2 2
+ O'SBLZ (ILZ + mLzchz)

+808; ) (1, +mL2£L'+m l‘ ,+2m ¢ L cos),

+mL2‘L0‘L| (sin@ osin (0, +0, ) + cos jcos (0, +0,)))

(sinQ,  sin (0 +0,5) +cos()l‘0cos(()w+9Ll +8,,)))

my 56 0lra Lo ot

o 2
+808 2 (1, +m L o +my ¢ L o cost,

(sinf  sin (0 +0, ;) +cosB) cos (8 +9Ll+9L2)))

m 54 0bL2 ot

13




+ OLIQLZ .+ muliL2 +m .0 Ilcucosﬂu)
The development for the right manipulator kinetic energy parallels that for the left

manipulator. For the upper arm portion (Link R1), the angular rate is

“y = ‘)" + ”R | (26)

R1

The position vector is constructed by finding the coordinates of the right shoulder

and adding the vector from the shoulder to the center of mass.
Tey = L0088 (R + Gy sinBp ¥ + tcmim 27

The time rate of change of the position vector is

=&, o, smbp Xy +L

f , = Lro®ocos o (28)

R RoYO cR1PR 1Y,

After calculating the kinetic energy for Link R1 and grouping terms with common
angular rates, the resulting expression is
Toy = 000051y +mg, Bg, +mg, &) (29)
+ le‘Rolch (sinGRosin (ORO + ()Rl ) + cosGROcos “)RO + ORl) })
+0.56g, (I, +mg £4 )
+ 040, (Ig, + leliRl +mp Lo Lo (sinBp sin (B +0, ) +cosBL cos (B, +0,)))
Angular rate of the right forearm is
0p, = Ay +0g, +0g, 30)
Its position vector is
L L0088, o Ko + L sinBp ¥y +tR,,"RI +lcR2:‘(R2 31)

Differentiating Eq. (31) produces the velocity vector for Link R2 center of mass.

r']u = Ly o0 080 Fo—Lp @ 8inB % +tmmm§lRl +lcR2°’R25’R| 32)
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The kinetic energy resulting from substituting Egs. (30) and (32) into Eq. (13) and

collecting common angular rate terms is

Tes = ”'-’(0'5”Rl+"‘R2‘;R2+"‘R:tl.{l +m LG 33)
+ ‘"thpolRI (sinfp sin (8, +0, )+ msﬂ pCoS (0, 1)) + mR,lR,t L0809,
+mp, Ru‘ Ry (SINOL S (0, 0 0, ) +cosh cos (B, + +0p +H50))

+HRp (05 (L, + mRle‘+m l‘R,)+mR,lth ,c086p )

+0.50z5 (Ig,+ '"thikz)

. 2 2
> ~
+ 808 (g, +mp oy +m, oo +2mp, b Lo cosBe,

R2

+ mRZ‘RO‘RI (sinBp st (B, +8,,) +costp cos (B, +0p,))

+m,. ¢ ¢ (sinBRosin(9R0+()

r2frobera +()R2) +cosOR0cos (9R0+9Rl +GR2)) )

R1
+808gy (Ip, + mth r2 ¥ Mgl Logc0sbp,
+mR2lRot Rz(smG sin (O, +0,, +0,,) +cost, cos (U +9p,+822)) )
. . 2
+ 01O (g, +mp lip, +mp,by pacostp,)

Expressions for the payload are considerably simpler because inertial coordinates

are available. The angular rate is
(|)p = ”P (34)
It is not necessary to describe the payload center of mass by passing through either

shoulder as was the case with the manipulator links. The position vector is
= XN+ VN, 39)
The velocity vector is also simpler because of the inertial frame.

':P = XPNX + YPNV (36)
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The payload kinetic energy is derived from substituting Eqs. (14) and (16) into Eq.
(13).

| > L2 L2
T, = _,(ll,()|.+ml,l,\",+Y'~)) (37)

P

After substituting the expressions for kinetic energy from Egs. (17), (21), (25),
(29). (33) and (37) into Eq. (12) and expressing the result in the matrix form of Eq. (3), the
inertia matrix, M, is given by Eq. (38). Because the generalized coordinates for the pay-
load are referenced to an inertial coordinate frame, the inertia matrix is decoupled between
the payload and the rest of the system. Coupling does exist between the spacecraft center-

body and each of the manipulators.

M M ,M M M0 0 0

le M22 M23 0 0 00 O

My My My 0 0 0 0 0

M 0 0O M M,_.0 0 O
M = 41 44 7745 (38)

MSI 0 0 M54 M55 0 0 0

0 0 0 0 0 IP 0 0

0 O 0 0 0 0 mp, 0

I 0 0 0 0 0O 0O ml’J

Expressions for the individual elements in the inertia matrix are given by
M. = I, +m, L (39)
55 = IR2 T MR2*CRr2
Mys = Mgy = Mgg+mp,lp log,cos8p, (40)
M5 = Mg = Mg +mplp,lep,cos (O, +0y,) (41)
2 2

My, = Mg+ Ip +mpobo lop,cosOp, +mp lop +mp by (42)

16




M= My = My lpg (my Lepy +mpaly ) cosBy, (43)
+impolpolepycos (B +0y,)

Mj; = ILZ+mI.2tCiZ (44)

M, =M, = M +mL2tLllc[2cosE)L2 (45)

M|3 =M, = M j+m 2t1 otcl ,COS (GLl +9Lz) (46)

My, = My +1; +my o0 Loy ""591,2““1,1["12 thil (47)

M), = My = My, +4 o (m) Loy +m oL ) cosB, (48)
+mL2tLOtc COS(91,1+9L2)

M, =1 +M, +M,,+m L+ (m, , +m )& o+ (my, +my.) o @9)

i 0 22 44" a0 11 1.27° Lo RI R27" RO

+ ZLRO (mR]lcR] + mthR[) cosE)Rl + 2mRleolcR2cos (QRl + eRZ)

+ le (mL Pt mLzlL ]) cos()l‘l + 2mL21|lOtcL2cos (6Ll + OLZ)

2. Centripetal and Coriolis Matrix, G
The G matrix contains all of the centripetal and Coriolis terms. It is most easily

found using

G(g,q) = 9 q (30)

T (8) .
g c® q
where the elements of C are defined by the Christoffel symbol

~ 1[aMij M., ankJ
)

. + -
K oq, ~ dq;  Oq,

(1)
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The form of the G matrix for the system of Figure 1 is given as

.2 o )
G, = =4 (B +20000,) (my Loy +m L4 ) sin0

-my 8 Lo J0) 2 (200 +20; ) +8) ) sind

=t 48 oley (200 (O +0y ) + (O +03) Tysin (0 +0, )
2 o .
—bp o (Ory +2000gy) (mp Lep +mp, L ) sinbp,

—mRZtﬁllcRZORZ (200 + 20R‘ + OR:) Sill“R2

L . _ 2
~Mp e olCr; (209 (0 +0g3) + (g +8ga) )sin (B, +6,.)

G, =& Bo(m Lo, +m 6 )sin® | —m ¢ Lo 015200 +26) ) +0) ) sin@, ,
2
+my 4 e JBesin (8, +6, )
. . 2, 2
Gy = m,4 Lo, (O +0;3) sinb ,+m 4 Lo Oysin(B | +6 ,)

2 . % . 1 3 .
o = LoBo (mp Lop  +mp,be ) sinBp —mp Ly Lop 05 (200 + 205 +8g,) sinBp,

Q
1

2
+mp, b pleg,0gsin (6, +0,,)

. . 2 . 2.
G5 = mRlellch(Bm +06g,) sm9R2+mRle0tcR2()Osm(BR] +0p,)
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(33)

(54)

(35)

(36)
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3. Generalized Forces, Q
The generalized forces are found using the principle of virtual work. When there
Is no reaction wheel on the centerbody, the system does not experience any external forces
capable of performing work. Six joint actuators apply torques at the shoulder, elbow, and
wrist of each manipulator.

/e l
Yo = [ULs Ui YLw YRS URE YRW (58)

ug, is simply the joint actuator subset of the complete actuator torque vector, u. The
total virtual work is the sum of the torques applied to the individual bodies times their vir-
tual angular displacements.

N N
SW = Y 8W, = Y (M)56, (59)

1=1 1=l
When the left shoulder joint actuator applies a positive torque on Link L1, a nega-
tive torque is also appiied to the centerbody. The virtual work performed by the left shoul-

der motor is
SWLS = U g (66“ +66Ll —690) (60)

where the positive angles are those associated with the change in Link L1 attitude and the
negative angle is associated with the change in centerbody attitude. The left elbow actua-
tor makes a positive contribution to Link L2 attitude and a negative contribution to Link

L1 attitude.

SW = u (58,+80, , +56, ,-50,-56, ) = u ;08 , (61)

LE 1.2
The joint actuator at the left wrist makes a positive change in the payload attitude
and a negative change in Link L2.

SW, oy = U (80, ~56,-56 56, ,) (62)

)
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The nght shoulder actuator makes a positive contribution to Link R1 attitude and a

negative contribution to centerbody attitude.
OWpys = Upg (86, +80,, -58,) = u, 86, (63)

Link R2 has a positive virtual displacement due to a positive torque at the right

elbow. The same torque causes a negative virtual displacement of Link R1.

OWpp = Upp (808, + 80y, +86,,, ~86, 580, ) = up80,, (64)

The right wrist actuator has a positive influence on the payload and a negative

influence on Link R2.
OWpw = Upy (86, -6, -386,, - 86p,) (65)
Gathering Egs. (60)-(65) together produces

OW = (-upy —Upy) 86, + (u g —u; )80, + (u) . —u )80, ,  (66)

+ (Upg = Upy) 88 + (U, — Upy) 80y + (U yy —URy) 86,
With respect to the system equations of motion, the generalized force correspond-
ing to a particular generalized coordinate is that portion of the virtual work associated with

the same generalized coordinate. Now Eq. (66) can be transformed into a matrix form.
Q 6= B,u p 67)

where B is the control influence matrix given by

00-100-1
10-100 0
01-1000
B, = (000 10-I 68)

00001-I
001001
000000
00 0 00 0]
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The only effect of a positive reaction wheel torque applied to the spacecratt is to
alter the centerbody attitude in a positive direction. This manifests itself in the control
influence matrix in the form of another column. This new column is all zeros except for a
single one corresponding to the location of the reaction wheel torque in the u vector. With
the reaction wheel torque as the first element in the control vector as in Eq. (2), the com-

plete control influence matrix is

100-100-1
010-1000
001-100 0
0000 10-1 (69)
0000 01-1
0001 00 1
0000000,
0000000

4. Constraints Matrix, A
Because the eighth order system under consideration has only four degrees of free-
dom, an additional four equations are needed to describe the constraints. The eight gener-
alized coordinates are not independent. The constraint equations embody the information
that the manipulators are both grasping the payload forming a closed chain system. The

constraints matrix is derived by writing the system constraints in the Pfaffian form as
AG+A, =0 (70)

These equations come from geometric relationships of expressing the payload cen-

ter of mass Cartesian coordinates in terms of the other generalized coordinates.

€ ,cos (B, +8, ) +£ ,c05(0,+8, (+0, ) +{ ,cos () +8  +4 ,+0, ) +Lcpcosty =x,
lLosin(90+9Lo) +lL|sin (90+0L0+6L|) +tL:sin (4, +ﬂw+9“ +4,,) +lcpsin9P =Y (71)
tRocos (6,+0p,) +lRlcos(90+9R0+9Rl) +tR2cos (0,+80,,+0, +0p,) - (lp—lcp) costy, = x,,
Loosin (8, +0, ) +lRlsin (8, +8,,+0:)) +lp,sin (0, +8, +8, +8.,) - (&, - ley) sinb, =,
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To get the Pfaffian form of Eq. (70), differentiate Eq. (71) and rearrange terms.

The result is

o
t, I
\

0y

Ay A Ay 00 AL =1 010 0
Ay Ay Ay 0 0 Ay 0 =10, 3
2t oz G RO (72)
Ay 0 0 AGAA, -1 0 ]‘;R:; 0
i Ol
_A“ 00 ALAA, O - Ops
| Xp
)Yl"

The constant term, A, is a zero vector. The individual element in the constraints matrix

are given by the following equations

Al() = —tcl, sinOp (73)

Ay = tc], cos6,, (74)

A = (tl,—tcp) sineP (75)

Ay = —(lp—lcp) cosE)P (76)

Ays = Lrycos (8, + 08, + 08, +8p,) (77)
Ay = Ays+ly cos (8, +8,,+0,)) (78)
A“ = Ay, +tRUcos (90+9R0) (79)
Ags = ~lp,sin (8, +8p,+0p, +6p,) (80)
Agy = Ay =Ly sin (6, +0,,+6,) (81)
Agp = Agy—Lpsin (8, +8p0) (82)
A23 = lecos (90 + el,o + GL OLZ) (83)
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Ayy = Ayytdcos(8,+8 ,+86, ) (84)

A, = A22+tl’”cos (0()+9L0) (85)
Ay = ~4 osin(0,+6, ;+6,,+6, ) (86)
Ay = A= sin(8,+8, ,+8, ) (87)

Ajy = Ayl psin(B,+0, ) (88)

If the manipulators are mounted on a fixed platform rather than a rotating base, an
additional constraint equation is included in the A matrix. The constraint is that 8 is con-
stant and therefore

i, = 0 (89)

This constraint is augmented into the A matrix by adding a fifth row. The first ele-

ment in the row is a one. The remaining seven elements are all zeros.

C. SIMPLIFIED EQUATIONS OF MOTION

The potential energy term is zero because motion is confined to the horizontal plane
and the system is composed of rigid members. The inertia matrix, G matrix, B matrix, and
constraints matrix can be found from the resuits of the previous sections. The remaining
unknowns are the actuator torques and the Lagrange multipliers. By using the equations
of motion and the Pfaffian form of the constraints, one can eliminate the Lagrange multi-

pliers. The time derivative of Eq. (70) is
Ag+Aq =0 (90)

Solving Eq. (10) for § and substituting the result into Eq. (90) permits one to find an

expression for the Lagrange multipliers.
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-1.7. -1 - .
A= (AM'ATy (AM 71 (G - Bu) - An) 1)
The inertia matrix is always a square matrix with full rank and therefore invertible. To
investigate the invertiblity of AM™'AT begin by creating a 4x4 matnx out of the third,

fifth, seventh, and eighth columns of the constraints matrix.

23 (92)

Inspection of this submatrix reveals that all of the rows and columns are linearly inde-
pendent even if A3 = Ay3 and Aj5 = A,s5. Therefore, the A matrix always has rank of 4.
The 4x4 matrix product AM ™' AT will also always have rank of 4 and is therefore invert-
ible. Eq. (91) can be substituted back into the equations of motion (Eq. (10)) leaving the
actuator torques as the only unknowns. The resulting equations of motion in which the

Lagrange multipiiers have been removed and potential energy is zero are

M{+G = Bu (93)
where
- . _ . _l _ )
G=G-A (AaM'Al) T (AM7'G - Ag) (94)
. . o -1 _
B = (I—AF(AM ATy "aM ')B (95)

D. REFERENCE TORQUES
Given a reference trajectory of the payload with known displacements, velocities and
accelerations, one can use the simplified equations of motion (Eq. (93)) to solve for the

actuator torques that will produce the reference trajectory.
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G - Brcl'u

q .+
rclqw]‘ e

(96)

retd

The equations tor specific elements in the matrices of Eq. (96) are the same as already
presented. The subscript “ref” merely means that the displacement, velocity and accelera-
tion terms are the values from the reference trajectory.

In this study, the total number of actuators is more than the system degrees of freedom.
This situation is caused by the geometric constraints of multiple manipulators handling a
common object. As a result, there are an infinity of solutions for the reference torques.
One method to select a specific solution is to establish a cost function. An obvious cost
function is to minimize a weighted norm of the actuator torques.

= jprcl' \lurel' (97)

The problem now becomes one of minimizing the cost function (Eq. (97)) subject to
the constraint that the reference equations of motion (Eq. (96)) are satisfied. Augmenting

the cost function with the constraint by means of another Lagrange multiplier leads to

1 T T(& .. ~
J=-u Wu +y (Brcfyreerchrcr—GrCf) (98)

2-ref  u-ref
The minimum of the augmented cost function is found by taking the gradient of Eq.
(98) with respect to the reference torques and with respect to the Lagrange multiplier.
Each of the gradients is set to zero.

T
J=0=Wu +B_ (99)

ref u-ref

-~

V_YJ = 0 = Brcryrcr_Mrcrqref"Grcf (100)

Egs. (99) and (100) are two equations in two unknowns (Y, 9ref)' Eliminating y

results in an expression for the reference actuator torques.
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T t
-1 = | (~ g » - )
U’ Wu Brcl' Brcl'\vu Bx'cl') (M,lc;‘ql.c‘- *Grcf (101)

rel

Although the matrix product l-i,e,Wu'l},c, is an 8x8 matrix. it is not inveruble. A
pseudo-inverse is needed because the system has only four degrees of freedom. There-
fore, the matrix product l;,c,Wl;'[;,l;,» is rank deficient and has a rank of four at most. This
expression for reference actuator torques minimizes the augmen:ed cost function (Eq.
(98)) at each instant in time. Although the value for the reaction wheel torque is calcu-
lated. it is not minimized by this function. The reaction wheel torque profile is dictated by
the disturbance torques transmitted to the centerbody as a result of manipulator and pay-
load motion. For a given reference trajectory, an infinite variety of joint actuator torques
can produce that trajectory. However, a given reference trajectory has only one reaction
wheel torque profile that is common to all the infinity of )oint torque combinations associ-
ated with that trajectory. Equation (101) selects from among the infinity of joint actuator
torques the one combination that minimizes the weighted norm cost function. Although

the selection is limited to a single choice, Equation (101) also produces the correct reac-

tion wheel torque for the given reference trajectory.

E. LYAPUNOV CONTROLLER

This material in this section is based on Ref. 16. The purpose of any control law is to
provide system performance that satisfies a specification. As a bare minimum, the control
law must keep the system stable. Because of the highly nonlinear nature of this spacecraft
robotics system, most control laws simply do not apply. The motivation behind using
Lyapunov methods is to develop a control law with guaranteed stability. Recall the equa-

tions of motion of the manipulator system are

Mi+G = Bu (102)




Solving Eq. (102) for g results in

i =M ' (Bu-G) (103)

Substituting Eqs. (94) and (95) back into Eq. (103) and grouping terms according to

the form

q=Cu+C,q+C, (104)

leads to the following expressions

_ _ - _l _
c,=M"'-aAT(am'A")y amyB (105)
: -1
c,=-M'A"(amMm™'AT) A (106)
1, T SN LI |
c, =M (alamMm™ A"y amM'-njG (107)

Similarly, the reference maneuver accelerations can be expressed as

g .=C, u +C, 4 +C (108)

—ref - ]rc{‘— ref “ret” ref 3rcf
where again the reference subscripts on the C matrices indicate that reference maneuver
values need to be used in their calculation. Let error quantities between the actual vari-

ables and their reference maneuver counterparts be defined by

89 = q-q_; (109)
84 =4-d_ (110)
84 =4-4 (111)
Now define an error Lyapunov function as
U = 0.5(54-64) +f(5q) (112)

where f(8q) > 0. Differentiating Eq. (112) results in
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£ |aGay oteay " 6ay)| o
Then Eq. (114) can be rewritten as
U=28q (6§+F) (115)

Substituting Eq. (104) and Eq. (108) into Eq. (111) and then Eq. (111) into Eq. (115)
produces
U=238q- {(Cu- Cl,e#ref) +(Cyq - C2,.fgrer) +(C, - C3ref) +F}  (116)

If one lets the quantity inside the brackets of Eq. (116) equal -K &4 where K is a
positive definite matrix, then one is guaranteed that U < O and therefore the system will be

stable in the Lyapunov sense. Solving Eq. (116) for command torques, u, leads to
u=Ct{-K35q+ C, u = (C4-C, 4 )-(C;-Cy )-F} (117

C, is an 8x7 matrix so C IT is its pseudo inverse. Equation (119) finds the torques that
should be used rather than the reference torques. All that remains is to choose a function

for £(6q) . One can choose
f(3q) = %SgTK[ﬁg (118)

where like K, Kp is required to be positive definite. Selection of values for the gain
matrices is beyond the scope of this work. The simulations included in the next chapter
use diagonal matrices with uniform values simply as a matter of convenience. One might

try to adapt the linear quadratic regulator (LQR) problem to find more optimal gains.
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Atfter substituting Eq. (118) into Eq. (114) and that resuit into Eq. (119), one obtains the

final form of the Lyapunov controller.

u=Cl(-K354+ C) U~ (Ca-Cy 4. ) - (C3-Cy ) -Kpdaj (119)

If the differences between the reference trajectory and the system dynamics are small,
the Lyapunov controller approaches the form of a proportional plus derivative (PD) con-

trol law.

F. REFERENCE TRAJECTORIES

The reference trajectories describe the nominal path that the system follows in moving
from the initial conditions to the desired final conditions. One need only specify reference
trajectories for as many generalized coordinates as there are degrees of freedom. In effect,
the generalized coordinates can be divided into two sets. One set contains the minimum
number of coordinates needed to completely describe the system. The second set contains
all remaining coordinates, (redundant coordinates). The choice of which generalized
coordinates to specify is entirely arbitrary. A reasonable choice includes the payload coor-
dinates and centerbody attitude since the user will probably be especially interested in
these generalized coordinates. The redundant coordinates are the four manipulator joint
angles. Given reference trajectories for the minimum number of coordinates exist, the
redundant generalized coordinates can be derived. This research assumes trajectories are
available which define displacement, velocity and acceleration for the centerbody attitude,
payload attitude, and payload center of mass coordinates (Xp, Yp, Op and 6).

1. Calculating Redundant Coordinates

Figure 2 illustrates the relevant geometrical relationships to find the joint angles of

the left manipulator. Xp, Yp, Op and 6 are obtained from the reference trajectory. Point

LS is the left shoulder joint. It has Cartesian coordinates given by
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Figure 2: Deriving Left Manipulator Joint Angles

LS, = ¢ jcos(0,+0 ) (120)

LS, = & osin (0, +0, ) (121)
Point Q is the joint between the manipulator end and the payload. The Cartesian

coordinates of this point are
Q, = Xp-{ ,cos0, (122)

Q, = Y, - {,sind, (123)
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The distance between the left shoulder and Point Q is given by

LSQ = «/(Qx—l,Si‘-)iz . (Qy- Ls,)? (124)

The inertial angle formed by the vector from LS to Q is

Q.- 1S,
B, = a!an[() T1s ] (125)

The dimensions of the triangle formed by the manipulator joints are known. Using

the law of cosines, the interior angies at the shoulder and elbow can be found from

til +1.5Q° '112.2]

‘32 = acos [W (126)
£+, -18Q?

B, = acos {——————-—“ 2L£L-t ] (127)

11b2
All that remains is to algebraically construct the manipulator joint angles from
other angles as follows
0, =B,+B,— (0,48 ) (128)
0, = B,+180° (129)
The development for the right manipulator is similar. Its geometry is depicted in
Figure 3.
Point RS is the right shoulder joint with Cartesian coordinate
RS, = 4, cos (0, +6,) (130)
RS, = Lsin (8, +0, ) il3l)
Point P is the joint between the manipulator end and the payload. The Cartesian
coordinates of this point are
P, = Xp+ (4~ L) cos, (132)
P = Yp+ (4-L,)sing, (133)

The distance between the right shoulder and Point P is given by
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Figure 3: Deriving Right Manipulator Joint Angles

RSP = /(P -RS )2+ (P -RS)? (134)

The inertial angle formed by the vector from RS to P is

P - RSy
B, = atan [; s ] (135)

From the law of cosines, the interior angles at the shoulder and elbow are

¢+ RSP? - tfu] (136)

s = "m( 2, RSP
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¢, +&, - RSP"

v B =

The geometry in Figure 3 gives the manipulator joint angles based on the other
angles.

O, = By - Bo- (9, +0,) (138)

B, = 180° - (139)

Recall from the discussion of the Lyapunov controller that torques are calculated

based not only on the generalized coordinates but their velocities and accelerations as

well. The redundant coordinates have just been found, but the redundant coordinates

velocities and accelerations must still be developed.

Differentiating Eqs. (122) and (123) expresses the velocity of Point Q.

Q = Xp+0pL sinf, (140)

Q, = Yp-0pl cosb (141)
y p P P

But the coordinates of Point Q can also be expressed in terms of left manipulator
variables.

Q, = £44c08(0,+8, ) +4 ,c08(0 +8  +8 ) +4 ,c08(0,+8 (+6  +6, ) (142)

Qy = £5in (8, +8, ) +4 sin(8+6, ,+0;,) +{ ,sin (8,40, ,+86,, +8, ) (143)

Differentiate these equations and rearrange the terms in the form of

?" = D,(i(,n){(:’“} (144)
Q Y2
where
D,y (1,1) = ~f ,sin (8, +8, (+0,  +0, ;) —& sin (B +0, +6, ) (149)
D,(1,2) = -4 ,sin (8, +8, ,+0, , +0, )) (146)
D,(2,1) = £ ,c08(8+0, (+0, ,+0,,) +{ cos(8,+6,  +6, ) (147)
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D,(2,2) = & jcos(8, 40, +0, +8,,) (148)
DL 1) = =& ,sin (8 +8, (+0,  +0, ) = & sin (0 +0 +8, ) —¢ sin (8 +8, ) (149)
D, (1,2) = £ ,c08(8,+0 (+8, , +0,,) +{ cos(8, +8 +0 ) +{ cos(8,+8, ) (150)

Left manipulator joint velocities are found by rearranging Equation (144).

6| _ D;J[QJ‘ _D'”"J (151)
o] Uq!

2 i
where Eqgs. (140) and (141) provide the expressions for Q, and Q, respectively.
Using the same approach to find the joint velocities of the night manipulator, Point
P is expressed as a function of right manipulator variables
P, = Ly o8 (8 +6p ) +& cos (8 +0, +0, ) +&,c08 (0, +0p0 +0, +6, ) (152)

Py = LooSin (8 +8p0) +Ly sin (8 + 0 +0,,) +Lp sin (B + 8, +0p, +06,.) (153)

Differentiate these equations and rearrange the terms in the form of

P : d

Xl = D38y + D, _"' (154)

P O

where

D (1, 1) = ~L,sin (B, +0,, +0, +0..) ~ Ly sin (8, +8, +0,)) (155)
D,(1,2) = —L,sin (8, +8,,+0,, +6,,) (156)
D, (2,1) = Ly cos (B +0, +8,, +0.,) +L cos (0 +0, +6, ) (157)
D,(2,2) = L c08 (B +0,0 +0,, +0,,) (158)
Dy(1,1) = —Lp,sin (8, +8,  +0,, +8,,) ~ &y sin (8, +8. . +8,,) - & osin (8 +6p.) (159)
D,(1,2) = &;,c08 (0, +8, +0;, +0,,) +L cos (8 +0, +00,) +6 008 (8, +6,) (160)

Right manipulator joint velocities are found by rearranging Equation (154)
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. , |
1”"'4 = l)f{ . -I)‘(b“! (161)

where expressions for p, and p, are found by differentiating Eqs. (132) and (133).
Py = Xp=Op 14, =€ ) smb, (162)
P, = Y, +8,.04, - ) cos8, (163)
Manipulator joint accelerations are found by differentiating the expressions for

velocity (Eqgs. (144) and (154)).

Y I i ]
Qf . D Hy+D, 0, + D "LD:; L (164)
Q ;‘31.:] 02
P o T 0
X = Dyl + D0, + Dy R‘\H)’.{ R (165)
I ;nR:I gy
Solving for joint acceleration gives
o] oaffe] o)
-1 : . - . i
_U = D, [ ] = Dib=D, 09D | '“ (166)
¥ [Qy k)
ou _ (1B o O
=D, [ —D,O,,—l)in(,—l)d,{ (167)
Bgo| Py, (B,

where the accelerations of Points Q and P come from differentiating Eqs. (140)-(141) and
Egs. (162)-(163). Derivatives of the D matrices are constructed by differentiating Egs.
(145)-(150) and Eqgs. (155)-(160).
2. Selecting Reference Trajectories
Any path which connects the associated endpoints can be a reference trajectory.
To help ensure that the spacecraft and payload do not experience any unnecessary jerk or

excitation of flexible structures, one might further constrain the path such that the veloci-
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ties and accelerations are zero at the endpoints. Because a reaction wheel is required to
maintain spacecraft attitude, the reaction wheel torque history is a prime candidate for
optimization. Possible performance indices include the integral of the absolute value of
reaction wheel torque

4

I= J‘lu\\hcchdt (168)

t

0

or the maximum reaction wheel torque.

J = max (.u\vheelp (169)

A rigorous method for reference trajectory selection is to develop an optimal con-
trol solution to the two point boundary value problem. The performance index in the opti-

mal control problem is given by

J=IL[x(l),tltl),!Jdt 170)

Using Eq. (168) as an example,

L = |u,,| = Du (171)
where
.
(9 = [uwh Urs YLe Yew Yrs YR “ijl) (172)
and
D=1000000 (173)

The state equations must be formulated as first order differential equations as
% = fx (1), u (). (174)

Because the system dynamics of my problem are second order differential equa-
tions, the state vector for the trajectory optimization is a combination of generalized dis-

placements and velocities.
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‘= Eq. q=} (175)

The resulting state equations are

S

! |
.
‘I| fusxs R\ﬁ! 'xa !u+ | Uger (176)
U MG

i Uyep ! xxx) M
where G and B are the same matrices as already found in Eqs. (94) and (95) respectively.
Desirable bounaary conditions are such that the payload is at rest with zero accel-
eration at the beginning and end of the repositioning maneuver. However because the
state vector does not contain accelerations, they cannot be specified as a boundary condi-
tions. [f the state vector is increased to include accelerations, then the first order state
equations involve third order derivatives of the equations of motion rather than second
order equations. This prevents including payload accelerations as part of the boundary

conditions. To permit further development of the optimal control problem, the boundary

conditions will be limited to desired positions and zero velocity.

- T
x“()) = Iq“n’ ”Ixﬂ] (|77)

T

X(t) = [q(ll.) ()m;j (178)
The Hamiltonian formed by combining the performance index with the state equa-

tions is
Hx 1), utt, A 0.4 = Llxco,uen, ] #2 O, uin, o (179)
The performance index and the state equations are both linear with respect to the
control vector, u. The consequences of this are that one cannot find a minimum by taking
the gradient with respect to u and setting it equal to zero. The applicable control form is
bang-bang. Separating the Hamiltonian into those terms which premultiply u and those

which do not leads to the control law
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uo= U signill) (180)

where

H=H +ilu (181)

The other equations which must be satisfied are

. % P Of
A R (182)
Ox ON N

Because the peiformance index is only a function of u, the first portion of the

above necessary condition is trivial.

A _y (183)

of . . A ) .
;~ is not as easily found. The M, G, A, and A matrices are all functions of the state
(254

vector. In addition, the complexity is increased by several matrix inversions in the expres-

sion of fin the G and B matrices. Although an analytical expression may be theoretically
possible, finding it was found to be extraordinarily tedious.

Recall, however, that the usefulness of the reference trajectories is to specify the
generalized coordinates, velocities, and accelerations. Therefore, a convenient form for
the reference trajectory is as a polynomial function of time. The following development
uses the payload attitude generalized coordinate to illustrate how the polynomial reference
trajectories are applied. Let

A8, = B, (t) -8, (t) (184)
where t is the maneuver start time and t; is the final time. The duration of the maneuver
is the difference between t; and ty. 8p(tg) and Op(ty) are the initial payload attitude and the
desired final attitude respectively. If the desired reference path for the payload attitude in
moving from initial to final conditions is a curve which can be represented as a polyno-

mial function, f(t), where 1 is simply normalized time
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(t-t,)

T = (185)
(t|~ ‘())
then
Bp (1) = 800, #1000\, (186)
rel
, I
Bp (1) = (1) (0, [l lJ (187)
. ]- i)
. !
Op (1) = 1" (1) ( \0,,)( : _’J (188)
rel “f_'“)-

In order for Eq. (186) to produce the correct initial and final values for o, .- the

polynomial must be such that
f(r=0)=0 (189)
fli=1)= 1 (190)
To produce zero velocity and acceleration at the initial and final conditions

requires that f(t) also satisfy

f(t=0)=0 (191)
f(1=1)=0 (192)
f£'(t=0)=0 (193)
£'(=1)=0 (194)

The minimum order polynomial which satisfies the boundary conditions of Egs.

(189)-(194) is

f(t) = 61— 15t* + 107° (195)
The expressions for payload reference trajectory using the fifth order polynomial

become

8 (1) = 8,(tp) + (67° - 15t" + 107°) (46)) (196)
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O (1 = (30t* - 601’ + 3017) (AGP){ 1 ] (197)
)

Il-—l

' N
8p (1 = (1207 - lSOt'+(>Ot)(AGP)[ g J (198)
rel (t"_[“)-

The polynomial reference trajectory 1s also be applied to the other generalized
coordinates which form the minimum set to describe the svstem (i e. centerbody attitude
and payload center of mass coordinates). The redundant generalized coordinates are cal-
culated from the reference coordinates as described earlier.

Higher order polynomials can increase the complexity of the path but offer the
advantage that an infinity of polynomial coefficients satisfy the position, velocity, and
acceleration boundary conditions. The selection of the coefficients affords an opportunity
to optirnize the reaction wheel torque. In this system, manipulator actuator torques are
internal while the reaction wheel torque is the only external torque. Therefore, the reac-
tion wheel torque will be equal to the rate of change of angular momentum which can be

calculated directly from a reference trajectory. This technique is more computationally

efficient because it does not require the construction of the G and B matrices.
In general, the angular momentum about the inertial origin for each member of the
system is

H=1ov+m(r
-~ [ 1

) (199)

where 1, is the moment of inertia of the i' body about its center of mass
o 1s the angular rate of the i body
m, is the mass of the i body
r is the inertial position of the i'" body center of mass

v, is the inertial velocity of the it body center of mass
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The angular rate, position and velocity vectors were previously developed in con-
nection with determining kinetic energy. Those expressions require some coordinate
transformations to express zll the terms with respect to the inertial coordinate frame. The

change in angular momentum is found by differentiating Eq. (199) to produce
H =l +mir>a) (200)
The total system change in angular momentum is the sum of change in angular
momentum for each of the members. After collecting terms with common angular veloc-

ity or acceleration terms, the expression for the system change in angular momentum is

given by
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ll = ll‘()l)+ll\p(xPYp-x‘)Yp) (201)

Eo+m 4 cost | +m Ll ] wsBU

. 2 2 )
+8y DLI Hla+mp 10 4oyl Lt ¥ el L2'vo'Lr

LileLt cLztm

L2

9 . . |
+""'L2'L|lcl_:"°s“|,2+'“l_:ILuch2"%“’1_1 +(D”) |

L 2
+8; 5 7IL2 +my Ll o+ mululcu‘,osﬁL2 +m Ll Scos (8 + ()L:)_

el 2 b s
+0p4 [-Im + le + lelch + "‘RZICRZ + '“RZIRI + mRIIRHICRlcos“RI + mR:IRolRIcosHRI

2 .
+ ..mRzlmlcmwsek2 + mRzl

ROlmcos (HRI +()R2) ]

- ) -
+4g, [le +Wpoley Fmpolp bgacostp, +my 1 | o ocos (0, +”R’,

OB (- 2my ol b osin®y, —2my L ol sin (8, +9, 50 ]

.2 . . .
O [=mp el sin® = my 1 ol sin® —my Ll osin (8 40, ) ]

.2
+O g [=mp 1 asmO) , —m Ll sin(0,, +0, )1

LOIcLZ

+0g 1 0gy [=2mp 1 ) posinOp, = 2m lp gl posin (B +00,) ]

2 . .
+Opp [=mp lpol gy SN0 —mp lpolp sinBp —mp,|

RO'RI Rolcr251M (9, +0g5) ]

.2 R .
+0r2 1= Mg lpylor2 508y, ~ Mp,lgolora Sin (B, +8i,) |

Any polynomial reference trajectory that satisfies the initial condition concemning

displacement cannot have a constant term. Polynomials which satisfy the velocity and

acceleration initial conditions must not contain linear or quadratic terms. The general nth

order polynomial reference trajectory has the form
f(t)=a, ™" +a, ! +a, 12+ . +agr +a41t +ay7° (202)
Derivatives are

£'(1) = na,t™ ! + (n-1)a, 12 + (n-2)a, 51" + . + Sagt? + dayu? + 3812 (203)
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(1) = n(n-Dayt™? + (n-1)(n-2)ap 12 + 0-2)n-3ha, "4+ .+ 20a¢° + 12841 + 6agr  (204)
When t=1 and the final conditions, f(1) = 1, (1) =0 nad f '(1) = 0, are substituted

into Eqs. (202)-(204), these equations can be put into matnx form

!,
-
!ﬂn |
T 1 I SRR
0 = n (n-1) (n-2) .. 5 4 3‘ | = (W]a (205)
o [ntn=1) (-1 (n=2) (n-2)(n-3) .. 20 12 6| a,
a,
)

The column vector of polynomial coefficients can be partitioned. One segment,

as43, contains the coefficients for the third, fourth, and fifth order terms in Eq. (202). The

other segment, ay;gp, contains all of the coefficients of order six and higher.

8

a= [“hish (206)

543,

The W matrix can be partitioned accordingly.
W= W, W (207)

One can then solve for the lower order polynomial coefficients in terms of the
higher order coefficients by substituting Eqs. (206) and (207) into Eq. (205). The result
specifies p..ynomial reference trajectory coefficients which satisfy the boundary condi-

tions.

0

|
A543 = ;;[I}) 'Wh.gh“mth (208)

An optimal solution for a polynomial reference trajectory is found by using the
MATLAB function fminu. This tool numerically finds the solution to an unconstrained

function minimization problem using a quasi-Newton method. The function to be mini-
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mized is the rate of change of angular momentum, Eq. (201), which can be found once a
reference trajectory is specified. The user makes an initial guess for the higher order refer-
ence trajectory coefficients. The lower order coefficients are calculated by Eq. (208). The
MATLAB function then varies the higher order coefficients and recalculates the lower
order coefficients as necessary to minimize change in angular momentum. One limitation
to this technique is that the algorithm may converge to a local rather than the global miri-

mum.
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III. VALIDATION AND SIMULATION RESULTS

The computer simulations presented in this chapter were obtained using the MATLAB
subroutines included in Appendix B. The integrator uses 4™ and 5' order Runge-Kutta

formulas. See Appendix B for documented listings of the computer code.

A. VALIDATION

To verify the equations and find the programming bugs, test cases were developed.
The simulations are analyzed to ensure that universal principles such as conservation of
energy and angular momentum are not violated. Numenc values for the generic dual two-
link manipulator system are contained in Table 1. The generic model is the strawman con-
figuration that all of the test cases are based on with the exception of a few minor varia-
tions. The vanations will be pointed out in the appropriate test cases. The values for the
generic model’s system properties are picked for uniformity and simplicity. The manipu-
lator links and the payload are modelled as slender rods of uniform density.

1. Conservation of Kinetic Energy

In the first test case, no torques are applied and the initial velocities are nonzero.

Under these conditions, the system links drift subject to the constraints of being pinned
together. Since potential energy is zero and there are no external energy sources, kinetic
energy should remain constant. The system begins with the payload parallel to a line

drawn between the two shoulders and 0.75m away from them. The initial angular rate for

the centerbody is chosen to be 6, = 2 deg/sec. The initial angular rate for the payload is 6,
= -5 deg/sec. Initial velocities for the payload center of mass are -0.1 m/sec along the x

axis and -0.05 m/sec along the y axis. The remaining generalized velocities are calculated
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TABLE 1. GENERIC MODEL SYSTEM PROPERTIES

Parameter | Value
4o 0.75
4, 0.5
4> 0.5
Length Loy 05
(m) tr; 0.5
) 0.5
4 0.75./2
mg 5
my | 1
Mass mj > 1
(kg) mpy 1
mps 1
mp 1
g 0
Center leg 0.25
of k> 0.25
Mass leg, 0.25
(m) legs 0.25
lp 0.25
Iy 5
Moments Iy, 10.02083
of I; 5 i v+ J2083
Inertia ——_I;; 1 0.02083 |
(kgm®) | 7., | 002083
Ip 0.02083
Shoulfler 6Lo 90
Location
(deg) Oro 45
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based on the values specified for the centerbody and payload. Initial angular rates for the
manipulator links are 6, , = 6.6607 deg/sec, v, . = -7.0457 deg/sec, vy, = -2.7553 deg/sec,

and 6y, = 149127 deg/sec. The graphical results from this test case are included in Fig-

ures 4-8. As indicated in Figure 7, kinetic energy is conserved in this case.
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Figure 4: Test Case 1 Angles
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Figure 5: Test Case 1 Angular Rates
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Figure 8: Test Case 1 Angular Momentum

Test Case 2 is an extension of Test Case 1. This is stifl a case with nonzero initial
velocities and no external torques. However, the system geometry is altered to be sym-
metrical. In addition to conservation of kinetic energy, this test case will ensure that the
symmetry is prescrved. The physical alterations in the system involve moving the loca-
tion of the left shoulder from 90 degrees to 135 degrees and decreasing the distance from
the ongin to the right shoulder to 0.75 meters. The payload still begins centered between
the shoulders and parallel to the y axis but is 1.2 m from the origin. To maintain symme-

try, the initial velocities must also be symmetrical. The initial angular rate for the center-

body is chosen to be 6, = 0 deg/sec. The initial angular rate for the payload is also zero.
Initial velocities for the payload center of mass are zero along the x axis and -0.05 m/sec
along the y axis. The remaining generalized velocities are again calculated based on the
values specified for the centerbody and payload. Initial angular rates for the manipulator
links are d,, = 2.3188 deg/sec, 6., = -7.6851 deg/sec, 0y, = -2.3188 deg/sec, and 6y, =

7.6851 deg/sec. This combination of system geometry and initial velocities is designed to
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cause the payload to drift toward the origin without changing its attitude. Figures 9-13
show the results from this test case. Kinetic energy is conserved and symmetry is pre-

served.
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Figure 10: Test Case 2 Angular Rates

50




)

12— e
| l.
— ]
. : : ’
l)!% — ——— %
| e |

L /
ve B 4'
[LE] j
{
I
02} 1
0o - j

-10 -0.5 90 0%
Xim)

Figure 11: Test Case 2 Time Lapse Stick Figure

x10°
4.951 r
é,‘,’éﬁé‘yc 2476
(kg nt/sed )
0 j S
0 5
Time (sec)

Figure 12: Test Case 2 Kinetic Energy

51




Aungular
Momentuin
(N-m-sec)

4.5 —4

0 5 10

Time (sec)

Figure 13: Test Case 2 Angular Momentum

2. Conservation of Angular Momentum

As long as a system does not include external torques, one expects that angular
momentum should be conserved. The joint actuators provide internal torques while the
reaction wheel is the only external source. Test Cases | and 2 did not include a reaction
wheel and are therefore subject to investigation with respect to conservation of angular
momentum. Both cases do satisfy the requirement as indicated by Figures 8 and 13. Fur-
thermore, due to the symmetry in the system in Test Case 2, the angular momentum of the
left manipulator links should be cancelled out by the angular momentum of the right
manipulator links. The centerbody and payload should not have any angular momentum.
Consequently, angular momentum for the system should not only be conserved, it should

be zero. Figure 13 show that the angular momentum remained virtually zero. The non-

zero values of about 3x10°!7 are well within the integration algorithm tolerance of 10,
Test Case 3 returns to the generic system from Table 1. Initially, the system is at

rest. Constant torques are applied at both shoulders and nowhere else. The torques are
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0.01 N-m applied in the positive direction at the right shoulder and the negative direction
at the left shoulder. Because the joint torques are intemal to the system, angular momen-
tum must still be conserved even though kinetic energy won't be. Furthermore, since the
system began at rest, the angular momentum should remain at zero. The results are shown

in Figures 14-18. Aithough the angular momentum did not remain identically equal to

-0

zero. their magnitudes of less than 2x107 are within the 107 tolerance placed on the inte-

gration algorithm.
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Figure 14: Test Case 3 Angles
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Figure 18: Test Case 3 Angular Momentum
Test Case 4 is similar to Test Case 3 but the symmetrical system geometry is used

instead of the generic geometry. This change should produce symmetric motion and zero

angular momentum. The reaction wheel is still disabled. Figures 19-23 indicate the sys-
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tem reacted as expected. Changing the torques to time varying profiles rather than con-

stants led to similar results.
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Figure 20: Test Case 4 Angular Rates
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Figure 23: Test Case 4 Angular Momentum

3. Wheel Torque and Constraints

The remaining test cases involved using the reaction wheel on the centerbody. The
wheel’s function was to maintain attitude pointing. The system begins at rest. The torque
applied by the wheel is an external torque in this model. Therefore, its value must be the
same as the change in angular momentum. The wheel torque is found by means of the
inverse kinematics equations in Chapter II. These calculations are entirely independent of
finding the change in angular momentum. After a simulation is finished, a separate sec-
tion in the program code calculates the change in angular momentum using the general-
ized coordinates, velocities and accelerations produced by the integration. These values
are plotted along with those of the reaction wheel torque. A sample plot is contained in
Figure 24. This particuiar plot is for the case of a fifth order polynomial reference trajec-
tory. The rest of the plots associated with this case are presented later in the Simulations
section. The validation tests concerning conservation of kinetic energy and angular

momentum required special circumstances to create those conditions. The requirement
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that the reaction wheel torque equal the change in angular momentum is more universal.

It is a verification check performed with every simulation involving a reaction wl.eel.

0.10 T

Wheel ) 5 - .
Torque

&

Change in 0 r
Angular
Momentum

0.05 =
(N-m) -

0.10 L
0 5 10
Time (sec)

Figure 24: Sample of Wheel Torque and Change in Angular Momentum vs. Time

An even more universal check also performed with every simulation is the require-
ment that the constraint equations (Aq+A, = 0) are satisfied. Figure 25 shows a sample
plot. This plot was also taken from the fifth order polynomial reference trajectory case.
The values piotted represent the four constraint equations contained in Eqn 72. The non-
zero values are attributed to numerical errors created by the integration.

Finally, a common sense check also performed with every simulation is simply to
verify that the payload was repositioned to the desired final location. This cannot happen
if the torques applied to the system were incorrect. This test is a necessary but not suffi-

cient condition that the code operates correctly.
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B. SIMULATIONS

This section presents resuits from several simulations of an analytical model. The
desired payload repositioning maneuver is illustrated in Figure 26. The final position for
the payload involves a 90 degree rotation and the right endpoint finishes where the left
endpoint started.

1. Lyapunov Point Controller

In the first simulation, the repositioning is done entirely by the Lyapunov control-

ler without the benefit of a reference trajectory. The behavior is that of a point controlier
with an initial displacement rather than that of a tracking controller. Due to the absence of
the weighted norm reference torques, this controller cannot be consider to have coopera-
tive nature. Figure 27 presents the angular displacement history. The asterisks on the
right side of the plot indicate the desired final angles. Although the system is approaching
the desired final geometry, it has not completely settled down even after 40 seconds. Posi-
tion errors (Figure 28) are still present as well as nonzero velocities (Figure 29). Also note

that the reaction wheel torque is quite high during the maneuver (Figure 30). The joint
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actuator torques are considerably less than the reaction wheel torque. They are not identi-

fied individually because the most important feature of Figure 30 is the reaction wheel
torque. As a quantitative measure of this controller’s quality, [ju,|dt produces a value of

17.3841. The oscillatory nature of the system is evident in the angular position and veloc-
ity plots. Despite the oscillations, however, the stability of the controller is also illus-
trated. Figure 31 depicts the system geometry at several instances during the maneuver.
The left manipulator links actually cross over each other. In experimental hardware, the
links would collide instead. Figure 32 removes the clutter that is present in Figure 31 and
displays only the initial and final geometry. The Lyapunov point controller also does a
poor job of maintaining the centerbody attitude. This is clearly evident in Figures 27 and

31. The attitude error peaks at about 16 degrees.
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14 | .
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12 {_ Elbow 1
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Figure 26: Desired Repositioning Maneuver
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Figure 27: Lyapunov Point Controller Angles
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Figure 28: Lyapunov Point Controller Displacement Errors
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Figure 29: Lyapunov Point Controller Angular Rates
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Figure 30: Lyapunov Point Controller Command Torques
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2. Lyapunov Tracking Controller

This controller uses the following equation to calculate control torques

u = clT {—K\6q+Cl" u " (c?_q—czmqrc) - (C,-C, ) -Ky8q)  (209)

¢ f : et

This equation was developed in the analytical chapter and repeated here for conve-
nience. The command torques are based on errors with a reference trajectory. Reference
torques which resulted from minimizing a weighted norm of the actuator torques associ-
ated with the reference trajectory are also included.

a. 5" Order Reference lrajectory

In this simulation, a fifth order polynomial reference trajectory is applied to the

payload generalized coordinates. The payload coordinates displacements, velocities, and
accelerations resulting from this polynomial are depicted in Figure 33. When calculating
the reference torques from the inverse kinematics, the six joint actuators are all weighted
equally. The maneuver time is selected to last 10 seconds. As is demonstrated in Figures
34-36, the system successfully moves from initial conditions to desired final conditions.
The displacement errors are less than 107 deg (Figure 34). The command torques (Figure
37) are an order of magnitude smaller than for the previous simulation which lacked a
reference trajectory. [Evaluating j |u,sdt leads to the dramatically improved value of

0.5746. More importantly, the centerbody attitude is maintained throughout the maneuver.

Figure 38 shows the time lapse depiction of the maneuver.
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Figure 34: 5th Order Angles

66




1.0

0.5
0 - ORef
(deg)
.5
-1.0

Figure 33:

Angle Rates
(deg/sec)

Displacement Jrrors vs Tune
x 10

——

0 e

L3YL20
UR 7Y

-0
p pRel'

4

R’Rcf
0

L 0(; eo Ref

01,1'01.1.“, 0 -0
VR R2peg

0 20

Time (sec)

Thetaldots vs Time

40

50 Order Displacement Errors

Time (sec)

Figure 36: 50 Order Angular Rates

67




Command Torques vs Tune
T

0.10
0.05
Command
Torques 0
{N-m)
-0.05
-0.10 !
0 5 10
Time (sec)

Figure 37: 50 Order Command Torques

10+

Y(m) 08 F

06 |-

04

0 4l —_—

05 0 0s 10
X{m)

sth

Figure 38: Order Time Lapse Stick Figure

68




b. 8" Order Reference Irajectory

By increasing the order of the reference trajectory polynomial while
maintaining the same boundary conditions conceming velocity and acceleration, one
hopes to achieve improved performance. For example, the domain of all sixth order
polynomial functions includes all fifth order polynomial functions as a subset. Therefore,
when searching all sixth order polynomials for coefficients which will minimize the cost
function, one possible solution is the fifth order polynomial already used. Using the
function minimiza' on routine discussed in the previous chapter, a sixth order polynomial
function was found. Although there was some improvement, the change in performance
was not significant. The same was true for a seventh order function. An eighth order
function is presented here. It was hoped that the increased order would be enough of a
departure from the fifth order cause to produce significant improvement in reducing the
centerbody disturbance torque. The algorithm converged to a solution for the eighth order
polynomial after running approximately two hours on a personal computer with an Intel
486-DX50 cpu. The resulting trajectories are very similar to those for the fifth order case
and are displayed in Figure 39. The most obvious difference is a lack of symmetry. Plots

for this case are contained in Figures 40-43. The value of [|u_, ¢t for this case was 0.5705.
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Figure 41: 8" Order Angular Rates
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Figure 42: 8th Order Command Torques
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3. Maedified Lyapunov Tracking Controller

This simulation represents a compromise between the Lyapunov point controller
and the Lyapunov tracking controller. Because the Lyapunov point controller does not use
a reference trajectory, the cost function which minimizes the weighted norm of the actua-
tor torques is completely bypassed. The modified Lyapunov controller removes the refer-
ence torque term from the command torque calculation (Eqn 209) but calculates command
torques based on errors with a reference trajectory. Like the Lyapunov point controller,
the modified Lyapunov tracking controller does not minimize a weighted norm of the
actuator torques and is therefore not a cooperative controller. The angle histories in Figure
44 exhibit less of the oscillatory nature than the point controller simulation, but the accu-
racy shown in Figure 45 is considerably worse than the reference trajectory simulations.
Figures 4648 also illustrate behavior better than the point controller but not as good as
when command torques are found using Eqn 209. The magnitude of the command torques
show an order of magnitude improvement over the point controller. This is directly attrib-

utable to using intermediate reference points on the way to a desired final state rather than
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attempting to achieve the desired final state all at once. Calculating (ju,,|dt produced a

value of 2.4523. The time lapse figure shows that the motion is much less wild but the

centerbody attitude error is still noticeable.
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Figure 44: Modified Lyapunov Tracking Controller Angles
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Figure 45: Modified Lyapunov Tracking Controller Displacement Errors
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Figure 47: Modified Lyapunov Tracking Controller Command Torques
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4. Comparison of Controllers

Table 2 summarizes the results of the Lyapunov point controller, the two Lyapunov
tracking controller cases, and the modified Lyapunov tracking controller. The point con-
troller clearly has the worst performance with high reaction wheel torque and large center-
body attitude error. The tracking controller performs much better. Reaction wheel torque
is greatly reduced and centerbody attitude error is eliminated. As expected, increasing the
order of the polynomial reduces the reaction wheel torque further, but the improvement is
relatively small. The modified tracking controller strikes a compromise between the point

controller and the tracking controller.
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TABLE2. COMPARISON OF HYPOTHETICAL MODEL

SIMULATIONS
Centerbody
flugaldt | up, Attitude | Cooperative
Error (deg)
Point Controller 17.3841 2.9365 162261 No
Tracking | 5 Order | 05746 | 00961 0.0000 Yes
Controller | 8" Order | 05705 | 00885 0.0000 Yes
Modified Tracking 1 ) ,o03 | 03950 | 1.1910 No
Controlier
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IV. EXPERIMENTAL WORK

The experimental phase of this research was conducted on the Spacecraft Robotics
Simulator (SRS). The SRS is a derivative of the Flexible Spacecraft Simulator (FSS) ini-
tially developed by Watkins [Ref 17] and later modified by Hailey [Ref 18]. Sorensen
[Ref 18] began the work to convert the FSS into the SRS.

A. SETUP

The SRS permits experimental investigation of two dimensional robotics motion and
rotational spacecraft dynamics. The SRS is illustrated in Figures 49 and 50. The simula-
tor hardware is floated on an eight foot by six foot granite table by means of a thin layer of
air supplied by an external source. The table is polished to within 0.001 inch peak to val-
ley and leveled to prevent gravitational accelerations from impacting the motion across its
surface. The following sections describe the simulated spacecraft with its associated sen-
sors and actuators and the controller which together form the SRS. The spacecraft compo-

nents are the centerbody, two manipulators, and a payload.
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Figure 49: Spacecraft Robotics Simulator
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Figure 50: System Top View

1. Centerbody
The centerbody is a 30 inch diameter, 7/8 inch thick aluminum disk. The center-
body carries a position sensor, rate sensor, momentumn wheel, thrusters, and an air tank to
power the thrusters. The centerbody also serves as the mounting platform for the manipu-
lators. The centerbody is floated by a central air bearing and three air pads located at 120
degree intervals near the outer edge. The air pads are each capable of floating 60 pounds
when the air pressure supplied to the pads is 80 psi. The air bearing is attached to an over-

head I-beam which restricts to motion of the centerbody to rotation only.
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Centerbody angular position 1s sensed by a Rotary Vanable Displacement Trans-
ducer (RVDT) mounted directly above the air bearing. The RVDT is a model R30D man-
ufactured by Schaevitz Sensing Systems. Its linear range is restricted to £ 40 degrees.
Centerbody angular rate is measured by a rate transducer manufactured by Humphrey, Inc.
The 1nstrument has a range of +100 deg/sec and a minimum threshold of 0.01 deg/sec.

Centerbody angular position is controlled by a momentum wheel. The momentum
wheel speed is measured by a tachometer contained in the servo motor which drives the
momentum wheel. The centerbody momentum wheel is powered by a model JR16M4CH/
FOT servo motor manufactured by PMI Industries. Charactenistics of this motor are sum-
marized in Table 3. Although the centerbody also carries two thrusters, they are not used

in this research.

TABLE 3. MOMENTUM WHEEL MOTOR

CHARACTERISTICS
Manufacturer PMI Industries
Model JR1I6M4CH/FOT
Rated Output Speed (rpm) 3000
Rated Current (amps) 7.79 T
Rated Voltage (volts) 168
Rated Torque (in-Ib) 3185
Height (in) 45
Weight (1b) 17.5
Outside Diameter (in) 74

2., Manipulators
Two two-link manipulators are mounted 60 degrees apart on the centerbody. Each
manipulator has three joints. The shoulder joints are supported by the centerbody while

the elbow and wrist joints are supported by two air pads apiece. The links between the
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joints are suff laterally but parmit some flexibility vertically. This feature increases the
tolerances on the air pad height adjustment.

Left arm joint angles are measured by the same model RVDT as is used on the cen--
terbody. All three of the left arm actuators are series 9FGHD servo disk motors manufac-
tured by PMI Industries. Joint angles on the right arm are sensed by encoders purchased
with the joint actuators. The encoder resolution is 0.005 devrees. The right arm joint
actuators arm are harmonic drive dc servo actuators manufactured by HD Systems, Inc.
The shoulder actuator is model RFS-25-6018-E036AL while the elbow and wnst actua-
tors are model RFS-20-6012-E036AL. Specifications for the three types of joint actuators

are contained in Table 4.
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Figure 52: Right Manipulator Top and Side Views

TABLE 4. MANIPULATOR ACTUATOR CHARACTERISTICS

Manufacturer HD Systems | HD Systems | PMI Industnes
Model RFS-25-6012 | RFS-25-6018 9FGHD
Reduction Ratio 1:50 1:50 1:148.5
Rated Output Speed (rpm) 60 60 17
Rated Current (amps) 29 29 5.6
Rated Voltage (volts) 75 75 12
Rated Torque (in-1b) 174 260 80
Height (in) 88 9.6 3
Weight (1b) 93 14.1 3.2
Footprint (in) 43t 510 48

! Side of square
Diameter of circie
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The joint actuators are all driven by Kepco power supplies. These bipolar, pro-
grammable, linear amplifiers can be controlled manually from the front panel or con-
trolled remotely with a 10 volt signal. In this application, the power supplies are
operated in the current control mode with the voltage and current limits manually set con-

sistent with the values in Table 4. The specific power supply models and their characteris-

tics are summarnzed in Table 5.

TABLE 5. POWER SUPPLIES CHARACTERISTICS

Model BOP 72-6M BOP 72-3M | BOP 20-10M
, Right Elbow, | All Left Arm
Actuators Controlled Right Shoulder Right Wrist Joints
7 + +20 vol
DC Output Range 2 volts 72 volts volts
+6 amps +3 amps +10 amps
Closed Loop Gain 0.6 (amp/volt) | 0.3 (amp/volt) | 1.0 (amp/volt)
3. Payload

The payload is a rigid bar mechanically fastened to the ends of both manipulators.
The payload is supported entirely by the air pads on the manipulator wrist joints. Ballast
can be added to the payload to change the mass and inertia characteristics of the system.
This allows for the construction of cases in which the mass of the payload is rontrivial
compared to the spacecraft centerbody. The payload contains no sensors or actuators.
Payload position is derived from the manipulator joint angles.

4. Controller

The AC-100 programmable controller manufactured by Integrated Systems, Inc.

controls the SRS. The AC-100 includes an Intel 80386 Application Processor, an Intel

80386 Multibus II Input/Output Processor, an Intel 80386 Communication Processor, and
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Intel 80387 Coprocessor, a Weitek 3167 Coprocessor, and Analog-To-Digital and Digital-
To-Analog Data Translation DT2402 Input/Output Board, two INX-04 Encoder and Digi-
tal-To-Analog Servo Boards, and an Ethernet Interface Module. The AC-100 also
includes software installed on a VAX 3100 Series Model 30 workstation. The software
permits design of a controller in block diagram graphical form and conversion of the dia-
gram to C language programming code. The user is also able to design an interactive ani-
mation window to operate the controller. The AC-100 receives input signals from the
sensors and the graphical user interface. AC-100 output signals go to the power supplies
driving the actuators or to the graphical user interface for display.
S. System Integration

The differences between the idea! world of ax analytical simulation and the real
world of actual hardware became apparent during system integration. A few problems
arose then requiring some modification of the experiment. The first problem conc.ined
floating the centerbody. It exhibited a noticeable resistance to rotation. This is due in part
to the air pressure of the available air supply. Because it was only 40 psi, the air pads per-
formance was degraded by a factor of two. Prior to mounting the manipuiators, the cen-
terbody weighed approximately 125 Ibs. Adding the shoulder motors increased the
centerbody weight to 145 Ibs. The extra weight may have been enough to overwhelmed
the centerbody air pads. A second contributing factor to the centerbody drag is the inabil-
ity of the central air bearing to function except under very low lateral loading. The modi-
fication to the experiment created by the centerbody problem is to not float the centerbody.

A second problem involved using the RVDTs. As envisioned, the experiment
requires one RVDT for the centerbody and three for the left manipulator joints. The Space
Dynamics laboratory has a total of three in stock. Although a fourth has been ordered, it
did not arrive in time to be used. Using the existing RVDTs revealed another problem.

Data acquisition of the RVDT signal by the AC-100 exhibited a random toggling of the
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sensed value between a good reading and a value of zero. Because the angle information
is critical to calculating actuator commands, this behavior is unacceptable. Consultation
with the Integrated Systems technical support group revealed that this type of behavior is a
bug within the AC-100 software which has been corrected in more recent versions. Use of
the newer version was not possible because it requires upgrading the VAX workstation
hardware and an updated version cf the VMS operating system. The experimental modifi-
cation used to overcome these difficulties is to derive the joint angles and velocities of the
left manipulator by using the sensed information from the right manipulator encoders.
Velocities were not sensed directly but approximated by the change in displacement which
occurred since the last sample divided by the sample rate

A third obstacle involved the limitations of software to design the control algo-
rithm. The block diagram construction method did not permit convenient matrix opera-
tions. Matrix multiplication must be programmed in an element by element basis. Matrix
inversion must also be calculated by constructing a series of blocks to find each element.
This handicap is not serious when the system equations of motion are of low order. How-
ever, the dual two link manipulator configuration is eighth order and beyond the practical
means of programming complex matrix operations, especially matrix inverses. Recall that
the command torques are calculated by the following relationship

w= (€T T (=K 54+ C, u = (C,d-C, 4 )~ (Cy-Cy ) -Kpda)
(210)

When the differences between the actual path and the reference path are small, this control
law simplifies to something very similar to a PD controller. Therefore, the control law
used by the experiment is a PD controller rather than the complete Lyapunov controller.

Performance differences between the left and right manipulator actuators also pre-
sented some problems. Because of the actuator redundancy, any three joint actuators

should be enough to follow a reference trajectory. This fact can be demonstrated by using
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only the three right joint actuators. However, the same trajectory is not possible with only
the left actuators. The torque provided by the left joint actuators is insufficient to com-
pletely overcome the internal friction of the right joint actuators. Even when the left joint
actuators are commanded manually from the front panel, there is no correction to reduce
the position error. When steadily increasing the commanded current to the motor, the cur-

rent limit is reached before the motor responds.

B. RESULTS

The reference trajectory for the experimental phase is slightly different from that used
in the analytical section. The reference maneuver still involves a 90 degree rotation of the
payload with the right endpoint ending where the left endpoint began. The differences
arise from the system parameter such as lengths and masses not being the same as in the
generic hypothetical model. The desired reference maneuver is depicted in Figure 53.
Results are shown in Figures 54-58 and summarized in Table 6. The sudden changes from
believable values to zero in the figures are problems with the data acquisition software and

do not indicate actual changes in the experimental hardware geometry.
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Figure 53: Desired Experimental Repositioning Maneuver
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TABLE 6. EXPERIMENTAL ERRUR ANGLES

Errors (deg)

Initial Final Maximum

Magnitude
Op 0.2550 -0.3383 0.5527
0 -0.4574 0.0366 0.7797
01, 0.0225 0.1873 0.3035
ORr) 0.1037 -0.0808 0.1628
92 0.3350 0.3950 0.7742
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V. SUMMARY AND CONCLUSIONS

A. SUMMARY

The dynamics of a dual two-link manipulator system which is repositioning an already
grasped payload have been analyzed. The equations of motion for the system were devel-
oped using Lagrange’s method. The resulting equations were highly noni:near, coupled,
second order differential equations. Given any reference trajectory, the actuator torques
that will produce that trajectory were calculated to minimize a weighted norm of the
torques. Stability of the system during the repositioning maneuver was ensured by a con-
troller derived from Lyapunov stability theory. Equations for deriving joint angles from
centerbody and payload reference values was alsc developed. Polynomial reference tra-
jectories were presented as an attractive means to specify a reference trajectory.

The analytical model was validated using test cases in which some results could be
predicted in advance. The model demonstrated conservation of energy when no torques
were applied. It also exhibited conservation of angular momentum whenever the reaction
wheel was disabled. The model also maintained symmetric geometry in the appropriate
test cases. In cases which used the reaction wheel. conservation of energy and angular
momentum did not apply, However, comparison of the change in angular momentum with
the reaction wheel torque provided validation. Finally, in all test cases as well as simula-
tions, the constraints were satisfied as measured by Aq+A, = 0.

Results from simulations indicated that the Lyapunov point controller, although stable,
behaved poorly. Large centerbody attitude errors, high command torques, and wild oscil-

lations make this controller undesirable for large \ 2positioning maneuvers. The Lyapunov
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tracking controller exhibited dramatic a improvement in performance. Centerbody atti-
tude errors were removed and reaction wheel torque decreased significantly.

The experimental phase revealed that the controller required further simplitication for
compatibility with the laboratory resources. Acceptable resuits were obtained using a PD
control law with a reference trajectory.

The objectives of this research were to 1) develop a stable control law that facilitates
cooperation among the manipulators as they reposition the payload, 2) minimize the joint
actuator effort, 3) reduce the disturbance torque transmitted to the spacecratt main body
by the manipulator motion, and 4) validate the analytical development with experimental
results. The Lyapunov controller satisfies the first objective. The second objective is
achieved by the weighted norm calculation of the actuator torques. Reduction of the cen-
terbody disturbance torque is accomplished through reference trajectory selection.
Although a rigorous application of classical optimal control techniques proved impracti-
cal, a polynomial reference trajectory in which the coefficients were selected to reduce the
disturbance torque was easily applied. Difficulties were encountered with regards to the
fourth objective, experimental work. The controller developed analytically could not be
directly transferred to the laboratory. This was due to a combination of hardware limita-
tions and real world conditions instead of the ideal environment of the analytical model.
The controller was adapted to the realities of the laboratory and resulted in successful

accomplishiaent of a payload repositioning maneuver.

B. ORIGINAL CONTRIBUTIONS
A simulation tool has been developed to analyze the dynamics of a space based robot-

ics system. Some of the features of this tool include:
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(i) rotational motion of the spacecraft centerbody and planar motion of the manip-
ulators and payload:

(i) minimization of a weighted norm of the actuator torques based on a user sup-
plied weighting matnx;

(i11)  calculation of polynomial reference trajectory coefficients to produce a local
minimum for the integral of the absolute value of the disturbance torque based
on a user supplied order for the reference polynomial and an initial guess for
the coefficients;

(iv)  areference trajectory with zero velocity and acceleration at the beginning and
end of the maneuver;,

(v)  a Lyapunov controller which guarantees stability in the face of perturbations
between the reference trajectory and the actual dynamics caused by errors in
the initial conditions.

An experimental test bed was also developed. This effort involved the design of the

manipulator components and the development of a real time controller. This test bed
remains in the Spacecraft Dynamics and Control Laboratory and is available for follow-on

work.

C. RECOMMENDATIONS FOR FURTHER STUDY

As with any research, this work answers some questions but raises others. One of the
areas that could receive further attention is the selection of the Lyapunov controller gains.
The theory requires positive definite matrices to ensure stability but offers no insights con-
cerning selection of the matrices to improve performance. For any given set of controller

matrices, one expects the relative merits of the point controller, tracking controller, and
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modified tracking controller to remain the same. lowever, still better performance might
be achieved across the board if the gains were optimized.

Rather than merely changing Lyapunov controller gains, one might investigate another
Lyapunov controller by beginning with a different candidate Lyapunov function than the
one presented here. The choices are infinite and the results and performance difficult to
predict.

Trajectory optimization is another area that would benefit from further work. The
function minimization algorithm used to select polynomial coefficients converged to local
minima solutions depending on the initial guess for the coefficients. The search for a glo-
bal minimum for a particular order polynomial requires further investigation. An alternate
approach with respect to trajectory optimization is to use some function other than a sim-
ple polynomial to describe the trajectory. Possible trajectories might be Tchebycheff poly-
nomials, Legendre polynomials, or Fourier series.

To help bridge the gap between the analytical model and the real world hardware, one
could consider modifying the controller to include joint friction, actuator backlash, sensor
noise, and flexibility. One could also consider using a minimum generalized coordinate
formulation. One might also attack the differences from the hardware perspective by
seeking components that more closely resemble those in the analytical model. Another
improvement in the experiment would be to replace the existing joint velocity approxima-
tions with either an observer or an actually velocity measurement.

Finally, it’s a three dimensional world. Extending the analytical model and, if possi-

ble, the laboratory experiment to include out of plane motion should be considered.
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APPENDIX A: EXPERIMENTAL CONTROL BLOCK
DIAGRAMS

This appendix includes the block diagrams of the System Build super blocks made to
control the SRS. The heirarchy among the super blocks is illustrated in Figure 59. Both is

the parent superblock. The ohters are lower level super blocks.

Both —’
Parameters
Trajectories
Encoders
LeftAngles
[ Partl
Controller
Part2
Part3

Figure 59: Super Blocks Hierarchy

The block diagram for super block Both is shown in Figure 60. Inputs into the dia-
gram include the sensor signals from the hardware and user operated dials to select the
controller gains and enable switches which select the combination of joint actuators to
enable. The outputs include commanded, reference, and error signals for each of the cen-

terbody angle, joint angles, and payload angle. Motor current commands to the Kepco
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power supplies are also outputs. Block 56 contains the system parameter values for the
experimental hardware. This block is expanded and displayed in Figure 61. Block 8 con-
tains the position and velocity values for a reference trajectory in a look-up table. It also
contains a table to reset the system back to its original geometry to permit rerunning the
reference traie~*~ry. This block is expanded in Figure 62. Conversion of the encoder
puises from the right manipulator into angle and angle rate information is done in Block 7
which is expanded in Figure 64. Conversion of the encoder pulses from the right manipu-
lator into angle information for the left manipulator is done in Block 49. Details of this
block are shown in Figures 64-64. The PD controllers which convert the error signals into
actuator commands are in Block 40. This block is expanded in two parts. The actuator

commands for the right and left manipulator are shown in Figures 68 and 69 respectively.
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Figure 63: Encoders Block Diagram
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Figure 64: Left Angles Block Diagram
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Figure 65: Part 1 Block Diagram
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Figure 67: Part 3 Block Diagram
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Figure 68: Right Manipulator Controller Block Diagram
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APPENDIX B: MATLAB CODE

The following listings are the MATLAB code used for the analytical simulations. The
modules are included in alphabetical order. The hierarchical relationship between the
modules is illustrated in Figure 70. The integration modules ode2 and odemin are minor
variants of the MATLAB supplied module ode45. The modifications permit more param-
eters to be passed to and from these modules without having to include the extra vanables
in the state vector. Similarly, fminu2 modified the MATLAB unconstrained function min-

imization module, fminu, to include some diagnostic statements while running.

MainOpt 4[
fminu2 —‘
MainMin
_d—lm'
odemin
__]
Main2 RefMin2
jd'eZ ;ZB]MOZ
| |
Draw3 Eqn2
Artllg:] qn A—l
ngMo Ref2
| | |

Matx Matx M'ixtx
Mlthj X MatxFix MatxFix
AngMo2 AngMo2

Figure 70: MATLAB Modules Hierarchy
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A. AngMo

% Filename 1s "AngMo.m"
% This file calculates the angular momentum of the svstem
function {Hs) = AngMo(Ls,Ms,CMs,Is,Q,Qdot)

% OUTPUT:

% Hs = Ix7 row vector of angular velocities. The lirst element is for
Y the centerbody. The next four elements are tor the left upper
% and lower arm followed by the nght upper and lower am. The
Y {ast two elements are for the payioad and a total of all the

Yo previous elements. {110 FIL1 HIL2 HIRT HR2 TP HTotal]

%

% INPUT:

% Ls = 7x1 vector of lengths (m)

% Ist element = distance from origin to left arm moum

Yo 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
Y 4th element = payload length

% Sth & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance trom right arm mount to origin

% [LO; L1, L2:LP.R2; R1.RO]
% Ms = 6x1 column vector containing the masses (kg)

% Ist element = mass of spacecratt centerbody

% 2nd & 3rd elements = mass of left arm (upper arm then lower arm)
Y% 4th & 5th elements = mass of nght arm (upper arm then fower arm)
% 6th element = payload mass

% [MO; ML }; ML2: MR1; MR2; MP]

% CMs = 6x1 column vector containing center of mass locations

% {LcO; LeL1; Lel.2: LeR1; LeR2; LePj

% Is = 6x1 column vector containing the moments of incrtias about the

% respective body's center of mass (kg m”2)

% Ist element = inertia of spacecraft centerbody

Ya 2nd & 3rd elements = inertia of left arm (upper amm then {ower arm)
Y% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
Y% 6th element = payload inertia

% {10; IL1: IL2: IR1: IR2; IP]

% Q= 8x1 column vector of generalized coordinates

% Qdot = 8x1 vector ol generalized velocities

%%%%%%% %% %% %% % %% %% %% %% %% %% %% %% %
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%% %% %% %% %% %% %% %% %% %% %% %% %% %%
% Lengths (m)

1.0 =Ls(1),

.1 =Ls(2),

1.2 = Ls(3),

LP =Ls(4),

R2 = Ls(5),

R1 =Ls(6);

RO =Ls(7),

% Member masses (kg)
MO =Ms(1),

ML1 = Ms(2),

ML2 = Ms(3);

MRI1 = Ms(4),

MR2 = Ms(5),

MP = Ms(6),

% Center of mass distances (m)
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L.cO =CMs(1),

LcL1 =CMs(2),

l.cL.2 = CMs(3),

LeR1 = CMs(4),

L.cR2 = CMs(5),

LeP = CMs(6); %emeasured from left end

%6 MOI about ceater of mass
10 =1Is(l);

IL1 =1s(2);
1.2 = Is(3);
IR1 = Is(4),
IR2 = Is(5),
IP =Is(6),

% Coordinates (rad & m)
ThO =Q(),
ThL1 =Q(2),
ThL2 = Q(@3),
ThR1 = Q(4),
ThR2 = Q(5),
ThP = Q(6);
XP =Q(7),
YP =Q(8),

% Coordinate Rates (rad/sec & m/sec)
Thod = Qdot(1),

ThL 1d = Qdot(2),

ThL.2d = Qdot(3),

ThR1d = Qdot(4);

ThR2d = Qdot(5);

ThPd = Qdot(6),

XPd =Qdot(7),

YPd = Qdot(8),

% Angular Momentum

HO = Th0d*(10 + MO*Lc0"2),

HL1 = ThOd*(IL I+ML1*(L0*2+LcL172+2*L0*LcL. 1 *cos(ThL D)) + ..
ThL1d*(IL 1+ML 1*(LcL122+L0*LcL 1 *cos(ThL 1)),

HL2 = ThOd*(IL2+ML2*(L0"2+L1°2+LcL272+2*1.0*L. 1 *cos(ThL1) + ...
2*L1*LcL2*cos(ThL2)+2*L0*LcL2*cos(Thl.1+ThL2))) + ...
ThL1d*(IL2+ML2*(L 1"2+LcL2*2+LO*1, t*cos(ThL 1) + .
2*L1*LcL2*cos(ThL2)+HL.O*LcL2*cos(ThL. 1+ThL.2)) + ..
ThL2d*(JL2+ML2*(LcL2*2+L1*LcL2*cos(ThL2) + ...
LO*LcL2*cos(ThL 1+ThL2))),

HR1 = ThOd*(IR1+MR1*(R0"2+LcR172+2*R0O*[.cR 1 *cos(ThR1))) + ...
ThR1d*(IR1+MRI1*(LcR172+R0*LcR I *cos(ThR1))).

HR2 = ThOd*(IR2+MR2*(RO"2+R 1"2+LcR272+2*RO*R I *cos(ThR 1) + ...
2*R1*LcR2*cos(ThR2)+2*RO*LcR2*cos(ThRi+ThR2)) + ...
ThRId*(IR2+MR2*(R 1"2+LcR2*2+R0O*R | *cos(ThR1) + ...

2*R 1*LcR2*cos(ThR2HRO*LcR2*cos(ThR1+ThR2))) + ...
ThR2d*(IR2+MR2*(L.cR2/2+R 1*LcR2*cos(ThR2) + ...
RO*LcR2*cos(ThR 1+ThR2)));

HP = ThPd*IP + MP*(-XPd*YP + YPd*XP);

HTotal = HO + HL1 + HL2 + HR1 + HR2 + HP,

Hs=[HO HL1 HL2 HR1 HR2 HP HTotal};
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B. AngM 02

% Filename 1s "AngMo2.m"

% This file calculates the angular momentum of the svstem

% Version 2 also finds the rate of change of angular momentum
lunction {Hs, Hdots] = AngMo2(L s,Ms,CMs,I5,Q.Qdot.Qddot)

% OUTPUT:
% Hs = 1X7 row vector of angular velocities. The [irst clement 1s for

Y% the centerbody. The next four elements are for the left upper
Y% and lower arm followed by the night upper and lower arm. The
% last two elements are for the pavload and a total of all the

Yo previous elements. [HO HL1 HL2 HRIT HIR2 [P 1{Total]
% lldots = Ix7 row vector of the change in angular veloaities. The order

Y% 1s the same as foi Hs

%

% INPUT:

% Ls = 7x1 vector of lengths (m)

% 1st element = distance from origin to left arm mount

% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
% 4th elenien: = payload length

% 5th & 6th elements wrt right arm (from wrist toward shoulder)
% 7th element = distance from right arm mount to ongin

Y {LO; L1: L2, LP. R2; RI: RO]
% Ms = 6x1 column vector containing the masses (kg)

% I'st element = mass of spacecraft centerbedy

% 2nd & 3rd clements = mass of left armii (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
% 6th element = payload mass

% MO, ML 1; ML2; MR1: MR2; MP]

% CMs = 6x1 column vector containing center of mass locations

% [L¢G. Lel. 1. LeL2: LeR1; LeR2; L¢P

% [s = 6x1 column vector containing the moments of incrtias about the

% respective body's center of mass (kg m”2)

% 1st element = inertia of spacecraft centerbody

% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper arm then lower arm)
%  6th element = payload inertia

% (10, IL 1, IL2; IR1. [R2; IP]

% Q = 8x1 column vector of generalized coordinates

% Qdot = 8x1 vector of generalized velocities

% Qddot = 8x1 vector of generalized accelerations

% %% % %% % %% %% %%% %% % %% % %% %% %%%%%% %
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%%%%%%%%%%% %% % %% %% %% %% %% %% % %% % %
% Lengths (m)

L0 =Ls(1),

L1 =1Ls(2),

[.2 =Ls(3),

LP = Ls(4),

R2 =Ls(5),

R1 =Ls(6);

RO = Ls(7),

% Member masses (kg)
MO = Ms(1);

ML1 = Ms(2),

MIL.2 = Ms(3),

MR1 = Ms(4),
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MR2 = Ms(5);
MP = Ms(6),

% Center of mass distances (m)

1.c0 =CMs(1).

l.cl.l =CMs(2),

L.cl.2 = CMs(3),

L.cR1 = CMs(4),

[.cR2 = CMs(5),

L¢P = CMs(6), %measured from left end

%% MOI about center of mass
[0 =1Is(1).

1.1 =1Is(2);

IL2 =1s(3),

IRT = Isd);

IR2 =1s(5),

P =1s(6),

% Coordinates (rad & m)
ThO =Q(1),

ThL1 = Q(2),

ThL2 = Q(3),

ThR1 = Q(4),

ThR2 = Q(5),

ThP = Q(6);

XP =Q(7y,

YP =Q(8)

% Coordinate Rates (rad/sec & m/sec)
ThOd = Qdot(1);,

ThL 1d = Qdot(2),

ThlL.2d = Qdot(3),

ThR1d = Qdot(4);

ThR2d = Qdot(5),

ThPd = Qdot(6),

XPd = Qdot(7),

YPd = Qdot(8),

% Coordinate Accelerations (rad/sec”2 & m/sec”2)
ThOdd = Qddot(1),

ThL 1dd = Qddot(2);

ThL2dd = Qddot(3);

ThR1dd = Qddot(4),

ThR2dd = Qddot(5);

ThPdd = Qddot(6),

XPdd = Qddot(7),

YPdd = Qddot(8),

% Angular Momentum

HO = ThOd*(I0 + M0*Lc0™2);

HL1 = ThOd*(IL 1+ML 1*(L0"2+LcL 1724+2*L0*Lcl. 1 *cos(ThL. 1))) + ...
ThL 1d*(IL {+ML1*(LcL 122+L0*LcL 1 *cos(ThL1))).

HL2 = ThOd*(IL2+ML2*(LO"2+L 1"2+LcL272+2*1.0*1.1*cos(ThL 1) + ...
2*L1*LcL.2*cos(ThL2)+2*L0*LcL2*cos(ThL 1+ThL2))) + ...
ThL 1d*(IL2+ML2*(L [*2+LcL2/2+L0*1. { *cos(ThL 1) + ...
2*L1*LcL2*cos(ThL2)+LO*LcL2*cos(Thl. [+ThL.2)) + ...
ThL2d*(IL2+ML2*(LcL272+L1*LcL2*cos(ThL.2) + ...
LO*LcL2*cos(ThL 1+ThL2)));

HR1 = ThOd*(IR1+MR I*(R0*2+LcR 1*2+2*RO*LcR1*cos(ThR 1)) + ...
ThRId*(IR1+MR1*(LcR172+R0*LcR1*cos(ThR1))),
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[IR2 = ThOd*(IR2+MR2*(ROM2+R1"2+L.cR27"2+2*RO*R 1 *cos(ThR1) + ...
2*R1*LcR2*cos(ThR2)+2*RO*LeR2*cos( ThR 1+ ThR2)) + ..
ThRId*(IR2+MR2*(R 1 *2+L.cR2"2+RO*R 1 *cos(ThR ) + ...
2*R1*LcR2*cos(ThR2)+RO*LcR2*cost ThRI+ThR2)) + ...
ThR2d*(IR2+MR2*(LcR2"2+R 1*LcR2*cos(ThR2) + ..
RO*LcR2*cos(ThR1+ThR2))),

[P = ThPd*IP + MP*(-XPd*YP + YPd*XP).

HTotal = HO + HL1 +1IL2 + HR1 + HR2 + HP.

s =|HO HL1 HL2 HRY HR2 [IP HTotal};

% Change in angular momentum
HOd = ThOdd*(10 + MO*Lc0"2);
HL1d = ThOdd*(IL 1 +ML1*(1.0"2+LcL 172+2*LO*.cl. 1 *cos¢ThL D)) + ..
ThL 1dd*(IL 1+ML 1 *(LcL172+L0*L.cl. 1 *cos(ThL. 1)) - ...
ThOd*ThL. 1d*2*ML1*LO*LcL i*sincThi. 1) - ..
ThL1d*2*ML1*1.0*L.cL 1 *sin(ThL.1):

HL2d = ThOdd*(IL2+ML2*(LOM2+L 1"24Lcl.2°2+2*L.0*L 1 *cos(ThL ) + ..
2*L1*LcL2*cos(ThL2)+2*LO*LcL2*cos(Thl.1+ThL.2)) + ...
ThL 1dd*(IL24+ML2¥(L 1°2+LcL272+1.0*1.1*cos(ThL1) + ...
2*L1*LcL2*cos(ThL2)+L0*LcL2*cos(Thl.1+ThL2))) + ...
ThL2dd*(1L.2+ML2*(LcL2"2+L1*L¢l.2*cos(ThL.2) + ...
LO*LcL2*cos(ThL1+ThL2))) - ...
ThOd*ThL 1d*2*ML2*(LO*L 1 *sin(ThL. N+LO*L.cl.2*sin(Thl. 1+ ThL.2)) - ...
ThOd*ThL2d*2*ML2*(L 1 *LcL2*sin(Thl.2)+1.0*LcL2*sin(Thl.1+ThL2)) -...
ThL 14*ThL2d*2*ML2*(L } *LcL2*sin( ThL.2)+1.0*LcL2*sin( ThL 1 +ThL2))-...
ThL 1d*"2*ML2*(LO*L 1*sin( ThL D+LO*Lcl.2*sin(ThL1+Thl.2)) - ...
ThL2d"2*ML2*(1. 1*LcL2*sin(ThL2)+1.0*I.cl.2*sin(ThL 1+ ThL.2)).

HR1d = ThOdd*(IR I+MR 1 *(R0*2+LcR 172+2*RO*.cR 1 *cos(ThRIN) + ...
ThR1dd*(IR1+MR1*(LcR122+R0*L.cR [ *cos(ThR 1)) - ...
ThOd*ThR1d*2*MR1*RO*LcR1*sin(ThR1) - ...

ThR1d*"2*MR 1*RO*LcR1*sin(ThR 1):

HR2d = ThOdd*(IR2+MR2*(R0"2+R 1°2+LcR2"2+2*R0*R 1 *cos(ThR 1) + ...
2*R1*LcR2*cos(ThR2)+2*RO*LcR2*cos(ThR1+ThR2)) + ...
ThR1dd*(IR2+MR2*(R1°2+LcR2"2+R(*R 1 *cos(ThR 1) + ...
2*R1*L.cR2*cos(ThR2)+R0*LcR2*cos(ThRI+ThR2))) + ...
ThR2dd*(IR2+MR2*(LcR2"2+R 1 *[.cR2*cos(ThR2) + ...
RO*LcR2*cos(ThR1+ThR2))) - ...

ThOd*ThR1d*2*MR2*(RO*R 1*sin(ThR ) +RO*L.cR2*sin(ThR1+ThR2)) - ...
ThOd*ThR2d*2*MR2*(R 1*LcR2*sin(ThR2)+R0*LcR2*sin(ThR 1+ThR2))-...
ThR1d*ThR2d*2*MR2*(R1*LcR2*sin(ThR2)+RO*[.cR2*sin(ThR1+ThR2))-...
ThR1d"2*MR2*(RO*R 1 *sin(ThR 1)+ R0*1.cR2*sin(ThR1+ThR2)) - ...
ThR2d*"2*MR2*(R1*L.cR2*sin(ThR2)+R0*1.cR2*sin(ThR 1+ThR2)),
1IPd = ThPdd*IP + MP*(-XPdd*YP - XPd*YPd + YPdd*XP + YPd*XPd).
HdTotal = HOd + HL 1d + HL2d + HR1d + HR2d + HPd.
Hdots = [HOd HL 1d HL2d HR1d HR2d HPd HdTotal]-

Draw3

% Filename is 'Draw3.m’
function{X,Y] = Draw3(Lengths,AngConst, AngHist.Interval)

2% %% % %% %% %% %% %% %% %% %% %% % %% %% %% %% % %% %% %% %%
%

% This file draws the dual arm spacecraft stick figure

%

% INPUTS:

%

% Lengths = 7x1 vector of link lengths (m)
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% 1st element 1s distance from origin o left arm mount

Y% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
% 4th element is payload length

% 5th & 6th elements wrt right arm (from wnist toward shoulder)
% 7th element is distance from nght am mount to ongin

% AngConst = vector of angles to arm mounting locations wrt centerbody coord
Yo frame (angle for left amm then angle for right arm)

% AngHist = nx6 matrix of angle histories. [:ach row represents a

Yo specific time. Each column represents a speafic joint

% angle (except the payload angle is inerual)

% 1st column 1s the center body angle

Ya 2nd & 3rd columns are the left arm shoulder and elbow

% 4th & 5th columns are the nght arm shoulder and elbow

Yo 6th column is the payload (this angle 15 inertial)

% Interval = plot every "interval'th” time

%

%

% OUTPUTS:

%

% X = vector history of joint X coordinates

% Y = vector history of joint v coordinates

% X & Y treat the system as a closed chain beginning at the centerbody origin,

% outward along the left arm, across the payload, inward along the right arm,

% and back to the ongin.

%

%% %% %% %% %% % %% % %% % %% %% %% %% %% %% %% % % %% %% % %% %

| Times,dummy ] = size(AngHist);

I.inks = length(Lengths),

X(1,1)=0;

Y(1.1)=0; )
% Convert the joint angles to inertial angles and reorder them for closed chain use
NAng(;,1) = AngHist(:,1) + AngConst(1)*ones( Times.1).

NAng(:,2) = NAng(;,1) + AngHist(:,2);

NAng(:,3) = NAng(:,2) + AngHist(:,3);

NAng(:,4) = AngHist(:,6);

NAng(:,7) = AngHist(:,1) + AngConst(2)*ones(Times.1) + p1;

NAng(:,6) = NAng(:,7) + AngHist(: 4),

NAng(:,5) = NAng(:,6) + AngHist(:,5);

p=1
while p <= Times
for g = l'Links

Lastx =0,
Lasty =0;
forr=1:q

Lastx = Lastx + Lengths(r)*cos(NAng(p,r)):
Lasty = Lasty + Lengths(r)*sin(NAng(p.r)).
end
X(g+1,p) = Lastx;
Y(q+1,p) = Lasty;
end
p=p + interval;
end
X = [X(L:Links,:); X(2,:); X(Links,); X(Links+1,:)].
Y =[Y(1:Links,:); Y(2,:); Y(Links,:); Y(Links+1,:)];

% Plot the Final Case
for q= l:Links

Lastx =0,

Lasty =0;
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forr=1:q
Lastx = Lastx + Lengths(r)*cos(NAng( Times.r)).
‘l;asly = Lasty + Lengths(r)*sin(NAng( Times.r)).
en
XFinal(g+!,1) = Lastx;
YFinal(q+1,1) = Lasty:
end
XFinal = [XFinal(1:Links,:), XFinal(2,:), XFinal(L.inks,:). XFinal(Links+1,)];
YVinal = | YFinal(1:Links,.); YFinal(2,:); YFinal(Links.:). YFinal(Links+1,:)],

clg.

axis('square’)

ploi(X. Y., XFinal. YFnal,-" XFinal, YFinal.'x', X(:..1).Y(..1),'0):
xlabel('X (m)),ylabel('Y (m)),

axis('normal’)

Eqn2

% Filename is 'Eqn2.m'

% Differential Equations for numerical integrator

function | Xdot,U,TorgRef.Aqdot,J,Res, LHS, RHS.Delq] =...
Eqn2(T,X,Ls,Ms,CMs,Is,BoundC,Gains, X[Mes. Wu. Wc, Coef.ConstMat)

% OUTPUT:

% xdot = denivatives of state vector at time T

% U = column vector of actual torques commanded at time T arranged
% as [U1; U2: U6; U5] where the number denotes the joint

% associated with that torque

% TorgRef = column vector of reference torques that should be applied
% at time T if the motion followed the reference maneuver exactly.
% These are arranged in the same order as U).

% Res = column vector of residuals after EOM are evaluated with the
% calculated reference torques. (Residuals should be zero).

% Aqdot = column vector of A*qdot. This is a test to see if the

%  constraint equation (A*qdot = 0) is satisfied.

% LLHS = column vector of the EOM left hand side (1.T1S = M*qddot + (iTilda)
% RHS = column vector of the EOM right hand side (RIS = BTilda*uw)
%

% INPUTS:

% T = time (sec)

% State Vector, X, is defined as follows:

% X1 =Theta O (rad)

% X2 =ThetaLl (rad)

% X3 =Theta L2 (rad)

% X4 =ThetaR1 (rad)

% X5 =Theta R2 (rad)

% X6 = Theta P (rad)

% X7 =X component of Payload Center of mass position (m)

% X8 =Y component of Payload Center of mass position (m)

% X9 = Theta O Dot (rad/sec)

%  X10=Theta L | Dot (rad/sec)

% X111 =Theta L2 Dot (rad/sec)

%  X12=Theta R1 Dot (rad/sec)

%  X13 =Theta R2 Dot (rad/sec)

%  X14 = Theta P Dot (rad/sec)

%  X15 =X component of Pavload Center of mass velocity (m/sec)
%  X16 =Y component of Payload Center of mass velocity (m/sec)
%  X17 = integral of the absolute value of the centerbody disturbance torque
%  X18 = integral of the centerbody disturbance torque squared
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% l.s = 7x] vector of lengths (m)

Yo Ist element = distance from ongin to lell ann mount

Yo 2nd & 3rd elements wrt left arm (from shoulder toward wnist)
% 4th element = payload length

Yo 5th & 6th elements wrt right arm (from wnist toward shoulder)
Yo 7th element = distance from right arm mount to origin

% {LO; L1. L2. LP: R2: R1. RO}

% Ms = 0x1 column vector containing the masses (Kg)

Y Ist element = mass of spacecraft centerbody

% 2nd & 3rd elements = mass of left arm (upper arm then iower amm)
Yo 4th & 5th elements = mass of right arm (upper arm then lower arm)
%  6th element = pavload mass

%  |MO.ML1: ML2; MR1: MR2: MP]

% CMs = 6x1 column vector containing center of mass locations

%  [LeO; LeLl; Lel2: LeR 1. LeR2; LeP)

% Is = 6x1 column vector containing the moments of incrtias about the

%  respective body's center of mass (kg m”2)

% st element = nertia of spacecraft centerbody

%  2nd & 3rd clements = inertia of left arm (upper arm then lower arm)
%  4th & 5th elements = inertia of right arm (upper arm then lower arm)
%  Oth element = payload inertia

%  [10;1L1; IL2: IR}; IR2: IP]

% BoundC = boundry conditions for the problem. The first column

%  contains the initial x and y component of points Q & P

%  respectively, the x component of the nght arm base. the

%  problem start time, and the simulation stop time. The second

%  column contains the X and y component of points Q & P

%  respectively, the x component of the right arm base. the

%  stop time for the ideal reference maneuver. and a flag to

%  activate or deactivate the controller. The ongin for the

% xand y components is the base of the left arm.

% Wu = 6x6 control torque cost weighting matrix

% Wc = 8x8 constraint cost weighting matrix

% Gains = 1x2 column vector of controller gains. The first value is

%  for position gains and the second value is for velocity

%  gains.

% XfDes = column vector containing desired values for the angles at

%  the conclusion of the maneuver. These are the same angles

% the reference maneuver is trving to create. They are arranged

% as [ThOf;, ThL 1, ThL2f, ThRIf; ThR2f. ThPt].

%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
%% %% %% %% % %% %%%%%% %% % %% %% %% % %% %%

ThO = X(1),
ThL1 = X(2),
ThL2 = X(3),
ThR1 = X(4),
ThR2 = X(5),
ThP = X(6),
Xe =X,
Yc = X(8);
ThOd = X(9),

ThL 1d = X(10);,
ThL2d = X(11);
ThR1d = X(12),
ThR2d = X(13),
ThPd = X(14),
Xed =X(15),
Yed =X(16);
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* Arms mount locations wrt spacecralt centerbody coordinate frame (rad)
ThLO = BoundC(5,1), ThRO = Bound((5,2),

% Stop Tunes
TR = BoundC(6,2), % Reference Torque stop ime (sec)
TfC = BoundC(7,1), % Controller stop time (sec)

% Controller Flag
ContFlag = Bound(C(7,2).

% Constraints Matnx Flag
AMatFlag = Bound((8,1);

“ Centerbody Reaction Wheel FFlag
WheelFlag = Bound(C(8.2);

% Kinetic Energy Test Flag
KEFlag = BoundC(11,1);

% Inverse Kinematics Bypass Flag
ByPass = BoundC(11,2);

% Torque selection if bypass is enabled
TorgFlag = BoundC(12,1),

% Maximum torque from reaction wheel
TorqCap =BoundC(13.1), % Limit enabled
‘TorgMax = BoundC(13,2); % Limit amount

Y% Controller Gains:
Gipos = Gains(1),
Gvel = Gains(2),

%%%%%%%%% %% %%%

%% CALCULATIONS %%

%%%%% %% %% %% % %%

% EOM: M*qddot + dV/dq + G = Qf + A"*L.am

% M is mass matrix A

% qddot is column vector of generalized coordinate accelerations
% dV/dq is the partial derivative of the potential function with

%  respect to the generalized coordinates. This term is zero for
%  this problem because all motion is in the honizontal plane (there
%  isno change in potential energy caused by the motion)

% G is a column vector which is a function of q and gqdot

% Qf are generalized forces caused by joint torques

% A’ is transpose of constraints matrix

% Lam are Lagrange multipliers

% %% %% %% %% %% %% % %% %%
%% State Vector & Derivative %%
%%%% %% %% %% % %% % %% %%
=[ThO; ThL1; ThL2, ThRI1. ThR2; ThP. Xc¢: Yc].
Qdot = {ThOd; ThL 1d; ThL2d; ThR1d; ThR2d: ThPd; Xcd; Ycd],

%% %% %% % %%
%% Matrices %%
%%%% %% % %%
AngConst = [ThLO; ThRO],
if AMatFlag
[M,G.A,Adot,B] = MatxFix(Ls,Ms,CMs,Is.Q,Qdot, AngConst).
else
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IM.G.A Adot,B] = Matx(Ls Ms,CMs,1s,Q.Qdot. AngConst).
end

if WheelFlag
B7=(1.0,0,0,0.0, 0.0,
B = [B7 BJ;,

end

it BvPass % If tiue. then bypass calculating torques using verse
% kinematics. This branch of logic 1s a venlication test
% dunng program development and 1s not intended for regular
% use once the program is checked out.
if TorgFlag ==
U = zeros(6,1). J=0;
clse
if TorqFlag == |
U=1{-001.0.0.0.0.0), J=0.
else
U=[-001.0:.0,001,0;0};, J=0.
end
end
i WheelFlag
U =[0; U],
end
clse % Normal program tlow to find control torques
% %% %% %% %%
%% Torques %%
%% % %% %% %%
I'T<=TIR, % Get the appropriate torque and angle values
% from the reference maneuver calculations
[TorqRef, QRef, QdotRef, Aqdot, J, C1Ref, C2Ref, C3Ref] = ...
Ref2(Ls,Ms,CMs,Is,BoundC,T, Wu, We¢,Coef.ConstMat);
clse % Simulation is longer than ideal reference maneuver
% Use no reference torques
% Use the desired final values as references
TorqRef = {0; 0. 0. 0. 0. 0};
QRef(1) = XfDes(1),
QRef(2) = XfDes(2),
QRef(3) = XfDes(3),
QRef(4) = XfMes(4),
QRef(5) = XfDes(5):
QRef(6) = XfDes(6),
QRef(7) = XfDes(7),
QRef(8) = XfDes(8),
QdotRef(1) = XfDes(9).
QdotRef(2) = XfDes(10),
QdotRef(3) = XfDes(11);
QdotRef(4) = XfDes(12),
QdotRef(5) = XfDes(13),
QdotRef(6) = XfDes(14),
QdotRef(7) = XfDes(15),
QdotRef(8) = X{Des(16);
if WheelFlag
TorqRef = {0; TorgRef];
end

% Matrices
if AMatFlag
[MRef,GRel,ARef, AdotRef] = MatxFix(L.s,Ms.CMs,Is,...
QRef QdotRet. AngConst).
else
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{MRef,GRef ARel AdotRef] = Matx(l.s. Ms.CMs 1s.QRel. QdotRef...
AngConst).
end
BRef = 3.
PtiRef = ARef *inv(ARef*inviMRe*ARef’).
C1Refl = inviMReN*(eye(M) - PtIRef* ARet*inviMRel) ) *BRef"
C2Ref = -inv(MReD*PtIRef*AdotRef:
C3Ref = inv(MRef)*(PtiRef*ARef*inviMRel) - eve(MN*GRet:
end

il ContFlag % Controller is on

Delg=Q - QRef";
Delgdot = Qdot - QdotRef™.,
% Controller calculations
Ptl = A*inv(A*inv(M)*A"),
Cl = inviM)*(eve(M) - PtI*A*inv(M))*13:
C2 = -nv(M)*Pt1 *Adot;
C3 = inv(M)*(Pt1 *A*inv(M) - eye(M))*G:
F2 = Gpos * Delg;
F2 =[F2(1:6), 0. O},
Kv = Gvel * eye(M).
Kv(7,7)=0; Kv(8,8)=0;
Pt3 = pinv(C1);

% Pt3 = inv(C1'*C1)*C1"; % Resulted in poorlv conditioned matrix

%% %% %% %% %% %% %% %% %% %% %
%% Complete Lyapunov Controller %%
%%% %% %% %% %% %% %% %% %% %
U = Pt3*(-Kv*Delqdot + C1Ref*TorgRef - (C2*Qdot - C2ReM*QdotRel) - ...
(C3 - C3Ref) - F2),
% %% %% %% %% %%%% %% %% %% %%%
%% Simplified Lyapunov Controller %%
%% (removes reterence torques and %%
%% assumes C2 and C3 terms are small) %%
%% %%%%%%% % %% %% %% %% % %%
% Kp = Gpos * eye(M),
% Pt3 = pinv(C1Ref);
% U = Pt3*(-(Kv+C2Ref)*Delqdot - Kp*Delq) + TorqRef:

clse % Controller is off
U = TorqRef;, % Don't adjust torques {rom reference mancuver
Delq = 999*ones(8,1); % Dummy value for trajectory error

end % End of Control Loop

if WheelFlag
J=abs(U(1)),

clse
J=0,

end

end % End of Kinetic Energy Test Conditional

if TorgCap % Upper limi. ' wheel torque enabled?
if abs(U(1)) > TorqMax
ifU()>0
U(l) = TorgMax;
else
U(1) = -TorgMax;
end
end
end

%%%%%%%
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%% Qf %%

%%%%%%%

% Qf = B*u These are the generalized torces
Q=B*U,

%% %% %% %% %% % %% %%

%% Layrange Multipliers %%

%% % %% % % %% %% %% %%

% EOM: M*qddot + dV/dq + G = Qf + A'*l.am

% Solving the EOM for gddot gives: gddot = inviMy*(QI' + A*Lam - G)
% IDifferentiating ihe Ptaltian torm of the constraint equations

% results in: Adot*qdot + A*qddot = 0.

% Substitution of the expression tor gddot into the previous equation
%o permits solving for Lam:

% Lam = inv(A*inv(M)*AY*(A*inv(M)*(G-Q1) - Adot*qdol).
Lam = inv(A*inv(M)*A)Y*(A*inv(M)*(G-QI) - Adot*Qdot);

%% %% %% % %% % %% %% %0
%% Putling it all together %%
%%%%%%% %% %% %% %%
Qddot = inv(M) * (Qf + A'*L.am - G),

(s, Hdots] = AngMo2(Ls.Ms,CMs,Is,Q,Qdot.Qddot).
% Change n total angular momentum

1d = Hdots(7),

I=[J, Hd},

% Assemble derivative of state vector for integrator
Xdot = [Qdot; Qddot; J(1), J())™2};

%% %%%%%%% %% % %% %

%% Troubleshooting Info %%
%% %% %% % %% %% % %% %

Aqdot = A*Qdot;

LHS = M*Qddot + G.

RHS = Qf + A'"*Lam:

Res = LIIS - RHS:

fminu2

function {x,OPTIONS] = fminu2(FUN x,0PTIONS,GRADFUN.P1,P2 P3.P4,P5.P6,...
P7.P8,P9,P10)

%FMINU Finds the minimum of a function of several variables.

% X=FMINU(FUN', X0) starts at the matrix X0 and finds a minimum to the

%  function which is described in FUN (usually an M-file: FUN.M).

%  The function 'FUN' should return a scalar function value: F=FUN(X).

%

%  X=FMINU('FUN',X0,0PTIONS) allows a vector of optional parameters to

%  be defined. OPTIONS(1) controis how much display output is given: set

%  to | for atabular display of results, (default is no display: 0).

%  OPTIONS(2) is a measure of the precision required for the values of

% X at the solution. OPTIONS(3) is a measure of the precision

%  required of the objective function at the solution.

%  For more information type HELP FOPTIONS.

%

% =FMINU(FUN', X0.0PTIONS,'GRADFUN" enables a function GRADFUN'

%  to be entered which returns the partial derivatives of the fuuction,

%  df/dX, at the point X: gf = GRADFUN(X).

%
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Yo The detault atgonthm 1s the BFGS Quas: -Newion method with a
»  mixed quadratic and cubic hine search procedure

% Copynight (¢) 1990 by the MathWorks, Inc.
2% Andy Grace 7-9-90.

Y memmmemaeeen Inmitiahization-=-=-==seneeeeae
XOUT=x(),
nvars=length(XOUT).

cvalstr = [FUN],
il ~any(FUN<48)
evalstr={evalstr, '(X'].
for1=1:nargin - 4
evalstr = [evalstr,' ' numn2str(1)};
end
evalstr = jevalstr, ')'),
end

i nargin < 3, OPTIONS=({}; end
if nargin < 4, GRADFUN=(}; end

il length(GRADFUN)
evalstr2 = {GRADFUNY,
if ~any(GRADFUN<48)
evalstr2 = [evalstr2, '(x'],
for i=1:nargin - 4
evalstr2 = [evalstr2,’ P',num2str(1)],
end
evalstr2 = [evalsu2, )],
end
end

"= eval(evalstr),

n = length(XOUT).

GRAD=zeros(nvars, 1),

OLDX=XOUT;

MATX=zeros(3,1),

MATL=(f;00];

OLDF=f;

FIRSTF=f

{OLDX,OLDF,HESS, OPTIONS|=optint(XOUT,{,OPTIONS),
CHG = le-7*abs(XOUT)+1e-7*ones(nvars, 1 );
SD = zeros(nvars, 1);

diff = zeros(nvars, 1),

OPTIONS(10)=2; % Iteration count (add 1 for last evaluation)
status =-1;

while status ~= |

% Work Out Gradients

if ~length(GRADFUN) | OPTIONS(9)
OLDF=f,

% Finite difference perturbation levels

% First check perturbation level is not less than scarch direction.
f = find(10*abs(CHG)>abs(SD));
CHG(f) = -0.1*SD(f),

% Ensure within user-defined limits
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CHG = sign(CHG+eps). *min(max(abs(CHG).OPTIONS(16)),OPTIONS(17)),
for gent=1:nvars
XOUT(gent. D=XOUT(gent)+CHG(gent):
OPTIONS(10)=0OPTIONS(10)+1;
disp('Whiie Loop Iteration in Progress’),
disp(('Iterations: ' num2str(OPTIONS(10)))),
disp({'Allowable: ' .num2sir(OPTIONS(14))));
x(0) = XOUT: [ = eval(evalstr),
GRAD(gent)=(f-OLDF)Y/(CHG(gent)).
if f <OLDF
OLDF=,
else
XOUT (gent)=XOUT(gent)-CHG(gent ).
en
end
% Try to set difference to 1e-8 for next iteration
CHG = le-8./GRAD,
f=OLDF;
% OPTIONS(10)=OPTIONS(10)+nvars;
% Gradient check
if OPTIONS(9) == |
GRADFD = GRAD;
x(:)=X"T. GRAD = eval(evalstr2),
graderr(GRADFD, GRAD, evalstr2),
OPTIONS(9) =0,
end

OPTIONS(11)=OPTIONS(11)+1;
x(:)=XOUT: GRAD = eval(evalstr2),
end

if status == -1

SD=-GRAD,

FIRSTF=f,

OLDG=GRAD:

GDOLD=GRAD'"*SD;,

% For initial step-size guess assume the minimum is at zero.

OPTIONS(18) = max(0.01, min([1,2*abs(f/GDOLD)])),

if OPTIONS(1)>0

% disp([sprintf('%5.0f %12.3g %12.3g ", OPTIONS(10).f....
OPTIONS(18)),sprintf("%12.3g ',.GDOLD)));

end

XOUT=XOUT+OPTIONS(18)*SD;

status=4;

1f OPTIONS(7)==0;, PCNT=1, end

Yo~emmmmemennns Direction Update-----vr--veee-ve-
gdnew=GRAD'*SD;,
1f OPTIONS(1)>0,
num={sprintf("%5.0f %12.3g %12.3g ,OPTIONS(10),f,OPTIONS{18)),...
sprintf('%12.3g ',gdnew)];
end
if (gdnew>0 & f>FIRSTF)|~finite(f)
% Case |: New function is bigger than last and gradient w.r.t. SD -ve
% ...interpolate.
how="inter",
[stepsize]=cubici 1 (£, FIRSTF,gdnew,GDOL D, OPTIONS(18)):
if stepsize<Olisnan(stepsize), stepsize=OPTIONS(18)/2; how="CIf ', end
if OPTIONS(18)<0.1&OPTIONS(6)==0
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if stepsize*norm(SD)<eps
rand('normal’)
stepsize=rand(1);
how='"RANDOM STEPLENGTII"
status=0,
clse
stepsize=stepsize/2,
end
end
OPTIONS(18)=stepsize;
XOUT=0LDX;
clseif f<FIRSTF
[newstep,fbest] =cubici3(f,FIRSTF,gdnew,GDOLD,OPTIONS(18)).
sk=(XOUT-OLDX)*(GRAD-OLDG);,
if sk>le-20
% Case 2: New function less than old fun. and OK for updating HESS
% ... update and calculate new direction.
how=";
if gdnew<0
how="incstep",
if newstep<OPTIONS(18)
newstep=2*OPTIONS(18)+1e-5:
how=lhow,' IF'};
end
OPTIONS(18)=min([max({2,1.5*OPTIONS(18)]),1 +sk+abs(gdnew)+...

max([0,0PTIONS(18)-1]), (1.240.3*(~OPTIONS(7)))*abs(newstep)]),

else % gdnew>0
if OPTIONS(18)%>0.9
how="int_st";
OPTIONS(18)=min({ 1 ,abs(newstep)]).
end
end %if gdnew
(HESS,SD}=updhess(XOUT,OLDX,GRAD,OLDG HESS OPTIONS),
gdnew=GRAD'*SD;,
OLDX=XOUT,
status=4;
% Save Variables for next update
FIRSTF=f;
OLDG=GRAD;
GDOLD=gdnew,
% If mixed interpolation set PCNT
if OPTIONS(7)==0, PCNT=1; MATX=zeros(3,1); MATL(1)=f. end
elseif gdnew>0 %sk<=0
% Case 3: No good for updating HESSIAN .. interpolate or halve step length.
how='inter_st';
if OPTIONS(18)>0.01
OPTIONS(18)=0.9*newstep;
XOUT=0LDX;

end
if OPTIONS(18)>1, OPTIONS(18)=1: end
else
% Increase step, replace starting point
OPTIONS(18)=max([mun({newstep-OPTIONS(18),3]),0.5*OPTIONS(18)]),
how="incst2",
OLDX=XOUT.
FIRSTF=f;,
OLDG=GRAD;
GDOLD=GRAD'"*SD;
OLDX=XOUT;
end % if sk>
% Case 4: New function bigger than old but gradient in on
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% ...reduce step length.
else Yogdnew<0 & F>FIRSTF
if gdnew<O& f>FIRSTF
how="red_step",
if norm(GRAD-OLDG)<le-10; HIESS=eye(nvars), end
if abs(OPTIONS(18))<eps
rand('normal’)
SD=norm(SD)*rand(SD)
OPTIONS(18)=abs(rand(1))*le-6.
how='RANDOM SD’;
clse
OPTIONS(18)=-OPTIONS(18)/2,
end
XOUT=0LDX;
end %gdnew>0
end % if (gdnew>0 & F>FIRSTF)}~finite(F)
XOUT=XOUT+OPTIONS(18)*SD;
if OPTIONS(1)>0
% disp([num,how])
end
end %-------- End of Direction Update-----=------=oe--

% Check Termination
if max(abs(SD))<2*OPTIONS(2) & (GRAD'*(S))) < 2*OPTIONS(3)
~ if OPTIONS(1)>0
disp("),disp(");,disp(");
disp(");disp(");disp("); )
disp('Optimization Terminated Successfully’),
% disp(‘Gradient less than options(2)').
disp([' NO OF ITERATIONS=', num2str(OPTIONS(10))]).
end
status=1;
elseif OPTIONS(10)>OPTIONS(14)
. if OPTIONS(1)>=0
dlsp("),dlsp("),dlsp("),
disp("),disp(").disp("), . o
disp('Waming: Maximum number of iterations has been exceeded');
disp(' - increase options(14) for more iterations.")
end
status=1;
else

% Line search using mixed polynomial interpolation and extrapolation.
if PCNT~=0
while PCNT > 0
OPTIONS(10)=OPTIONS(10)+1;
disp("),disp("),disp("),
disp('Termination Check in Progress'),
disp(['Iterations: '.num2str(OPTIONS(10))});
x(:) = XOUT,
f = eval(evalstr),
[PCNT,MATL MATX steplen, f, how}=searchq(PCNT.f,OLDX....
MATL ,MATX,SD,GDOLD,OPTIONS(18), how),
OPTIONS(18)=steplen;
XOUT=0LDX+steplen*SD:
if abs(steplen) < le-6, PCNT=0;, status=1; end
end

else

X(:=XOUT,
OPTIONS(10)=OPTIONS(10)+1,
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disp(").disp(").disp(");
disp(' Termination Check in Progress'),
disp(['Iterations: '.num2str(OPTIONS(10))]);
{ = eval(evalstr),
end
end
end

x(:)=XOUT.
disp(");disp(").disp(");
disp("),disp("),disp(™);
disp(");disp(");disp("),
disp('’Final Evaluation in Progress’);
[ = eval(evalstr);

if f> FIRSTF
OPTIONS(8) = FIRSTF,
x(:)=OLDX;,

else

OPTIONS(8) = f;

end

MainMin

% Filename is "MainMin.m"

% This is the routine used by "MainOpt.m" to optimize the reference
% trajectory polynomial coefficients. It is a scaled down version

% of the dual arm spacecraft program, "Main2.m". This version does
% not integrate the state variables not include a Lyapunov controller.
% The only integration that does take place is the optimization cost
% function.

function [JOpt] = MainMin(UpCoef,ConstMat, Flags)

%clg;clear;
format compact;format short;

k = length(UpCoef);,
A543 = inv(ConstMat(: k+1:k+3))*([1; 0; 0] - ConstMat(:,1:k)*UpCoef’).
Coef = [UpCoef;, A543], % Reference trajectory polynomial coefficients

% Reference Maneuver Start and Stop Times
TO = 0

TR = 10;

T{C =10,

MetaFlag = Flags(l);
ContFlag = Flags(2),
PertFlag = Flags(3),
AMatFlag = Flags(4),
WheelFlag = Flags(5),
EOMFlag = Flags(6),
PinvFlag = Flags(7);
KEFlag = Flags(8),
OutFlag = Flags(9),
Trace = Flags(10),
SymFlag = Flags(11);
ByPass = Flags(12),
TorqFlag = Flags(13),

Tol = le-6; % Integration tolerance
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R2D = 180/pi; % Conversion factor from radians to degrees

% Lengths (m)

L0 =0.75, % Ornigin to left shoulder
L1=05; % Left upper arm
1.2=05, % Left forearm

LP=0s5, % Payload

R2=035; % Right forearm
R1=05; % Right upper arm

RO = sqrt(2*0.75*2), % Ongin to right shoulder
Ls={L0; L1; L2; LP; R2; R1; RO];

% Member masses (kg)

MO =5§;

ML1=1;

ML2=1;

MR1 =1,

MR2=1;

MP =1,

Ms = [M0O; ML I; ML2; MR1; MR2; MP],

% Center of mass distances (m)

[.cO =0,

[.cL1=0.25;

Lc¢L2 =0.25;

i.cR1=0.25;

1.cR2 =0.25;

L¢P =025,

CMs = [Lc0; LcL1; LeL2; LeR1; LeR2; LeP);

% MOI about center of mass: Ic = (1/12)*(mass)*(length)"2
[0 = MO,

%I0=0;

IL1=(1/12) *ML1 *L1~2,

IL2=(1/12) * ML2 * .22,

IR1=(1/12) * MR1 *R172;

IR2 = (1/12) * MR2 * R2"2;

IP =(1/12) * MP *LP"2,

Is=[l10; IL1; IL2; IR1; IR2; IP];

% Nominal initial and desired final locations of payload
% Point Q is at wrist of left arm

% Point P is at wrist of right amm

Qx0n =0.125; QyOn=1.5;

PxOn =0.625; PyOn=15;

Qxf =0.125; Qyf =1.0;

Pxf =0.125, Pyf =135,

% Nominal initial and desired final locations of centerbody
ThOO =0;
ThOf = O/R2D;

% Arms mount locations wrt centerbody coordinate frame (rad)
ThLO = pif2,

ThRO = pi/4,

AngConst(1) = ThLO;

AngConst(2) = ThRO;

% Symmetric geometry to center arms and test kinetic energy

if SymFlag
ThLO = 3*pi/4;
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AngConst(1) = ThLO;

RO=L0: % Ongin to nght shoulder
[.5(7,1) = RO

QxUn=-0.25. Qvon=1.2:

PxOn= 0.25. PyOn=12,

end

BoundC(1.1) = Qx0n; BoundC(1,2) = QvOn:
BoundC(2,1) = PxOn; BoundC(2,2) = Pvin:
BoundC(3,1) = Qxf, Bound(C(3,2) = Qv
BoundC(4,1) = Pxf: BoundC(4,2) = Py,
BoundC(5,1) = ThLO; BoundC(5,2) = ThR0):
BoundC(6,1) = T0; BoundC(6,2) = TIR;
BoundC(7.1) = TfC; BoundC(7,2) = ContFlag:
BoundC(8.1) = AMatFlag, BoundC(8,2)= Wheell'lag.
BoundC(9,1) = ThOO, BoundC(9.2) = Thof:,

BoundC(10,1)= EOMFlag, BoundC(10,2)= Plnviiag.
BoundC(11,1)= KEFlag, BoundC(11,2)= ByvPass:
BoundC(12,1)= TorqFiag;

% Weighting Matrices o
% Control torques are calculated to minimize the following cost function:
% J=0.5%u*Wu*u + (A"*Lam)*Wc*(A'*l.am))

1f WheelFlag
Wu = eye(7), % Control Torque Weighting
clse
Wu = eye(6).
end
%if WheelFlag
% Wu = zeros(7,7),
Yoelse
% Wu = zeros(6,6);
%end

%Wu(4,4)=1e5;

%Wu(7,7)=1eS;

%Wu(2,2)=lel0,

%Wu(s,5)=lel0;,

Wc = zeros(8,8); % Constraint Force Weighting
%Wc = eye(8);,

%%%%%%%%% %% %% %% %%
%% INITIAL CONDITIONS %%
%%%%%%%%%%%%%%% %%

% Desired Initial Payload Parameters
ThPO = atan2(PyOn-QyOn,Px0n-Qx0n);
Xc0=0.5* (PxOn + Qx0n),
Yc0=0.5* (PyOn + QyOn),

Qx0 = Qx0n;
Qy0 = QyOn;
Px0 = Px0On;
Py0 = PyOn;

% Initial State
X0=0;

%%%%%%%%%%%%%
%% INTEGRATION %%
%%%%%%%%%%%%%
% RefMin2 uses change in angular momentum to find wheel command torque
[T, JInt,J] = odemin('RefMin2’,T0,TIR,X0,Tol, Trace.L.s,Ms,CMs,Is,BoundC....
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G.

Wu,We,Coef.ConstMat).
% Optimization cost function 1s integra)l of J
k = length(T).

JOpt = JIni(k),
%JOpt = max(abs(J)),

MainOpt

% Filename 1s "MainOpt.m"

% This routine optimizes the dual arm spacecraft cost function
% by changing the polynomial coefficients which describe the
% reference trajectory. It calls "Main2.m"

Yaclear
cle
home
format compact
format short
UpCoel = {0); % Starting Guess
%JpCoet0 = UpCoef: % Use last values for starting guess
= length(UpCoefV),
options = ||; % Default values
options(1l) =0; % Display during optimization cycle: 1=On, 0=O(T

options(14) = 100*k; % Maximum number of iterations

%% %% %% %% %% %% %% %% %% %% %% %% %% % %% %% %%
%% Flags during optimization %%
%%%%%% %% %% %% %% %% %% %% %% %% %% % %%%%%%
MetaFlag = 0; % Creates metafile named "main.met"
ContFlag =0, % Coniroller Status Flag: 1=0n: 0=Off
PertFlag =0, % Perturbation Flag (O=no perturbation, I=perturbation)
% The perturbation is to check the controller by
% disturbing the actual initial state away from nominal.
% The reference torques are based on nominal,
AMatFlag =0; % Size of A matrix: 0 = 4x8 (Free Centerbody)
% 1 = 5x8 (Fixed Centerbody)
WheelFlag = 1. % Centerbody Reaction Wheel (1=0n, 0=0ff)
EOMFlag = 8, % Specifies number of cost function constraint equations
% 3 = only payload equations
% 5 = only spacecraft equations
% any other value = all 8 equations
PInvFlag =1, % Psuedo-Inverse Flag (for use in finding reference torques)
% | = Use psuedo-inverse
% 0 =Usenverse
KEFlag=0; % KE Test Flag
% 1 = Nonzero velocity initial conditions
% 0= Zero velocity initial conditions
OutFlag =0, % Output Flag
% | = Display output
% 0= Don't display output
Trace = 1; % Observe integration
% 1=0Observe
% 0 =Don't observe
OptFlag =0; % Optimization Flag
% 1 = Perform optimization
% 0=Don't perform optimization
SymFlag=0; % Symmetric Geometry Flag
% 1= Symmetric geometry
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% U= Nonsymmetric geometry
ByPass =0. % Torque calculation bypass flag
% | =Bypass
% 0= Use inverse kinematics
Torgllag= 0, % Torques to use il bypass enabled
% 0= No Torques (Dnft)
% 1 = One Shoulder Torque
% 2 =Symmetnic Shoulder Torques
TorqCap = 0. % Maximum limit on wheel torque
% | =[inabled
% 0= Disabled
‘TorgMax = (0.075;% Limit on wheel torque i TorgCap enabled
Flags1(1) = MetaFlag;
Flags1(2) = ContFlag,
I'lagsl(3) = PertFlag;
I'lagsi(4) = AMatFlag;
Flags1(5) = WheeiFlag;
Flags1(6) = LOMFlag,
Flags!1(7) = PlnvFlag;
Flagsi(8) = KEFlag;
Flags1(9) = OutFlag;
Flags1(10)= Trace;
Flagsl(11)= SymFIlag;
Flagsl(12)= ByPass:
Flagsi(13)= TorgFlag;
Flagsl(14)= TorqCap;
Flags1(15) TorgMax:
%%%%%%%%% %% %% %%%
%% Flags after optimization %%
% %% %% %% %% %% %% % %%
Flags2 = Flagsl;
Flags2(1) =0, % MetaFlag:  1=On, 0=O(T (File is "main.met")
Flags2(2) = I % Controller Flag:  1=On, 0=0ff
Flags2(3) = 0, % Perturbation Flag:  1=On, 0=OfF
Flags2(S) =1, % Wheel Flag: 1=0n, 0=0fT
I'lags2(8) = O, % Kinetic Energy Flag: 1=On. 0=0ff
Flags2(9) = I; % Output Flag: 1=On, 0=0OfY
Flags2(10)= 1, % Trace Flag: 1=On, 0=0tf
Flags2(11)= 0. % Symmetric Geometry Flag: 1=Sym, (=NonSym
Flags2(12)= 0, % Inverse Kinematics Bypass: 1=Bypass, O=Inverse Kinematics
Flags2(13)= 0. % Torq Flag: 0=No Torq, 1=0One Torq, 2=Two Symmetric Torgs
% Torq Flag is for when the bypass is enabled
Flags2(14)= 0 % TorqCap: 1=0n, 0=OfT
Flags2(15)= 0.075.% Limit onpmaximum wheel lorque
Flags2(16)= 0, % DocFlag: 1=0n, 0=Off
% separate meta files for each page ("doc#.met")
DiaFlag =0, % Diary Flag
% | = Create diary file "main.dia"
% 0= No diary file
ConstMat = ones(3,k+3),
for n=1:k+3
ConstMat(2,n) = k+6-n;
anstMat(ln) = ConstMat(2,n)*(ConstMat(2,n)-1).
en
if Op(Fla%
[UpCoef options} = fminu2('MainMin’,UpCocf,options,| ], ConstMat.Flags1 ),
end

if DiaFlag
diary main.dia
end
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if ~OptFlag
UpCoef = UpCoelD;
end
[Int) = Main2(UpCoef,ConstMat Flags2),

% Plot position, velocity, & acceleration reference trajectones
k = length(UpCoef);
A543 = inv(ConstMat(: k+1:k+3))*([1; 0. 0| - ConstMat(:,1:k)*UpCoef’).
Coef = (UpCoef", A543}, % Reference trajectory poivnomial coeflicients
k = length(Coel);
Steps = 21,
for m = |:Steps
Tau = (m-1)/(Steps-1),
for n=1:k
CTau(k+1-n) = Coef(k+1-n)*Taun+2),
CTaud(k+1-n) = Cocf(k+1-n)*Tau(n+1),
CTaudd(k+1-n) = Coet(k+1-n)*Tau”(n),
end
W(m) = ConstMat(1,:)*CTau",
Wd(m) = ConstMat(2,:)*C Taud",
Wdd(m) = ConstMat(3,:)*CTaudd",
end
cl
T=0:1/(Steps-1):1;
subplot(221)
plot(T,W):title('Position vs Normalized Time'),
xlabel('Tau (sec)');ylabel('Position');
subplot(222)
utle('Reference Trajectonies’)
subplot(223)
plot(T,Wd);title(’Velocity vs Normalized Time').
xlabel('Tau (sec)),ylabel(' Vel. ity'),
subplot(224)
plot{T,Wdd).title(Acceleration vs Normalized Time'),
xlabel('Tau (sec)’);ylabel('Acceleration’),
if Flags2(1)
meta main
end
if Flags2(16)
meta doc6
end
pause

disp('Initial guess for highest order coefficients').disp(UpCoef0').
disp('CoefTicients in descending order’),disp(Coet):
disp('Integral of Cost Function,(JIntAbs & JIntSqr)");disp(Jint),
if OptFlag

disp('Iterations');disp(options( 10));
end
diary off

Main2

% Filename is "Main2.m"

% This routine is the driver for the dual arm spacecratt problem

% but is called by "MainOpt.m" after the polynomial reference trajectory
% coefficients have been optimized.
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function {JIntTotal] = Main2(UpCoef,Con<tMat.Flags)

% Calculate the coetficients for orders five. four. and three.

% Include these with the higher order coetlicients in a vector.

k = length(UpCoet):

A543 = inv(ConstMat(: k+1:k+3))*([1; 0, 0] - ConstMay(:,1:ky*UpCoel’),
Coef = [UpCoef™, A543], % Reterence trajectory poivnomal coetlicients

% %% % %% %%

%% Times %%

%%:%%%%%%

% Reference Maneuver Start and Stop Times and Controller Stop Times
% Setting the controller time longer than the reference maneuver time
% ensures that the controller eliminates any errors remaintng after the
% reference trajectory should be complete. To exercise the controller
% only with no reference trajectory, set the reference maneuver stop

% time to a negative value.

TO = 0,
TfR = 10,
TfC = 10,

MetaFlag = Flags(l),
ContFlag = Flags(2),
PertFlag = Flags(3),
AMatFlag = Flags(4),
WheelFlag = Flags(5),
EOMFlag =Flags(6),
PInvFlag = Flags(7);
KEFlag = Flags(8),
OutFlag = Flags(9),
Trace = Flags(10),
SymFlag = Flags(l1),
ByPass = Flags(12).
TorqFlag = Flags(13),
TorqCap = Flags(14);
TorqMax = Flags(15),
DocFlag = Flags{16),

Pert =-10, % Perturbation of initial payload angle, ThetaP (deg)
Tol = le-6; % Integration tolerance

Interval = 3; % Stick figure drawing includes every Interval'th time
R2D = 180/pi; % Conversion factor from radians to degrees

%%%%%%%%%%%%%%
%% System Parameters %%
%%%%%%%%%%%%%%

% Lengths (m)

L0=075, % Origin to left shoulder
L1=05; % Left upper arm
L2=05; % Left forearm
LP=0.5, % Payload

R2=05; % Right forearm
R1=05; % Right upper arm

RO = sqrt(2*0.75"2), % Ongin to right shoulder
Ls=[LO,L1;L2: LP; R2; R, RO];

% Member masses (kg)
MO =5,
ML1 =1,
ML2=1,
MRI =1[;
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MR2 = I;
MP =1,
Ms = [MO: ML 1; ML2; MR1: MR2; MP};

% Center of mass distances (m}

l.cO =0,

Lel.l =0.25:

1.cl.2=0.25,;

[.cR1 =0.25;

1.cR2=0.25;

LeP =0.25;

CMs = LcO; LeL1; LeL2; LeR1: LeR2: LeP).

*4 MOI about individual centers of mass

% Arms are modelled as slender rods: Ic = (1/12)*(mass)*(length)"2
10 = MO

ILL=(1/12) *ML1 *L1"2;

11.2=(1/12) * ML2 * L2"2;

IRI=(1/12) * MR1 * R172,

IR2 =(1/12) * MR2 * R272;

P =(/12) *MP *[.P"2,

[s=[10; IL1; IL2; IR1. IR2; IP];

% Nominal initial and desired final locations of payload
% Point Q is at wrist of left arm

% Point P is at wrist of right arm

Qx0n=0.125; QyOn=1.5;

PxOn=0.625, PyOn=1.5;

Qxf =0.125; Qyf =1.0,

Pxt =0.125;, Pyf =1.5;

% Nominal initial and desired final locations of centerbody
ThOO = 0/R2D:;
Thof = O/R2D;

% Arms mount locations wrt centerbody coordinate frame (rad)
ThL.O = pv/2;

ThRO = pi/4;

AngConst(1) = ThLO;

AngConst(2) = ThRO;

% Symmetric geometry to center amms and test kinetic energy
if SymFlag

ThLO = 3*pi/4,

AngConst(1) = ThLO,

RO =10, % Origin to right shoulder

[.s(7,1) = RO;

Qx0On=-0.25, QyOn=12;

PxOn= 0.25; PyOn=1.2;

end

% Assemble information required in other subroutines into a matrix
BoundC(1,1) = Qx0On; BoundC(1,2) = QyOn:
BoundC(2,1) = Px0On, BoundC(2,2) = Py0n;

BoundC(3,1) = Qxf, BoundC(3,2) = Qyf;
BoundC(4,1) = Pxf;, BoundC(4,2) = Pyf:,
BoundC(5,1) = ThLO, BoundC(5,2) = ThRO:
BoundC(6,1) = TO; BoundC(6,2) = TfR.
BoundC(7,1) = TfC; BoundC(7,2) = ContFlag.

BoundC(8,1) = AMatFlag; BoundC(8,2) = WheelFlag;
BoundC(9,1) = Th0O; BoundC(9,2) = ThOf;,
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BoundC(10,1)= 1LOMFlag. BoundC(10.2)= Pinvilag.
BoundC(11,1)= KEFlag,  BoundC(11,2)= BvPass:
BoundC(12,1)= TorgFlag,

BoundC(13,1)= TorqCap;, BoundC(13,2)= TorgMax:

%  Gip are gains for angle 1 position error
% (v are gains for angle 1 velocity error
(ipos = 0.5, % Posilion error gain
Gvel=0.2; % Velocity error gain
Gains = |Gpos: Gvel],

% Weightuing Matrices
v Control torques are calculated to minimize the following cost function:
Y J=0.5%u*Wu*u + (A'*L.am)*Wc*(A'*l.am))
% Wu s the control torque weighting matrix
% Wec is the constramnt force weighting matnx
if WheelFlag
Wu = eye(7), % Control Torque Weighting
else
Wu = eye(6),
end
%if WheelFlag
% Wu = zeros(7,7).

Y%else

Y% Wu = zeros(6,6),

%end

% Wu(4.4)=leS: % Penalty on wrist molors tor frce centerbody case

YoWu(7,7)=1eS5;

%Wu(2.2)=1el0. % Penalty on wrist motors for fixed centerbody case
%Wu(5,5)=1el0;

Wec = zeros(8,8); % Constraint Force Weighting

% Wc = eye(8),

%%%%% %% %% %%%%%%%%
%% INITIAL CONDITIONS %%
%%%%%%%%%%%%%%%%%

% Desired Initial Payload Parameters
ThPO = atan2(PyOn-QyOn,Px0On-Qx0n);
Xc0=0.5* (PxOn + QxOn),
Yc0=0.5* (PyOn + Qy(n),

if PertFlag % Perturbation enabled
ThPO = ThPO + Pert/R2D; % Perturb payload angle
Qx0 = Xc0 - LcP*cos(ThP0), % Perturb arm end points
Qv0 = YcO - LcP*sin(ThPO);,
Px0 = Xc0 + (LP-LcP)*cos(ThPO),
Py0 = YcO + (LP-LcP)*sin(ThPO);

else % No Perturbation
Qx0 = QxOn;
Qv = Qyon;
Px0 = PxOn;
Py0 = PyOn;
end
PertCrd = [Qx0 Qy0 Px0 Py0];
% Left Arm

% Elbow is left of line from arm base to Q (RQ)

LSx = L0 * cos(ThOO + ThLO);

L.Sy = L0 * sin(Th0O + ThLO),

RQ = sqrt((Qx0-LSx)"2HQy0-LSy)*2), % Length from arm base to Q
Betal = atan2(Qy0-L Sy,Qx0-LSx); % Angle from arm base to RQ
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% Law of cosines: cos(A) = (b"2 +¢"2 - 3"2)¥(2h¢)

% Apply to tind angle between RQ and Link [.1

Num =L172 + RQ™2 - L272;

Den=2*L1*RQ:

Beta2 = acos(Num/Den), % Angle trom RQ w Link |
ThLL10 = (Betal + Beta2) - (ThOO + ThLO). % Theta L1
% Use law of cosines to {ind the interior angle al the clhow
Num =12 + 1.2"2 - RQ"2;

Den=2*L1*1L2:

Beta3 = acos(Num/Den),

Thl.20 = -(p1-Betal),

% Right Arm

% Flbow is right of line frota arm base (shoulder) to P (wnist) (RP)
RSx = RO * cos(ThOO + ThRO),

RSv = RO * sin(ThOO + ThRO):

RP = sqrt((Px0-R3x)"2+(Py0-RSy *2), % l.ength from amm base 1o P
Betal = atan2(Py0-R Sy. Px0-RSx), % Angle trom arm base to RP
% Law of cosines: cos(A) = (b*2 + ¢"2 - a™2)/(2bc)

% Apply to find angle between RP and Link R1

Num =R172 + RPA2 - R2*2;

Den=2*R1 *RP;

Beta2 = acos(Num/Den), % Angle from Link R1 0 RP
Betad = Betal - (ThOO + ThRO),

ThR10 = -(Beta2 - Betad).

Num = R172 + R2*2 - RP*2;

Den=2*R1 *R2;

Beta3 = acos(Num/Den),

ThR20 = pi - Beta3:

% Destred Initial State
X0 =[ThOO; ThL 10, ThL20; ThR10;, ThR20: ThPO; Xc0; YcO0....
0, 0, 0, 0, 0. 0; 0, 0];

%%%%%%%%%%%%%%%%%%%%
%% Kinetic Energy Test Conditions %%
%%%%%%%%%%%%%%%%%%%%
% Specify Payload and Centerbody Initial Rates
% Compatible Rates for the Redundant Coordinates are calculated
if KEFlag
ThPdO = 0/R2D:. % Rates to specify
Xcd0 =-0.03,
Ycd0 = -0.13;
Th0d0 = O/R2D;
%%%%%%%%%% %
%% LEFT ARM %%
%% %%%%%%%%%
% |Qxd. Qyd] = [H1]*Thod + [H2]*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.
% Thd = [ThL 1dot; ThL 2dot]
% H matrices ar¢ made from expressing the x & y components of Q in
% terms of LO, ThO, ThLO, L1, ThL1, L2, and ThL2.
% Qx=L0*cos(ThO+ThLO)+L 1*cos(ThO+ThLO+TL 1)+.2*cos(ThO+...
% ThLO+ThL1+ThL2)
% Qy=L0*sin(ThO+ThLO)+L 1*sin(ThO+ThL.0+ThL 1)+L2*sin(ThO+...
% ThLO+ThL 1+ThL2)
% The differentiation of these equations fead to
% {Qxd: Qyd] = [H1]*ThOd + {H2]*Thd which can be solved for Thd
Qxd0 = Xcd0 + LcP * ThPdO * sin(ThPO),
Qyd0 = YcdO - LcP * ThPdO * cos(ThPO),
H2(1,2) = -L2*sin(ThO0+ThLO+ThL 10+ThL20);
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H2(1, 1y = H2(1.2) - Li*sin( ThOO+ThLO+ThI 101,
112(2.2) = [.2*cos(ThOO+ThLO+ThL10+Thi.20).
H2(2,1) = H2(2,2) + L 1*cos( ThOO+ ThLO+ThE. 16).
HI(L D = H2(1,1) - LO*sin(ThOO+ThLO).
Hi(2,1) = 112(2,1) + LO*cos(ThOO+ThLU).

ThdO = inv(H2) * ({Qxd0: Qyd0] - H1*Th0d0).

*» Angle rates

ThL. 1d0 = ThdO(1),

I'hl.2d0 = Thd0O(2);

Y% %% %% % %% % %%

Y% RIGHT ARM %%

2% %% %% % %% % %%

%. The development is similar to the lett arm

i Px=R0*cos(ThO+ThRO)+R 1 *cos ThO+ThRO+ThR 1)+R2*cost ThO+..
% ThRO+ThR1+ThR2) ‘

Yo Py=RO*sin(ThO+ThROWR | *sin( ThO+ThRO+ThR D+R2*sint ThO+...
Y ThRO+ThP 1 +ThR2)

% |Pxd; Pyd] = [H1]*ThOd + [H2]*Thd
Pxd0 = XcdO - (LP - L¢P) * ThPdO * sin(ThPO).
PvdO = YcdO + (L.P - LcP) * ThPdO * cos(ThPO):
112(1,2) = -R2*sin( ThOO+ThRO+ThR10+ThR 20
H2(1,1) = H2(1,2) - R1*sin(ThOO+ThRO+ThR 10):
112(2,2) = R2*cos(ThOO+ThRO+ThR10+ThR20).
H2(2.1) = 1i2(2,2) + R1*cos(ThOO+ThRO+ThR 10},
11(1,1) = H2(1,1) - RO*sin(Th00+ThRO).
HI2,1) = H2(2,1) + RO*cos(Th00+ThRO),
Thd0 = inv(H2) * ([Pxd0; Pyd0} - H1*Th0d0):
% Angle rates
ThR1d0 = ThdO(1);
ThR2d0 = Thd0(2),
X0 =(Th00. ThL10. ThL20. ThRI0. ThR20: ThPO: Xc0: Yc0:...
Th0d0: ThL 1d0; ThL.2d0; ThR 1d0; ThR2d0: ThPdO0; Xcd0. YedOl.
end

%%%%%%%%%%%%%%%%
%% FINAL CONDITIONS %%
%%%% %% %%%%%%%%%%
% Desired Final Payload Angle
ThPf = atan2(Pyf-Qyf,Pxf-Qxf),

% Left Arm

% Elbow is left of line from arm base to Q (RQ)

1.Sx = LO * cos(ThOf + ThLO),

.Sy = LO * sin(ThOf + ThLO),

RQ = sqrti((Qxf-LSx)*2+HQyf-LSy)*2); % Length from arm base to Q
Betal = atan2(Qyf-L Sy,Qxf-LSx); % Angle from arm base to RQ
% 1.aw of cosines: cos(A) = (b"2 +¢”2 - a*2)/(2bc)

% Apply to find angle between RQ and Link L |

Num = L1172 + RQ"2 - L272;

Den=2*L1*RQ;, _
Beta2 = acos(Num/Den), % Angle from RQ to Link |
ThL 1f = (Betal + Beta2) - (ThOf + ThLO); % Thetal.l

% Use law of cosines to find the interior angie at the elbow

Num =L]72 +L2"2 - RQ"2;

Den=2*L1*L2

Beta3 = acos(Num/Den),

ThL2f = -(pi-Beta3),

% Right Arm

% Elbow is right of line from erm base (shoulder) to P (wnist) (RP)
RSx = RO * cos(ThOf + ThRO);
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RSv = RO * sin(ThOf + ThROY,

RP = sqrt((Pxf-RSx)*2+(Pyf-RSy)*2);, % Length from arm base to P
Betal = atan2(Pyf-RSy,Pxf-RSx). % Anglc from arm base to RP
% 1.aw of cosines: cos(A) = (b2 + ¢2 - a"2)/(2bc)

% Apply to tind angie between RP and Link R1

Num = R172 + RP*2 - R272;

Den =2 *R1 *RP,

Heta2 = acos(Num/Den), % Angle from Link R1 1o RP
3etad = Betal - (ThOf + ThRO),

ThRIf = -(Beta2 - Betad),

Num =RI1"2 + R2"2 - RP"2;

Den=2*RI*R2:

Betad = acos(Num/Den),

ThR2f = pi - Beta3.

% Desued Final State

Xcf = 0.5 * (Pxf + Qxf),

Yef = 0.5 * (Pyf + Qyf),

QfDes = [ThOf, ThL If; ThL2{; ThR!f; ThR2[, ThPf: Xcf: Yef:...
0. 0, 0; 0, 0, 0. 0, 0]

if OutFlag

2% %%6%% %% % %% %% %% %%

%% PROBLEM SUMMARY %%

%%%%% %% %% %% %% %% %% %

disp(PROBLEM SUMMARY")

disp(")

disp('Imitial Angles (deg)")

disp(‘Initial Anguiar Rates (deg/sec)")

disp('Desired Final Angles (deg)")

disp(' Theta0 Thetal.l Thetal2 Thetakl ThetaR2 ThetaP’)
disp(X0(1:6)*R2D)

disp(X0(9:14)*R2D)

disp(QfDes(1:6)"*R2D)

disp(")

disp('Payload Coordinates (m)")

disp(' Nominal Initial, Perturbed initial, and Final")

disp(  Qx Qy Px Py"Y

TableCrd = [Qx0On QyOn PxOn PyOn; PertCrd: Qxt Qvf Pxf Pyf],
disp(TableCrd)

disp(")

disp('Arm Mounting Locations wrt Centerbody Coordinate Frame (deg)’)
disp(ThLO*R2D).disp(ThRO*R2D)

disp(")

disp('Start, Reference Manuever Stop, & Simulation Stop Times (sec))
disp(T0);disp(TIR);disp(TfC)

disp(")

disp('Controller Status (1 = Un; 0 = Off)")

disp(ContFlag)

disp(")

disp('Perturbation Status (1 = On; 0 = Off)")

disp(PertFlag)

disp(")

disp('Centerbody Status in Forward EOM (1 = Fixed: 0 = Free)")
disp(AMatFlag)

disp(")

disp('Reaction Wheel Status (I = On; 0 = OtY))

disp(WheelFlag)

disp(")

disp('Number of Equations in Cost Function Constraint (3, 5 or 8)")
disp(EOMFlag)
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“

disp(™)
dispt'Psuedo-Inverse Status (I = On; 0 = Off))
disp(PInvFlag)
disp(™)
disp{'Nonzero [nitial Velocity Status (1 = On: 0 = OI1))
disp(KEFlag)
disp(™)
disp('Geometry Status (1 = Symmetric; 0 = Nonsvmmetric)')
disp(SymFlag)
disp(")
disp{'Inverse Kinematics Bypass Status (1 = Bypass: 0 = Use inv. Kinematics)')
disp(ByPass)
disp(™)
disp("Torques 1if Bvpass Enabled (0=None, 1=One, 2=Two Symmelrnic))
disp(Torqllag)
disp("™)
disp('Reaction Wheel Torque Cap Status (1=Iinabled. 0=Misabled)")
disp(TorqCap)
if TorqCap
disp(’Limit on Wheel Torque'),
disp(TorqMax);
end
disp(™)
disp("Controller Gains (position and velocity)')
disp  Gpos  Gvel)
disp(Gains')
disp(")
disp('Cost Function: J = 0.5*(uT*Wu*u + (AT*Lam)T*Wc*(AT*Lam)))
disp(’  where __T signifies transpose’)
disp('Control Torques Weighting Matrix, Wu')
disp(Wu)
Ydisp(‘Constraint Forces Weighting Matrix, W¢')
Yadisp(Wc)

end % End of QutFlag branch

%%%%%%%%%%%%%

%% INTEGRATION %%

%%%%%%%%%%% %%

% "ode” is a variable step size Runge-Kutta integrator function

% supplied with MATLAB. "ode2" is the same as "ode” in its function

% but permits the passing of more variables into and out of the function.

[T,X,Torg, TorgRef,Aqdot.J Res LHS,RHS Delq| = ...
ode2('Eqn2',TO,TfC.X0,Tol, Trace,L.s,Ms,CMs.Is.BoundC....
Gains,QfDes, Wu, W¢, Coef ,ConstMat);

k = length(T),

Hnt = X(:,17:18),

JintTotal = X(k,17:18);

if OutFlag

%%%%%%%%%%
%% OUTPUT %%
%%%%%%%%%%

clg:

% Angle Histones

n = length(T),

Q=X(,1:6),;

subplot(221)

plot(T,Q(:,1)*R2D,T,Q(:,2)*R2D,T,Q(:,3)*R2D....
T.Q(,4)*R2D,T,Q(:,5)*R2D,T,Q(:,6)*R2D):.
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hold on

ploi(T(n),QMes(1)*R2D,"*' T(n),QfDes(2)*R2D."* T(n).QfDes(3)*R2D."*', ..
T(n).QfDes(4)*R2D,"™* . T(n),QfDes(5)*R2D."™* T(n).QfMes(6)*R2D."*").

title('Thetas vs Time'),

xlabel('Time (sec)').ylabel( Angles (deg)');

hold off

% Angle Rate Histones

Qdot = X(:,9:14),

subplot(223)

plot(T.Qdot(:, 1)*R2D,T,Qdot(:,2)*R2D.T.Qdot(:,3)*R2D....
T.Qdot(:,4)*R2D,T,Qdot(:,5)*R2D,T,Qdot(:.6*R2D);

title("ThetaDots vs Time'),

xlabel(‘'Time (sec)),ylabel(' Angle Rates (deg/sec)):

%Departures from Reference Trajectory

if ~BvPass
subplot(222)
ploy(T,Delq(1,:)*R2D,T,Delq(2,:)*R2D.T,Delqg(3.:)*R2D,...

T.Delq(4,:)*R2D,T,Delq(5,:)*R2D, T.Delq(6,:)*R2Dj;

title('Displacement Errors vs Time');
xlabel("Time (sec)").ylabel('Q-QRef (deg)');

end

if MetaFlag
meta main

end

if DocFlag
meta docl

end

rause

% Draw Motion
Angles = Q(:,1:6);
[Xcoord, Ycoord] = Draw3(Ls,AngConst,Angles.Interval);
if MetaFlag
meta main
end
if DocFlag
meta doc2
end
pause

disp("),

disp('STATE VECTOR TIME HISTORY:"),

disp('Angles (deg)’)

Tablel = [T X(;,1:6)*R2D];

disp( Time Theta0 Thetal1 ThetalL.2 ThetaRl ThetaR2 ThetaP"),
disp(Tablel)

pause

disp(");

disp('Angle Rates (deg/sec))

Table2 = [T Qdot(:,1:6)*R2D]; )

disp( Time ThOdot ThLldot ThL2dot ThRldot ThR2dot ThPdot’),
disp(Table2)

pause

if ~ByPass
disp(");
disp(TRAJECTORY ERROR TIME HISTORY"":
disp('Angles (deg)")
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Table2a = |T R2D*Delq(1:6,:)'];
disp(  Time DelThO DelThL1 DelThL2 DelThRI DelThR2  DelThP'),
disp(Table2a)

end

pause

% Reference Torque Hislones
clg:
ir'TM>0
if TIR < TIC
[r.s} = size(TorgRefM,
TorqRef = [TorqRef zeros(s,1)}].
TRef = |T(l:r). TR},
else
TRef =T,
end
subplot(221)
plot(TRef, TorqRef);
title('Reference Torques vs Tlme ),
xlabel('Time (sec)');ylabel('Reference Torques').
end
% Command Torque Histories
%Torq = [Torq, zeros(4,1)],
k=n:
subplot(223)
plot(T(1:kY, Torq),
title('Command Torques vs Time');
xlabel('Time (sec)');ylabel(Command Torques'):

% Cost Function
subplot(222)
plot(T.J(1,));title("'Cost vs Time'),
xiabel('Time (sec)');ylabel('J=abs(Uwh)"),
subplot(224)
plot(T.JInt);title('Integrated Cost vs Time'"),
xlabel('Time (sec)');ylabel(Jint'’),
if MetaFlag
meta main
end
if DocFlag
meta doc3
end
pause

if TIR>0
disp(")
disp(REFERENCE TORQUE HISTORY"),
if WheelFlag
disp( Time U0 ULS ULE ULW URS URE URWY,
else
disp( Time ULS ULE ULW URS URE URWY
end
Table4 = [TRef TorgRef];
disp(Tabled)
end
pause
disp(")
disp(COMMAND TORQUE HISTORY"),
if WheelFlag
disp( Time UQ ULS ULE ULW URS URE URWY;
else
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disp( Time ULS ULE ULW URS URE LUIRW?Y,
end
TableS = [T(1:k) Torq'];
disp( Table5)
pause

Table6 = [T(1:k) J(1,:) Jint};

disp(").

disp('COST FUNCTION HISTORY"),
disp"  Time J JintAbs JIntSqr'),
disp( Table6);

pause

% Angular Momentum
k = length(T),
forn=1k
[}[s] = AngMo(Ls,Ms,CMs,Is,X(n, 1:8),X(n,9:16)),
ifn==1
HHist = Hs;
else
HHist = [HHist; Hs);
end
end
clg
subplot(221);
plot(T,HHist(:,1.6));title( Angular Momentum of Picces vs Time"),
xlabel('Time (sec)');ylabel(' Ang Momentum (N-m-sec)'),
subplot(223),
plot(THHist(:,7)):title("Total Angular Momentum vs Time'"),
xlabel('Time (sec));ylabel( Ang Momentum (N-m-sec)");
% Kinetic Energy
torm= Lk
if AMatFlag
| IM,G,A,Adot,B) = MatxFix(Ls,Ms,CMs.Is,X(m,1:8),X(m,9:16),AngConst),
else
[M,G,A ,Adot,B] = Matx(Ls,Ms,CMs,Is X(m,1:8),X(m,9:16),AngConst),
end
[.HSTot(m) =0,
RHSTot(m) = 0;,
ResTot(m) = 0;
forn=1:8
LHSTot(m) = LHSTot(m) + LHS(n,m),
dRI—ISTol(m) = RHSTot(m) + RHS(n,m);
en
ResTot(m) = LHSTot(m) - RHSTot(m);
KE(m) = 0.5*X(m,9:16)*M*X(m,9:16)";
end
subplot(224)
plot(T.KE);title('’Kinetic Energy vs Time'),
xlabel('Time (sec)');ylabel(KE (kg m”2/5*2)").
% Compare wheel torque to change in total angular momentum
Hd=1J@2,);
subplot(222)
plot(T(1:k)', Torg(l,:),T(1:k)' Hd),
title('Compare Wheel Torque to Change in Ang. Mom.");
xlabel('Time (sec)"),
pause
if MetaFlag
meta main
end
if DocFlag
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mecta docd
end
Yopause

¢l
subplot(221)
plot(T.Res);tle('Residuals of Equations'),
label("Time (sec)'),ylabel(LHS-RISY,
subplot(223)
plot(T ResTot)title(‘Total Residuals'),
xiabel("Time (sec)').ylabel(LHS-RHS'"):
% Constraints: see it A*Qdot = 0 is satisfied
subplot(222)
plot(T(1:k).Agqdot(1,), T(1:k), Aqdot(2,)), (1 k)y.Aqdou3.),..
T(1:k),Aqdot(4.)).
[dumI.dum2] = size(Aqdot),
if dum1 ==5
hold on
plot(T(1:k),Aqdot(5,:);
hold off
end
title('Constraints: A*Qdot vs Time');
xlabel('Time (sec)'),ylabel( A*Qdot'),
if MetalFlag
meta main
end
if DocFlag
meta docS
end
pause

end % End of OutFlag branch

Matx

% Filename is 'Matx.m'

% This routine calculates the matrices for the dual arm

% spacecraft EOM when it is grasping a payload. Fach arm
% has two links. This version assumes that the centerbody
% is NOT fixed. This impacts A and Adot.

function [M,G,A.Adot B] = Matx(Ls,Ms,CMs.Is, Ths, Thdots,AngConst)

% OUTPUTS:

% M = 8x8 mass matrix

% G = 8x1 vector with coriolis and centripetal terms
% A = 4x8 constraints matrix

% Adot = 4x8 derivative of constraints matrix

% B = Control influence matrix

%

% INPUTS:

% Ls = 7x1 vector of lengths (m)

% Ist ¢ nent = distance from origin to left arm mount

% 2nd . 3rd elements wrt left arm (from shoulder to wrist)
% 4th element = payload length

% 5th & 6th elements wrt right arm (from wrist to shoulder)
% 7th element = distance from right arm mount to origin

% [LO; L1; L2; LP; R2; R1, RO}
% Ms = 6x1 column vector containing the masses (kg)
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% 1st element = mass of spacecralt centerbody

Yo 2nd & 3rd elements = left arm (upper then lower arm)
Y% 4th & 5th elements = right arm (upper then lower arm)
% 6th element = payload mass

% MO0, ML 1, ML2, MR1; MR2;, MP}

% CMs = 6x1 column vector containing center ol mass locations (m)
Yo [LeU: LeL 1 Lel2; LeR 1 LeR2: Lel|

% [s = 6x1 column vector containing the moments of incruias
Yo about the respective body's center ol mass (kg m”2)

Y% 1st element = inertia of spacecrafl centerbody

Yo 2nd & 3rd elements = left arm (upper then lower arm)
%o 4th & 5th elements = rnight arm (upper then lower arm)
% 6th element = payload inertia

%% [10. L 1. 1L2, IRT; IR2; IP]

% Ths = 6 element vector containing the angles which describe
Y the configuration of the system.

% [ThO; ThL1; ThL2; ThR1: ThR2; ThP|

% Thdots = 6 element vector containing the angle rates

% AngConst = 2 element vector of arm mounting locations

% [ThLO; ThRO]

Y% %% %% % %% %% %% % % %% %% % % % % %% % % %% % %
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
Yo% %% %% % %% %% %% % %% % %% % %% %% %% % %% % %
% L.engths (m)

[.0=Ls(l),

1.1 =1s(2),

1.2 =Ls(3),
I

R1=Ls(6),
RO = Ls(7),

% Member masses (kg)
MO = Ms(1),

ML 1 = Ms(2),

ML2 = Ms(3),

MR = Ms(4),

MR2 = Ms(5),

MP = Ms(6),

% Center of mass distances (m)

L.eO =CMs(1).

L.cL.1l = CMs(2).

I.cL.2 = CMs(3),

[.cRI = CMs(4),

1.cR2 = CMs(5),

1.cP = CMs(6), Yomeasured from left end

% MOI about center of mass
10 =Is(1),
IL1 =1s(2),
IL2 = 1s(3),
IR1 = [s(4),
IR2 = Is(5),
IP =1s(6),

% Angles

ThO = Ths(1),
ThL1 = Ths(2),
ThL2 = Ths(3),
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I'hR1 = Ths(4),
ThR2 = Ths(5),
ThP = Ths(6),

% Angle Rates
ThOd = Thdots(1),
ThL 1d = Thdots(2),
Thl.2d = Thdots(3},
ThR1d = Thdots(4),
ThR2d = Thdots(5).
ThPd = Thdots(6),

% Arm mount locations
ThL.O = AngConst(}).
ThRO = AngConst(2),

% %% % %% %% % %%

%% Mass Matnx %%

%%%%%%% %% %%

M = zeros(8,8),

M(8.8) = MP,

M(7.7) = MP;

M(6,6) = IP;

M(5,5) = IR2 + MR2*LcR2"2:

M(5.4) = M(5,5) + MR2*R1*LcR2*cos(ThR2);

M(4.5) = M(5,4);

M(5.1) = M(4,5) + MR2*R0O*LcR2*cos(ThR1+ThR2),

M(1,5) = M(5,1),

M4 4) = M(4. 5+IRI+MR2*R1*LcR2*cos(ThR2)+MR 1 *L.cR1"2+MR2*R 112,

M(4,1)=M(4,4)+RO*(MR 1*LcR 1 +MR2*R 1)*cos( ThR1)+MR2*R0*[.cR2*...
cos(ThR1+ThR2),

M(1.4) = M(4,1);

M(3,3)=1L2 + ML2*LcL2"2;

M(3.2) = M(3,3) + ML2*L 1*LcL2*cos(ThL2);

M(2,.3) =MQ@3,2),

M@3,1)=M(3,2) + ML2*L0*LcL2*cos(ThL 1+ThL2),

M(1.3) = M@3,1),

M(2,2) = M(3,2)+ML2*L1*LcL2*cos(ThL2}+1L 1+ML1*LcL 1*2+ML2*L 172,

M(2,1)=M(2,2)+L0*(ML1*LcL1+ML2*L 1)*cos(ThL 1)+ML2*L0O*[.c[.2*...
cos(ThL1+ThL2),

M(1,2) = M(2,1),

Partl = [0+M(2,2)+M(4,4+MO*Lc0"2+ML, [ +ML2*L.0O"2+(MR 1+MR2)*R072;

Part2 = 2*LO*(ML1*LcL1+ML2*L 1)*cos(ThL 1)+2*ML2*L0*1.cL.2*...
cos(ThL 1+ThL2);

Part3 = 2*RO*(MR1*LcR1+MR2*R1)*cos(ThR 1 +2*MR2*R0O*L.cR2*...
cos(ThR1+ThR2);

M(1,1) = Parti + Part2 + Part3;

%%%%%%

%% G %%

%%%%%%

G = zeros(8,1);

Ptl = -LO*(ThL 1d"2+2*ThOd*ThL 1d)*(ML I *LcL 1+ML2*L 1)*sin(ThL1);

P12 = -ML2*L 1*LcL2*ThL 2d*(2*ThOd+2*Thl. 1d+ThL2d)*sin(Thl.2)

Pt3=-ML2*L0*LcL2*(2*ThOd*(ThL 1d+ThL2d)+(ThL. 1d+ThL2d)*2)*...
sin(ThL 1+ThL2);

Pt4 = -RO*(ThR1d"2+2*ThOd*ThR 1d)*(MR 1 *LcRI+MR2*R 1 )*sin(ThR 1);

Pt5 = -MR2*R 1 *LcR2*ThR2d*(2*Th0d+2*ThR 1d+ThR2d)*sin(ThR2):

Pt6=-MR2*RO*LcR2*(2*ThOd*(ThR 1d+ThR2d)H ThR1d+ThR2d)"2)*...
sin(ThR1+ThR2);

G(1)=Ptl + Pt2 + P13 + P4 + P15 + P16;
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Pt = LO*ThOd"2*(ML 1 *LcL | +ML2*L 1)*sin( Thl. 1).

P12 = -ML2*L 1*LcL2*ThL 2d*(2*ThOd+2*ThL {d+ThL2d)*sin(ThL2).

Pt3 = ML2*L0*LcL2*ThOd"2*sin(ThL | +ThL2);

G(2)=Ptl + P12 + P13,

G(3) = ML2*LcL.2*(L1*(ThOd+ThL 1d)*2*sin( ThL.2)+L.0* ThOd"2* .
sin(ThL.1+ThL2)),

Ptl = RO*ThOd"2*(MR I *LcRI+MR2*R D*sin( ThR I ).

Pt2 = -MR2*R1*LcR2*ThR2d*(2*ThOd+2* 'hR Id+ThR2d)*sin( ThR2),

Pt3 = MR2*RO*LcR2*ThOd"2*sin(ThR 1+ThR2).

(@)Y= Ptl + P2 + P13;

G(5) = MR2*LcR2*(R1*(ThOd+ThR1d)*2*sin( ThR2)+RO*ThOd"2* ..
sin(ThR 1+ThR2)),

%% %% %% % %% %% %% %

"% Constraints Matrix %%

% %% %% %%%% %% %% %

% The constraint matrix comes from putting the constraint equations
% into the Pfaffian form: A*qdot + A0 = (. The first two constraint
% equations are found by finding the x and v components of the

% Payload's center of mass by starting at the origin and moving

% up the left arm. The second two constraint equations {ind the x

% and y components of the Payload's center of mass by starting at the
% origin and moving to the base of the right arm and then

% up the right arm. Differentiating these equations results

% in the Pfaffian form with A0 =0,

A = zeros(4.8),

ALY =1,
AQ28)=-1.
AGBT=-1:
A4.8)=-1;

A(1,6) = -L.cP*sin(ThP),

A2,6) = LcP*cos(ThP),

A@3.6)= (LP-LcP)*sin(ThPY,

A4.,6) = -(LP-LcP)*cos(ThP),

A(4,5) = R2*cos(ThO+ThRO+ThR 1 +ThR2),
A(4.4) = A@4,5) + R1*cos(ThO+ThRO+ThR 1),
A(4.1) = A(4,4) + RO*cos(ThO+ThRO):
AQ3,5) = -R2*sin(ThO+ThRO+ThR 1+ThR2).
A(3,4) = A(3,5) - R1*sin(ThO+ThRO+ThR1),
A@3.1) = A(3.4) - RO*sin(Th0+ThRO0);

A(2,3) = L2*cos(ThO+ThLO+ThL 1+ThL2);
A(2,2) = A(2,3) + L 1*cos(ThO+ThLO+ThL 1);
A@R.1)=A(.2) + 1.0*cos(ThO+ThLO),
A(1,3) = -L2*sin(ThO+ThLO+ThL 1+ThL2):
A(1,2) = A(1,3) - L1*sin(ThO+ThLO+ThL 1):
A1) = A(1,2) - LO*sin(ThO+ThLO0),

Adot = zeros(4,8),

Adot(1,6) = -ThPd*LcP*cos(ThP);

Adot(2,6) = -ThPd*L.cP*sin(ThP),

Adot(3,6) = ThPd*(LP-LcP)*cos(ThP),

Adot(4,6) = ThPd*(LP-LcP)*sin(ThP);

Adot(4,5) = -(ThOd+ThR 1d+ThR2d)*R2*sin(ThO+ThRO+ThR 1+ThR2);
Adot(4,4) = Adot(4,5) - (ThOd+ThR1d)*R 1 *sin(ThO+ThRO+ThR 1):
Adot(4,1) = Adot(4,4) - ThOd*RO*sin(ThO+ThRO);

Adot(3,5) = «(ThOd+ThR 1d+ThR2d)*R2*cos(Th0+ThRO+ThR 1+ThR2);
Adot(3.4) = Adot(3,5) - (ThOd+ThR 1d)*R I *cos( ThO+ThRO+ThR 1),
Adot(3,1) = Adot(3,4) - ThOd*R0*cos(ThO+ThR0);

Adot(2,3) = -(ThOd+ThL 1d+ThL2d)*L 2*sin(ThO+ThLO+ThL 1+ThL2);
Adot(2,2) = Adot(2,3) - (ThOd+ThL 1d)*L 1 *sin(ThO+ThLO+ThL1),
Adot(2,1) = Adot(2,2) - ThOd*LO*sin(ThO+ThLO),
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Adot(1,3) = -(ThOd+ThL 1d+ThL2d)*L.2*cost ThO+Thl.O+Thl. 1 +Thl.2),
Adot(1,2) = Adot(1,3) - (ThOd+ThL 1d)*L. 1*cos( ThO+ThLO+ThL ).
Adot(1,1) = Adot(1,2) - ThOd*LO*cos( ThO+ThLO):

%% %% %%
%% B %%
%% %% %%

13 = 7zeros(8,0).
B(L.3)=-1.
B(1.6)y=-1.
BR2.Hh=1,
13(2 =

-1
1
-1
I,
-1.
1
-1
l;
I,

[ II 1 ll i II ] I

MatxFix

% Filename is 'MatxFix.m'

% This routine calculaies the matrices for the dual arm

% spacecralt EOM when it is grasping a pavload. [lach aim
% has two links. This version assumes that the centerbody
% is fixed. This impacts A and Adot.

function {M,G,A Adot B] = Matx(Ls,Ms,CMs.Is, Ths. Thdots, AngConst)

% OUTPUTS:

% M = 8x8 mass matrix

% G = 8x1 vector with conolis and centripetal terms
% A = 5x8 constraints matrix

% Adot = 5x8 denivative of constraints matrix

% B = Control influence matrix

Yo

% INPUTS:

% L.s = 7x1 vector of lengths (m)

% 1st element = distance from origin to left arm mount

Y% 2nd & 3rd elements wrt left arm (from shoulder to wnist)
% 4th element = payload length

% 5th & 6th elements wrt right arm (from wrist to shoulder)
% 7th element = distance from right arm mount to origin

% {LO; L1, L2, LP, R2; Rl; RO]
% Ms = 6x1 column vector containing the masses (kg)

% 1st element = mass of spacecraft centerbody

% 2nd & 3rd elements = left arm (upper then fower arm)
% 4th & 5th elements = right arm (upper then lower arm)
% 6th element = payload mass

% [MO; ML 1; ML2; MR1; MR2; MP]

% CMs = 6x1 column vector containing center of mass locations (m)
% [LeO; LcL1; LeL2; LeR1; LeR2; LeP]

% Is = 6x1 column vector containing the moments of inertias

% about the respective body's center of mass (kg m”"2)

% 1st element = inertia of spacecrafl centerbody

% 2nd & 3rd elements = left arm (upper then lower arm)

% 4th & 5th elements = right arm (upper then lower arm)
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% 6Lh element = payload inertia

% (10; IL1; IL2; IR1; IR2; IP] '
% Ths = 6 element vector containing the angles which describe
Y the contiguration of the system.

Yo [ThO; ThL 1; ThL2; ThR1: ThR2: ThP|

% Thdots = 6 element vector containing the angle rates

% AngConst = 2 element vector of arm mounting locations

Yo [ThLO; ThRO]

%%%%%%%%% %% %% % %% % %% % %% % % %% % %% %%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
Y %% % %% % %% %% %% % %% % %% %0 %% % %% % % % % %%
% l.engths (m)

[.O=Ls(l),

I.1 =Ls(2),

1.2 = Ls(3),

I.P = Ls(4),

R2 =Ls(5),

R1 = Ls(6),

RO = Ls(7),

% Member masses (kg)
MO = Ms(1);

ML1 = Ms(2),

ML2 = Ms(3),

MRI1 = Ms(4),

MR2 = Ms(5);

MP = Ms(6);,

% Center of mass distances (m)

[.cO = CMs(l),

l.cL.1 = CMs(2),

[.cL2 = CMs(3);,

LcR1 = CMs(4).

L.cR2 = CMs(5),

LcP =CMs(6), Yomeasured from left end

% MOI about center of mass
10 =1Is(1),

L1 =1s(2),

IL2 =Is(3);

IR1 = Is(4),

IR2 = Is(5),

IP = Is(6),

% Angles

ThO = Ths(1),
ThL1 = Ths(2),
ThL2 = Ths(3),
ThR1 = Ths(4),
ThR2 = Ths(5),
ThP = Ths(6),

% Angle Rates
ThOd = Thdots(1);,
ThL 1d = Thdots(2),
ThL2d = Thdots(3),
ThR1d = Thdots(4),
ThR2d = Thdots(5),
ThPd = Thdots(6),
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% Arm mount locations
ThL.O = AngConst(1),
ThRO = AngConst(2),

Y% %% %% %% % %%

%% Mass Matnix %%

Y%%%% %% %% %% %

M = zeros(8,8);

M(8.,8) = MP:

M(7.7) = MP;

M(6.6)= 1P,

M(5,5) = IR2 + MR2*LcR272;

M(5,4) = M(5,5) + MR2*R1*LcR2*cos(ThR2):

M(4.5) = M(5,4),

M5, 1) = M(4,5) + MR2*RO*Lc¢R2*cos(ThR 1+ThR2):

M(1.5) = M(5,1),

M(4,4) = M(4,5)+HIR1+MR2*R 1 *LcR2*cos( ThR2)+MR 1 *[ cR1"2+MR2*R [ *2;

M(4,1)=M(4,4)+RO*(MR | *LcR I +MR2*R 1 Y*cos(ThR 1 +MR2*RO*] cR2* .
cos(ThR1+ThR2);

M(1,4)=M(@4,1),

M(@3.3)=1L2 + ML2*LcL2"2;

M(3.2) = M(3,3) + ML2*L | *LcL2*cos(ThL2):

M(2,3) =M(@3.2),

M(3.1) = M(3,2) + ML2*L0O*Lcl.2*cos(Thl. 1+ThL2);

M(1,3) = M(@3.1);

M(2.2) = M(3,2)*ML2*L 1*LcL2*cos(ThL2)+IL 1+ML 1 *LcL 1"2+ML.2*1. 172,

M(2,1)=M(2.2)+LO*(ML I *LcL I +ML2*L 1)*cos(ThL 1)+ML2*1.0*1.cL.2*...
cos(ThL 1+ThL2),

M(1.2) = M(2,1),

Part]l = [0+M(2,2)+M(4,4+MO*L.c0M2HML. | +M1.2)*[.O"2+(MR 1 +MR2)*R0"2;

Part2 = 2*LO*(ML1*LcL 1+ML2*L 1)*cos(Thl. 1 /+2*ML2*1.0*]1.cL.2*...
cos(ThL 1+ThL?2),

Part3 = 2*RO*(MR1*LcRI+MR2*R1)*cos(ThR I +2*MR2*RO*LcR2*...
cos(ThR1+ThR2);

M(i.1) = Part] + Part2 + Part3;

2%%%%%%

%% G %%

%%%%%%

G = 7eros(8,1),

Pt] = -LO*(ThL 1d*2+2*ThOd*ThL 1d)*(ML 1 *LcL I1+ML2*L 1)*sin(ThL 1),

P12 = -ML2*L1*LcL2*ThL2d*(2*ThOd+2*ThL 1 d+ThL.2d)*sin(Thl.2).

Pt3=-ML2*L0*LcL2*(2*ThOd*(ThL 1d+ThL2d)+(ThL Id+ThL.2d)y"2)*...
sin(ThL 1+ThL2),

P14 = -RO*(ThR1d"2+2*ThOd*ThR 1d)*(MR 1 *|.cRI1+MR2*R 1) *sin(ThR 1);

Pt5 = -MR2*R1*LcR2*ThR2d*(2*Th0d+2*ThR 1d+ThR2d)*sin(ThR2),

Pt6=-MR2*RO*LcR2*(2*ThOd*(ThR 1d+ThR2d)H ThR1d+ThR2d)"2)*...
sin(ThR 1+ThR2),

G(1)=Pt] + P12 + Pt3 + Pt4 + Pt5 + Pt6;

Ptl = LO*ThOd"2*(ML 1*LcL 1+ML2*L 1 )*sin(Thi.1):

P12 = -ML2*L 1*LcL2*ThL 2d*(2*ThOd+2*ThL 1d+ThL2d)*sin(ThL2).

Pt3 = ML2*L0*LcL2*Th0d"2*sin(ThL 1+ThL2);

G(2) =Ptl +Pt2 + P13,

G(3) = ML2*LcL2*(L1*(ThOd+ThL 1d)Y*2*sin(ThL2)+L0O*ThOd"2*...

sin(ThL 1+ThL2));

Pt] = RO*ThOd*2*(MR 1*LcR1+MR2*R 1 )*sin(ThR 1),

P12 = -MR2*R1*LcR2*ThR2d*(2*ThOd+2*ThR 1 d+ThR2d)*sin( ThR2).

Pt3 = MR2*RO*LcR2*Th0d"2*sin(ThR 1+ThR2).

G(4)=Ptl +Pt2 + P3;

G(5) = MR2*LcR2*(R1*(ThOd+ThR1d)*2*sin(ThR2)+RO*Th0d"2*...

sin(ThR1+ThR2));
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%%%%%%%%%%%%%%

%% Constraints Matnx %%

%% % %%%%%%%%%%%

% The constraint matrix comes from putting the constraint equations
% into the Pfaffian form: A*qdot + A0 = 0. The first two constraint
% equations are found by finding the x and v components of the

% Payload's center of mass by starting at the origin and moving

% up the left aim. The second two constraint equations find the x

% and y components of the Pavload's center of mass by starting at the
“ origin and moving to the base of the nght arm and then

% up the right arm. Differentiating these equations results

% in the Pfaffian form with AQ = 0.

A = zeros(5,8),
ASDH=1.
ALTY=-1;
AR28)=-1;
A3 =-1;
A4 8)=-1;

A(1,6) = -LcP*sin(ThP);

A(2,6) = LcP*cos(ThP);

A(3.6) = (LP-LcP)*sin(ThP);

A(4,6) = -(LP-LcP)*cos(ThP);,

A(4.5) = R2*cos(ThO+ThRO+ThR 1+ThR2);
A(4.4) = A4,5) + R1*cos(ThO+ThRO+ThR 1),
A(4.1) = A(4,4) + RO*cos(ThO+ThRO),
A(3,5) =-R2*sin(ThO+ThRO+ThR1+ThR2);,
A(3.4) = A(3,5) - R1*sin(Th0+ThRO+ThR });
A(3,1) = A(3,4) - RO*sin(ThO+ThRO);

A(2.3) = L2*cos(ThO+Thi0+ThL 1+ThL2);
A(2,2) = A(2,3) + L 1*cos( ThO+ThLO+ThL 1);
A(2,1) = A(2,2) + LO*cos( [ThO+ThLO);
A(1,3) = -L.2%sin(ThO+ThLO+ThL 14+THLL2);
A(1,2) = A(1,3) - L1*sin(ThO+ThLO+ThL 1);
A(L1) = A(1,2) - LO*sin(ThO+ThLO);

Adot = zeros(5,8),

Adot(1,6) = -ThPd*LcP*cos(ThP),

Adot(2,6) = -ThPd*LcP*sin(ThP);

Adot(3,6) = ThPd*(LP-LcP)*cos(ThP);

Adot(4,6) = ThPd*(LP-LcP)*sin(ThP);

Adot(4,5) = -(ThOd+ThR 1d+ThR2d)*R2*sin(ThO+ThRO+ThR 1+ThR2);
Adot(4,4) = Adot(4,5) - (ThOd+ThR1d)*R 1*sin( ThO+ThRO+ThR 1):
Adot(4,1) = Adot(4,4) - ThOd*R0*sin(ThO+ThRO):

Adot(3,5) = -(ThOd+ThR 1d+ThR2d)*R2*cos(ThO+ThRO+ThR1+ThR2),
Adot(3,4) = Adot(3,5) - (ThOd+ThR1d)*R 1*cos(ThO+ThRO+ThR 1);
Adot(3,1) = Adot(3,4) - ThOd*R0*cos(ThO+ThRO).

Adot(2,3) = -(ThOd+ThL 1d+ThL2d)*L2*sin(ThO+ThL.0+ThlL. 1 +Thi.2);
Adot(2,2) = Adot(2,3) - (ThOd+ThL 1dy*L I *sin( ThO+ThLO+ThL 1)
Adot(2,1) = Adot(2,2) - ThOd*LO0*sin(ThO+ThLO).

Adot(1,3) = -(ThOd+ThL 1d+ThL2d)*L.2*cos(ThO+ThL.O+ThL 1+ThL2);
Adot(1,2) = Adot(1,3) - (ThOd+ThL 1d)*L | *cos(ThO+ThLO+ThL1);
Adot(1,1) = Adot(1,2) - ThOd*LO*cos(ThO+ThL0);

%%%% %%
%% B %%
%%%%%%

B = zeros(8,6),
B(1,3)=-1;
B(1,6)=-1,
BR.DH)= 1,
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13(2.3) = -1,

B(3.2)= 1,
B33 =-1i,
B4dy= 1,
B(4,6)= -1,
B(5.5)= I,
13(5.6)= -1,
B(6.3)= 1,
BO.6Y= |,
Ref2

* Filename 15 ‘Ref2.m’
*% Relerence Maneuver using cost function .
% This routine assumes that the spacecraft centerbody is held fixed.

function | Torques,QRef,QdotRef Agdot J,.C1.C2.C3| = ...
Ref2(Ls,Ms,CMs, Is,BoundC, T, Wu,W¢,Coet ,ConstMat)

% OUTPUTS:

% Torques = 7x! column vector of torques that should be apphied at

Y time T if the motion is to tollow the reference trajectory

Yo exactly. The vector is arranged as [UQ: ULS: ULLE: ULW: URS: URE: URW]
% which are the centerbody torque followed by the torques at the

Yo shoulder, elbow, and wnist of the lett arm and then the right arm

Y respectively.

% QRef = 8x1 column vector of re’crence generalized coordinates
% QdotRef = 8x1 column vector of reference generahzed velocities A
% Aqdot = 4x1 or 5x1 column vector (depends on status of AMatFlag) which

Yo check to see if the constraint equation A*Qdot = 0 1s satisfied

% J = scalar value of the reaction wheel torque absolute value. This

Yo number will be integrated to {ind the value tor the cost function.
% Lyapunov Controller matnces (reference Irajectory values)

% C1 = 8x7 matnx

% C2 = 8x4 or 8x5 (depends on status of AMatFlag) matnx
% C3 = 8x1 matrix

Yo

% INPUTS:

% l.s = 7x1 vector of lengths (m)

% I'st element = distance from origin to le¢fi arm mount

% 2nd & 3rd elements wrt left arm (trom shoulder toward wrist)
% 4th element = payload length

Y% 5th & 6th elements wrt right arm (from wrist toward shoulder)
Y 7th element = distance from right arm mount to origin

% ILO, L1, L2, LP. R2; RI; RO|
® Ms = 6x1 column vector containing the masses (kg)

% Ist element = mass of spacecraft centerbody

Yo 2nd & 3rd clements = mass of left arm (upper arm then lower arm)
% 4th & 5th elements = mass of right arm (upper arm then lower arm)
Y 6th elcment = payload mass

% (MO; ML 1; ML2; MRI; MR2; MP|

% CMs = 6x1 column vector containing center of mass locations

Y [LcO; Lell; Lel2; LeR1; LeR2; LeP)

% Is = 6x1 column vector containing the moments of inertias about the
% respective body's center of mass (kg m”2)

%% 1st element = inertia of spacecraft centerbody
Y% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
% 4th & 5th elements = inertia of right arm (upper amm then lower arm)

Y% 6th element = payload inertia
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% {10, IL1. IL2: IR 1. [R2: [P}
% BoundC = boundry conditions for the problem. The first column

9%, contains the initial X and v component of points Q & P’

2% respectively. the X component of the right anm base. the

% problem start time, and the simulation stop ume. The second
! column contaimns the x and y component of points Q & P

% respectively, the x component of the nght arm base, the

% stop time for the ideal reference maneuver. and a llag to

% activate or deactivate the controller. The ongin for the

% x and v components is the base of the lelt arm.

T =time

*0 Wu = 6X6 or 7x7 conltrol torque cost weightling matrix
%% We = 8x8 constraint cost weighting matrix _ o
%% Coef = (n-2)x1 column vector of reference polvnomial coetficients

2% beginning with order n coefticient '
% ConstMat = 3x(n-2) matnx of coetficients tor reference displacement
Yo (row 1), velocity (row 2}, and acceleration (row 3)

%% %%%%%%% %% %6%6%% %% %% %% % % % %% %% % %%
%% CONVERT INPUTS FROM ARRAYS TOQ SCALARS %%
%%%% %% %%%%% %% %%%% %% % %% % % %% % %% %%
% l.engths (m)

1.0 = Ls(1),
[.1 =Ls(2),
1.2 = L.s(3),
I.P =1.s(4),
R2 =Ls(5).
R1 =Ls(6),

RO = Ls(7),

% Member masses (kg)

MO = Ms(1),
ML1 = Ms(2),
ML2 = Ms(?),
MR = Ms(4),
MR2 = Ms(5),
MP = Ms(6);

% Center of mass distances (m)

[.cO0 =CMs(1),

l.cL1 =CMs(2),

[.eL.2 = CMs(3).

I.cR1 = CMs(4),

[.cR2 = CMs(5),

I.cP = CMs(6), %measured from left end

% MOI about center of mass
10 =1s(1),

L1 =1s2);

1.2 = Is(3),

IR1 = Is(4);

IR2 = Is(5),

IP =1Is(6);

% Initial and final locations of third link

% Point Q is at Node 3 (joint between Links 2 & 3)
% Point P is at Node 4 (joint between Links 3 & 4)
Qx0 = BoundC(1,1); Cy0=BoundC(1,2),

Px0 = BoundC(2,1); Py0 = BoundC(2,2),
Qxf=BoundC(3.1); Qyf=BoundC(3,2);
Pxf=BoundC(4,1); Pyf=BoundC(4,2).
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% Arms mount locations wrt spacecrait centerbodv coordinale frame (rad)
ThLO = BoundC(5,1), ThRO = BoundC(5,2).

"» Reference Maneuver Start and Stop Times
T0 =BoundC(6,1); Tf =Bound(C(6,2);

% Constraints Matnix Flag
AMatklag = BoundC(8,1);

* Centerbody Reaction Wheel Flag
WheelFlag = BoundC(8.2),

% Centerbody Initial and Final Co 1ditions
ThO0 = BoundC(3,1),
ThOf = BoundC(9,2).

% Number of equations 1n the cost function constraint equations
EOMFlag = BoundC(10,1);

% Psuedo-Inverse Flag
PInvFlag = BoundC(10,2),

2%%%%%%%%%%%%%%%% %% %% %%

%% PRELIMINARY CALCULATIONS %%

%% %% % %% %% %% %% %% %% %% % %%

R2D = 180/p1; % Conversion from radians to degrees

% Total rotation of Payload

ThPO = atan2(Py0-Qy0,Px0-Qx0); % Initial angle of Pavload (rad)

‘ThPf = atan2(Pyf-Qyf,Pxf-Qxf), % Final angle of Payload (rad)
DelThP = ThPf - ThPO, % Total delta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XP0O = Qx0 + (Px0 - Qx0) * (LcP/LP),

YPO = Qy0 + (Py0 - Qy0) * (LcP/LP),

XPf = Qxf + (Pxf - Qxf) * (LcP/LP),

YPf = Qyf + (Pyf - Qyf) * (LcP/LP);,

Tau = (T-TO) / (Tf-TO), % Normalize time

% Function Weighting Factors for how the pavioad will move

% These factors will cause the velocity and acceleration of

% the payload coordinates to be zero at t =0 and t = tf.

% They also permit the displacements for the payload coordinates
% to match their initial and final values. These weighting

% factors will also apply to the centerbody rotation.

k = length(Coef),

forn=i:k
CTau(k+1-n) = Coef(k+1i-n)*TauN(n+2),
CTaud(k+1-n) = Coef(k+1-n)*Tau”(n+1);,
CTaudd(k+1-n) = Coef(k+1-n)*Tau”(n),

end

% Weighting factors

W = ConstMat(1,:)*CTau’,

Wd = ConstMat(2,:)*CTaud",

Wdd = ConstMat(3,:)*CTaudd";

% Centerbody angle, angular velocity, angular acceleration
DelThO = ThOf - ThOO;
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ThO = ThOO + W * DelThO. % Angle (rad).

ThOd = Wd * DelThO / (Tf - TO), % Velocny (rad/sec).
ThOdd = Wdd * DelThO / (TT - TO)Y*2; % Acceleration (rad/sec”2).
%ThO =0,

%ThOd = 0.

%ThOdd = 0.

% Save for plotting

QRef(l) =Tho;

QdotRef(1) = Thod.

QddotRef(1) = ThOdd:

% Payload angle, angular velocity, angular acceleration

ThP = ThPO + W * DelThP; % Angle (rad)

ThPd = Wd * DelThP / (Tf - TO), % Velocily (rad/sec)
ThPdd = Wdd * DelThP / (Tf - TOY*2;, % Acceleration (rad/sec”™2)
% Save for plotting

QRef(6) =ThP;

QdotRef(6) = ThPd,

QddotRef(6) = ThPdd,

% Payload center of mass position, velocity, and acceleration
Xc = XP0 + W * (XPf - XP0),

Xed = Wd * (XPf - XP0) / (Tf - TO),
Xedd = Wdd * (XPf - XP0) / (Tf - TOY*2,
Yc=YPO+ W *(YPf - YPO),

Ycd = Wd * (YPf - YPO)/ (Tf - TO),
Yedd = Wdd * (YPS - YPO)/ (Tf - TOY2;
% Save for plotting

QRef(7) =Xc;

QdotRef(7) = Xcd;

QddotRef(7) = Xcdd;

QRef(8) =Yc;

QdotRef(8> = Ycd,

QddotRef(8) = Ycdd,

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - LcP * cos(ThP);

Qy = Yc - LcP *sin(ThP);

Px = Xc + (LP - LcP) * cos(ThP);

Py = Yc + (LP - LcP) * sin(ThP),

%%%%%%% %% %% %%%%%%%%%%% %% %% %

%% Solve for Arm Angles Required by desired path %%

%%% %% %% %% %% %% %% %% %% % %% %% %%%
%%%%%%% %% %%
%% LEFT ARM %%
%% %%% $%%%% %%
% Elbow is left of line from arm base to Q (RQ)
LSx = L0 * cos(ThO + ThLO);,
LSy = L0 * sin(ThO + ThLO),
RQ = sqri((Qx-LSx)"2-HQy-LSy)"2), % Length from arm base to Q
Betal = atan2(Qy-L Sy,Qx-LSx); % Angle from arm base to RQ
% Law of cosines: cos(A) = (b2 +¢"2 - a*2)/(2bc)
% Apply to find angle between RQ and Link L 1
Num=L172+RQ"2-L2"2;
Den=2*L1*RQ,
Beta2 = acos(Num/Den);, % Angle from RQ to Link 1
ThL1 = (Betal + Beta2) - (ThO + ThLO); % Theta L1
% Use law of cosines 1o find the interior angle at the elbow
Num=L172+L2"2 - RQ"2,
Den=2*L1*L2
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Beta3 = acos(Num/Den),
ThL2 = -(pi-Beta3),
%Save for plotting
QRef(2)=ThLI,
QRef(3)=ThL2:

%% %% %% % %% % %%

%% RIGHT ARM %%

%% %% %% %% %% %%

% Elbow is night of line from arm base (shoulder) to P (wnist) (RP)
RSx = RO * cos(ThO + ThRO),

RSy = RO * sin(ThQ + ThRO):

RP = sqrt((Px-RSx)"2+(Py-RSv)"2); % l.ength from arm base to P
Betal = atan2(Py-RSy,Px-RSx). % Angle from amm base to RP
% l.aw of cosines: cos(A) = (b2 +¢”2 - a”2¥/(2he)

% Apply to find angle between RP and Link R

Num = R1°2 + RP*2 - R2"2;

PDen=2 *R1 *RP;

Beta2 = acos(Num/Den), % Angle from Link R to RP
Betad = Betal - (ThO + ThRO);

ThR1 = -(Beta2 - Betad);

Num = R172 + R2*2 - RP”2;

Den =2 *R} *R2;

Beta3 = acos(Num/Den);

ThR2 = pi - Beta3;

% Save for plotting

QRef(4) = ThR1;

QRef(5) = ThR2,;

%%%%%% % %% % %% %% %% %% %% %% %% %% %%%% %% %% %% %
%% Solve for Arm Angle Rates & Accelerations required by desired path %%
% %%%%%% %% %% %% % %% % %% % %% %% %% % %% % %% % %% %%

%%%%%%%%%%%

%% LEFT ARM %%

%%%%%%%%% %%

% [Qxd; Qyd] = [H1]*ThOd + [H2]*Thd

% Qxd & Qyd are x & y components of point Q inertial velocity.

% Thd = [ThL 1dot; ThL 2dot]

% H matnces are made from expressing the x & v components of Q in

% terms of LO, ThO, ThLO, L1, ThL1, L2, and Thl.2.

% Qx=L0*cos(ThO+ThLO)+L 1*cos(ThO+ThLO+ThL 1)4+L2*cos(ThO+...

% ThLO+ThL 1+ThL2)

% Qy=L0*sin(ThO+ThLO)+L 1 *sin(Th0+ThLO+ThL 1)+L2*sin(ThO+...

% ThLO+ThL 1+ThL2)

% The differentiation of these equations lead to

% [Qxd; Qyd} = [H1}*ThOd + (H2]*Thd which can be solved for Thd

Qxd = Xcd + LcP * ThPd * sin(ThP),

Qyd = Ycd - LcP * ThPd * cos(ThP),

H2(1,2) = -L2*sin(ThO+ThL(+ThL 1+ThL2),

H2(1,1) = H2(1,2) - L1*sin(ThO+ThLO+ThL1);

H2(2,2) = L2*cos(ThO+ThLO+ThL1+ThL2).

H2(2,1)= H2(2,2) + L 1*cos(ThO+ThLO+Thl.1):

H1i(1,1)= H2(1,1) - LO*sin(ThO+ThLO),

HI1(2,1) = H2(2,1) + LO*cos(ThO+ThL0),

Thd = inv(H2) * ([Qxd; Qyd] - H1*ThO0d);

% Angle rates

ThL Id = Thd(1),

ThL2d = Thd(2),

% Save for plotting

QdotRef(2) = ThL 1d;

QdotRef(3) = ThL2d,
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% Differenuiation of {Qxd. Qyd] = [H1]*Th0d + {[12]*Thd leads to

% [Qxdd: Qydd] = [H1dot]*ThOd+{H1}*ThOdd + [[12dot|* Thd+{H2]*Thdd
Qxdd = Xedd + LeP*(ThPdd*sin(ThP) + ThPd"2*cos(ThP)):

Qvdd = Yedd - LeP*(ThPdd*cos(ThP) - ThPd™2*sin(ThPy).

H2dot(1,2) = -L2*(ThOd+ThL 1d+ThL2d)*cos( ThO+ThLO+Thl. 1+ThL2),
H2dot(1,1) = H2dow(1,2) - L [*(ThOd+ 'hL 1d)*cos(ThO+ThL.O+ThL1):
H2dot(2,2) = -L.2*(ThOd+ThL 1d+ThL2d)*sin( ThO+ThL.O+Thl. 1 +Thi.2).
H2dot(2,1) = H2dot(2,2) - L1*(ThOd+ThL 1dy*sint ThO+ThLO+ThL ).
THdot(1.1) = H2dot(1,1) - LO*ThOd*cos( ThO+Thl1.0).

1ildot(2.1) = H2dot(2,1) - LO*ThOd*sin(ThO+Thl.0).

Thdd = inv(H2)*([Qxdd; Qyddj-H2dot*Thd-{i{1dot|* ThOd-[111]* ThOdd).
% Angle acceierations

ThL. 1dd = Thdd(1),

Thl.2dd = Thdd(2),

QddotRef(2) = ThL ldd;

QddotRef(3) = ThL2dd:

%%%%%%%%%%%%

%% RIGHT ARM %%
%%%%%%%%%%%%

% The development is similar to the left arm

% Px=R0*cos(ThO+ThRO)+R | *cos(ThO+ThRO+ThR)+R2*cos( ThO+...
% ThRO+ThR1+ThR2)

% Py=RO*sin(ThO+ThRO)+R I *sin(ThO+ThRO+ThR 1)+R2*sin(Th0+...
% ThRO+ThR1+ThR2)

% |Pxd; Pyd} = [H1]*ThOd + [H2}*Thd

Pxd = Xcd - (LP - LcP) * ThPd * sin(ThP):

Pvd = Yed + (ILP - L¢P) * ThPd * cos(ThP):
[12(1,2) = -R2*sin(ThO+ThRO+ThR I+ThR2),
12(1,1) = H2(1,2) - R1*sin(ThO+ThRO+ThR1);
12(2,2) = R2*cos(ThO+ThRO+ThR 1+ThR2),
H2(2,1) = H2(2,2) + R1*cos(Th0+ThRO+ThR1);
H1(1,1) = H2(1,1) - RO*sin(Th0+ThR0),
H1(2,1) = H2(2,1) + RO*cos(ThO+ThRO);

Thd = inv(H2) * ([Pxd. Pyd] - H1*ThOd),

% Angle rates

ThR1d = Thd(1),

ThR2d = Thd(2),

% Save for plotting

QdotRef(4) = ThR1d;

QdotRef(5) = ThR2d;

% [Pxdd; Pydd] = [H1dot]*ThOd-+H1]*Th0dd + [H2dot}*Thd+[H2]*Thdd
Pxdd = Xcdd - (LP - LcP)*(ThPdd*sin(ThP) + ThPd"2*cos(ThP)):

Pydd = Ycdd + (LP - LcP)*(ThPdd*cos(ThP) - ThPd"2*sin(ThP)):
H2dot(1,2) = -R2*(Th0d+ThR 1d+ThR2d)*cos(ThO+ThRO+ThR1+ThR2),
H2dot(1,1) = H2dot(l,2) - R1*(ThOd+ThR 1d)*cos(ThO+ThRO+ThR1).
H2dot(2,2) = -R2*(Th0d+ThR 1d+ThR2d)*sin( Th0+ThRO+ThR 1+ThR2).
H2dot(2,1) = H2dot(2,2) - R1*(ThOd+ThR 1d)*sin(ThO+ThRO+ThR 1),
Hldot(1,1) = H2dot(1,1) - RO*ThOd*cos(ThO+ThRO);

Hidot(2,1) = H2dot(2,1) - RO*ThOd*sin(ThO+ThRO),

Thdd = inv(H2)*([Pxdd; Pydd]-H2dot*Thd-[H | dot]*ThOd-[H1]*Th0dd).
% Angle accelerations

ThR1dd = Thdd(1);

ThR2dd = Thdd(2);

QddotRef(4) = ThR 1dd;

QddotRef(5) = ThR2dd,

%%%%%%%%%%%%%%%%%%%
%% Find needed control torques, u %%
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%% %%%%% %% %% %% %% % %%
Y% EOM: M#*qddot + G = B*u + A"™Lam
% Constraint Egns: A*qdot =0
% Solve EOM for qddot leads to
% qddot = inv(M)*(3*u + A”*Lam - ()
% Diflerentiate Constraint Eqns gives Adot*qdot + A*qddot = 0
% Substitute qddot denived from EOM into difterentiated constraint
% eqns and solve for Lam
% Lam = -inv(A*imv(M)*A)*(A*inv(M)*(B*u-G)+Adot*qdot)
% Substitute this expression for Lam into ongianl FOM. Collect terms
% into the form MTilda*qddot + GTilda = BTilda*u
% where MTilda=M
Yo GTilda = G + A"™inv(A*inv(M)*A"VAdot*qdot-A*inviM)*G)
% BTilda =(I-A"*inv(A *inv(M)*A")*A*inviM)*B
% The first five resulting equations apply to the spacecraft centerbody
% and arms. The final three apply to the payload. The matnx form of
% the last three equations is
% MPTilda*QPddot + GPTilda = BPTilda*u

%%%%%%%%%
%% Matrices %%
% %% %% %% %%
AngConst = [ThLO; ThRO},
%AMatFlag = I
if AMatFlag
|M,G,A Adot, B} = MatxFix(Ls,Ms,CMs.Is,QRef. QdotRel AngConst).
clse
{M,G,A Adot,B] = Matx(Ls,Ms,CMs, Is,QRel,QdotRef AngConst):
end

if WheelFlag
B7=1(1,0,0,0,0;0.0; 0},
B =[B7 B}

end

% If the cost function is subject to the constraint that the payload

% satisfy the reference motion, then three equations of motion are used.
% To include the centerbody reference motion, use four equations from
% the equations of motion.

%%%%%%% %%
%% MTilda %%
%%%%%%%%%
if EOMFlag ==3 % Use only the payload equations
MPTilda = M(6:8,6:8);
else
if EOMFlag == % Use the spacecraft equations
MPTilda = M(1:5,1:5),
else % Use all eight equations
MPTilda =M;
end
end

%%%%%%%%%
%% GTilda %%
%%%%%%%%%
Qdot = QdotRef";
GiTilda = G + A"*inv(A*inv(M)*A')*(Adot*Qdot - A*inv(M)*G),
if EOMFlag =3 % Use only the payload equations
GPTilda = GTilda(6:8,1);
else
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if EOMFlag == 5 % Use the spacecrafl equations
GPTilda = GTilda(l:5,1),

clse % Use all eight equations
GiPTilda = GTilda:
end
end

%% %% %% % %%

%% BTilda %%

%% % %% %% %%

BTilda = (eve(8) - A"*inv(A*inv(M)*A"Y*A*invt MN*B:

if EOMFlag == 3 % Use only the payload cquations
3PTilda = BTilda(6:8,:);

clse
if EOMFlag==5 % Use the spacecrall equations

BPTilda = BTilda(1:5,:).

clse % Use all eight equations
BPTilda = BTilda;
end
end

%%%%%%%%%%

%% Gl & G2 %%

%%%%%%%%%

% Use previous expression for Lam and regroup terms into the following
%form A'"*Lam =Kl +K2*u

K1 = A"*inv(A*inv(M)*A"Y*(A*inv(M)*G-Adot*Qdot), .
K2 = -A'*inv(A*inv(M)*A")*A*inv(M)*B;

%%%%%%%%%

%% Torques %%

%%%%%%%%%

% Torques are calculated to minimize the following cost function:

%  J=0.5*[u"*Wu*u + Lam'*A*Wc*A"Lam + Tr*Wr*Tr]

% Subject to the constraint: MP*QPddot + GPTiida - BPTilda*u =0
% Combine the constraint into the cost function by muitiplying the

% constraint eqn by another L agrange muitiplier. Gam, and adding that
% to the cost function. Take the gradient with respect to u results in

% (Wu+K2"*Wc*K2)*u + K2'*Wc*K1 - BPTilda"*Gam = 0

% Solve foru

% u=invy(Wu+K2"*Wc*K2)*(BPTilda"*Gam - K2'"*Wc*K1)

% Substitute this into the constraint eqn. Solve the result for Gam

% Gam = inv(BPTilda*inv(Wu + K2'*Wc*K2)*BPTilda)*(MP*QPddot+
% GPTilda+BPTilda*inv(Wu + K2"*W¢*K2)*K2*Wc*K 1)
% Substitute this expression into the torque equation, u.

Qddot = QddotRef';

if EOMFlag =3 % Use only the payload equations
QPddot = Qddot(6:8,1),
clse
if EOMFlag==75 % Use the spacecraft equations
QPddot = Qddot(1:5,1);

else % Use all eight equations
QPddot = Qddot;
end
end

%%%% Y% %% % % %% %% %%
%% PSUEDO-INVERSES %%
%%%% %% %% % % %% % % %%
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% To avoid the problems with poorly conditioned matnces. I've used the
% psuedo-inverse rather than the traditional inverse in the next two
% equations.
if Plnvi‘lag
Partl = pinv(Wu + K2'*Wc¢*K2),
Gam = pinv(BPTilda*Part 1 *BPTilda") * (MPTilda*QPddot + GPTilda +..
BPTilda*Part | *(K2'*Wc*K 1)),
clse
Part] = inv(Wu + K2"*Wc¢*K2),
Gam = inv(BPTilda*Part1 *BPTilda) * (MPTilda*QPddot + GPTilda +...
BPTilda*Part1 *(K2'*Wc*K 1)),
end

% Relerence Torques
Torques = Part1*(BPTilda'*Gam - K2'*Wc*K1):

* Cost Function, J
I'=abs(Torques(1));

%Controller Info

Ptl = A"inv(A*inv(M)*A").

C1 = inv(M)*(eye(M) - PtLI*A*inv(M))*B;
C2 = -inv(M)*Pt1 *Adot;

C3 = inv(M)*(Pt1*A*inv(M) - eye(M))*G.

%%%%%%%%%%%%

%% DEBUG INFO %%
%%%%%%%%%%%%

%% Are constraint equations, A*qdot=0, satisficd?
Agqdot = A*QdotRef",

RefMin2

% Filename is 'RefMin2.m'

% Reference Maneuver using cost function

% This routine is used by "MainOpt.m" to find the optimal combination
% of reference trajectory polynomal coefficients.

% Version 2 uses the rate of change of angular momentum to find

% the wheel torque.

function [Joptl,Jopt2] = RefMin2(T,Ls,Ms,CMs.Is,BoundC, Wu, Wc.Coef,ConstMat)

% OUTPUTS:

% Jopt = absolute value of the reaction wheel torque. This is the cost
% function value for purposes of optimizing the reference

% trajectory polynomial coefficients. Jopti will be integrated by
% odemin.m while Jopt2 is the same vailue but won'’t be integrated.
%

% INPUTS:

% T = time (sec)

% Ls = 7x1 vector of lengths (m)

% 1st element = distance from origin to left arm mount

% 2nd & 3rd elements wrt left arm (from shoulder toward wrist)
Yo 4th element = payload length

% Sth & 6th elements wrt right arm (from wrist toward shouider)
% 7th element = distance from right arm mount to origin

% {LO, L1;L2; LP;R2; R1; RO]
% Ms = 6x1 column vector containing the masses (kg)
% 1st element = mass of spacecraft centerbody
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" 2nd & 3rd elements = mass of left anm (upper arm then Jower arm)

% 4th & Sth elements = mass of nght arm (upper arm then lower arm)
% 6th element = payload mass

Y {MO; ML 1; ML2; MR1: MR2; MP]

% CMs = 6x1 column vector containing center of mass locations

Y% [LcO; LeL 1; LeL2: LeR1: LeR2: LeP)

% Is = 6x1 column vector containing the moments ot inertias about the

%% respective body's center of mass (kg m"2)

% Ist element = inertia of spacecrait centerbody

%% 2nd & 3rd elements = inertia of left arm (upper arm then lower arm)
Ya 4th & 5th elements = inertia of right arm (upper amm then lower arm)
Y 6th element = payload inertia

Y {10.IL1. IL2: IR1: IR2: IP]

% BoundC = boundry conditions for the problem. The first column

%  contains the initial X and y component of points Q & P

%  respectively, the x component of the night arm base. the

%  problem start time, and the simulation stop ime. The second

%  column contains the x and y component of points Q & P

%  respectively, the x component of the right arm base, the

%  stop ume for the ideal reference maneuver. and a tlag to

“  activate or deactivate the controller. The ongin for the

"%  x and v components is the base of the lelt arm.

% Wu = 6x6 control torque cost weighting matrix

% We = 8x8 constraint cost weighting matrix

% Coef = (n-2)x1 vector of polynomial reference trajectory coeflicients

% in descending order where n is the highest order coefficicnt
% ConstMat = 3x(n-2) matrix of coeflicients for reference trajectorv
Yo displacement (row 1), velocity (row 2) and acceleration (row 3)

%% %%% %% %% %% %% %% %% %%% %% %% %% %% % %%
%% CONVERT INPUTS FROM ARRAYS TO SCALARS %%
% %% %%%%%%%%%%%%%% %% %% %% % %% % %% %%

% Lengths (m)
1.0 =Ls(l),

1.1 = Ls(2);

1.2 = Ls(3),
I.LP = Ls(4);
R2 = Ls(5),

R1 = Ls(6);
RO = Ls(7),

% Member masses (kg)
MO = Ms(1),
ML1 =Ms(2),
ML2 = Ms(3);

MR = Ms(4),
MR2 = Ms(5);,
MP = Ms(6),

% Center of mass distances (m)

Lc0 =CMs(l),

I.cLl = CMs(2);

I.cL2 = CMs(3),

[.cR1 = CMs(4),

Lc¢R2 = CMs(5),

I.cP = CMs(6); %measured from left end

% MOI about center of mass
10 =1Is(1),

L1 =1s(2),

1L2 =1s(3),
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IR1 = Is(4),
IR2 = Is(5),
IP =1s(6),

% Initial and final locations of third link

% Point Q is at Node 3 (joint between Links 2 & 3)
% Point P is at Node 4 (joint between Links 3 & 4)
Qx0 = BoundC(1,1); Qy0 = BoundC(1,2),

Px0 = BoundC(2,1); Py0 = Bound(C(2,2),
Qxf=BoundC(3,1);  Qyf = BoundC(3.2).

Pxt'= BoundC(4,1), Pvf = Bound((4,2):

2 Arms mount locations wrt spacecralt centerbody coordinate frame (rad)
ThLO = BoundC(5,1); .hRO = BoundC(5,2),

% Reference Maneuver Start and Stop Times
TO =BoundC(6,1); Tf =Bound(C(6,2),

% Constraints Matnix Flag
AMatFlag = BoundC(8.1),

% Centerbody Reaction Wheel Flag
WheelFlag = Bound(C(8,2);

% Centerbody Initial and Final Conditions
ThOO = BoundC(9,1),
ThOf = BoundC(9,2);

% Number of equations in the cost function constraint equations
EOMFlag = BoundC(10,1);

% Psuedo-Inverse Flag
PlnvFlag = BoundC(10,2),

%0%%%%%%%%%% %% %% %% %% % %%

%% PRELIMINARY CALCULATIONS %%
%%%%%%%%%%% %% %% %% %% %%%

R2D = 180/p1; % Conversion from radians to degrees

% Total rotation of Payload

ThPO = atan2(Py0-Qy0,Px0-Qx0), % Initial angle of Payload (rad)

ThPf = atan2(Pyf-Qyf,Pxf-Qxf), % Final angle of Payload (rad)
DelThP = ThPf - ThPO, % Total dclta angle of Payload (rad)

% Initial and final locations of Payload center of mass
XP0 = Qx0 + (Px0 - Qx0) * (LcP/LP),

YPO = Qy0 + (Py0 - Qy0) * (LcP/LP),

XPf = Qxf + (Pxf - Qxf) * (LcP/LP),

YPf = Qyf + (Pyf - Qyf) * (LcP/LP);

Tau = (T-T0) / (Tf-TO), % Normalize time

% Function Weighting Factors for how the payload will move
% These factors will cause the angular velocity and angular
% acceleration of the payload to be zeroatt =0 and t = tf

% They also permit the payload angle to match its initial

% and final values. These weighting factors will also apply

% to the translational motion of the payload center of mass.

k = length(Coef),
for n=1:k

160




CTau(k+1-n) = Coet(k+1-n)*Tau(n+2).
CTaud(k+1-n) = Coef(k+1-n)*Tau™(n+1),
CTaudd(k+1-n) = Coef(k+1-n)*Tau"(n),

end

W = ConstMat(1,)*CTau".

Wd = ConstMat(2,:)*CTaud",

Wdd = ConstMat(3,.)*CTaudd".

% Centerbody angle, angular velocity, angular acceleration
DelThO = ThOf - Th0O:

ThO = ThOO + W * DelThoO, % Angle (rad).

Thod = Wd * DelThO / (Tf - TO), % Velocity (rad/sec).

ThOdd = Wdd * DelThO / (TT - TO2, % Acceleration (rad/sec”2).
% Save for plotting

QRef(1) =Tho,

QdotRef(1) =ThOd;

QddotRef(1) = ThOdd;

% Payload angle, angular velocity, angular acceleration

ThP = ThPO + W * DelThP; % Angle (rad)

‘ThPd = Wd * DelThP / (Tf - TO); % Velocity (rad/sec)
ThPPdd = Wdd * DelThP / (Tf - T0)*2; % Acceleration (rad/sec”2)
% Save for plotting

QRef(6) =ThP,

QdotRef(6) = ThPd;

QddaotRef(6) = ThPdd,

% Payload center of mass position, velocity, and acceleration
Xe = XP0O + W * (XPf - XPO),

Xcd = Wd * (XPf - XP0) / (Tf - TO),
Xcedd = Wdd * (XPf - XP0O) / (Tf - TOY*2;
Ye=YPO+ W *(YPf - YPO),

Yed = Wd * (YPf - YPO) / (Tf - TO),
Ycedd = Wdd * (YPf - YPO)/ (Tf - TO)*2;
% Save for plotting

QRef(7) =X,

QdotRef(7) = Xcd,

QddotRef(7) = Xudd;

QRef(8) =Y,

QdotRef(8) = Ycd,

QddotRef(8) = Ycdd,

% Payload endpoint coordinates: Qx, Qy, Px, Py
Qx = Xc - LcP * cos(ThP),

Qv = Yc - LcP * sin(ThPY;,

Px = Xc + (LP - L.cP) * cos(ThP),

Py = Yc + (LP - LcP) * sin(ThP),

%%%%%%%% %% % %%%%%%%%%%%%%%%%
%% Solve for Arm Angles Required by desired path %%
%% %% %%%%%%%%%%%%%%%%%%%% %%
%%%%%%%%%%%
%% LEFT ARM %%
%%%%%%%%%%%
% Elbow is left of line from arm base to Q (RQ)
I.Sx = LO * cos(ThO + ThLO),
1.Sy =10 * sin(ThO + ThLO);
RQ = sqrt((Qx-LSx)*2+Qy-LSy)*2), % Length from arm base to Q
Betal = atan2(Qy-L Sy,Qx-LSx); % Angle from arm base to RQ
% Law of cosines: cos(A) = (b2 +¢”2 - a*2)/(2bc)
% Apply to find angle between RQ and Link L1
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Num =[1"2 + RQ"2 - L.2"2;

Den=2*LI*RQ,

Beta2 = acos(Num/Den). % Angle from RQ to Link |
Thl, 1 = (Betal + Beta2) - (ThO + ThLO). % Theta L1

% Use law of cosines to find the intenor angle at the elbow
Num =1.1°2 + 272 - RQ"2;

Den=2"*L1*L2

Beta3 = acos(Num/Den);

Thi.2 = -(pi-Beta3).

%Save for plotung

QRef(2)=ThL1;

QRef(3) =ThL2,

%% %% %% % %% % %%

%% RIGHT ARM %%

%%%%%%%%%%%%

% Flbow is nght of line from arm base (shoulder) to P (wnist) (RDP)
RSx = RO * cos(ThO + ThRO).

RSy = RO * sin(ThO + ThRO),

RP = sqrt((Px-RSx)"2+(Py-RSy)"2), % Length from arm base to P
Betal = atan2(Py-RSy,Px-RSx), % Angle from arm base to RP
% l.aw of cosines: cos(A) = (b"2 + ¢”2 - a"2)/(2bc)

% Apply to find angle between RP and Link R1

Num = R172 + RP*2 - R272;

Den=2*R1 *RP,

Beta2 = acos(Num/Den), % Angle from Link R1 to RP
Beta4 = Betal - (ThO + ThRO);

ThR1 = -(Beta2 - Betad),

Num =R172 + R2"2 - RP"2;

Den =2 *R1 *R2;

Beta3 = acos(Num/Den),

ThR2 = pi - Beta3,

% Save for plotting

QRef(4) = ThR1,

QRef(5) = ThR2;

% %% %%%%%% %% %% % %% %% % %% %% %%
%% Solve for Arm Angle Rates & Accelerations %%
%% required by desired path %%
%%%%%%%%% %% %%% %% %% %% %%%%%%
%%%%%%%%% %%
%% LEFT ARM %%
%%%%%%%%%%%
% [Qxd; Qyd] = [H1]*Th0d + [H2}*Thd
% Qxd & Qyd are x & y components of point Q inertial velocity.
% Thd = [ThL ldot; ThL2dot] .
% H matrices are made from expressing the x & y components of Q in
% terms of LO, ThO, ThLO, L1, ThLL1, L2, and ThL2.
% Qx=L0*cos(ThO+ThLO)+L | *cos(ThO+ThLO+ThL1)+L2*cos(ThO+...
ThLO+ThL1+ThL2)
% Qy=L0*sin(ThO+ThLO)+L 1 *sin(ThO+ThLO+ThL 1)+L.2*sin(ThO+...
ThLO+ThL I+ThL2)
% The differentiation of these equations lead to
% [Qxd; Qyd] = [H1]*ThOd + [H2]*Thd which can be soived for Thd
Qxd = Xcd + L¢P * ThPd * sin(ThP),
Qyd = Ycd - LcP * ThPd * cos(ThP),
H2(1,2) = -L2*sin(ThO+ThL 0+ThL 1+ThL2);
H2(1,1) = H2(1,2) - L1*sin(ThO+ThLO+ThL1);
H2(2,2) = L2*cos(ThO+ThL0+ThL 14ThL2),
H2(2,1)= H2(2,2) + L 1*cos(ThO+ThLO+ThL1),
HI(1,1)= H2(1,1) - LO*sin(ThO+ThLO);
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HI(2.1y= H2(2,1) + 1.0*cos( ThO+ThLO).
Thd = invtH2) * (JQxd; Qvyd]| - HI*ThOd).
% Angle rates

Thl.id = Thd(1),

Thl.2d = Thd(2),

% Save for plotting

QdotRef(2) = ThL 1d.

QdotRef(3) = ThL2d.

% Differentiation of {Qxd: Qvd] = [H1]*ThOd + [112]*Thd leads to

% |Qxdd: Qydd] = (H1dot]*ThOd+[{H1]*ThOdd + jH2dot]*Thd+{112]*Thdd
Qndd = Xedd + LeP*(ThPdd*sin(ThP) + ThPd~2*cost ThPy).

Qvdd = Yedd - LeP*(ThPdd*cos(ThP) - Thd”2*sin( ThP)).

H2dot(1,2) = -L2%(ThOd+ThL 1d+ThL 2dy*cos( ThO+ThLO+ThL 1 +Thl . 2).
112dot(1, 1) = H2dot(1,2) - 1. 1*(ThOd+Thi. 1d)y*cost ThO+ThL.O+Thi. ).
112dot(2,2) = -L.2%(ThOd+ThL 1d+ThL2d)*sin ThO+ThLO+Thi. 1+Thl 2).
H2dot(2,1) = H2dot(2,2) - L 1*(ThOd+ThL td)*sin(ThO+ThL.O+ThL 1),
Hidot(1,1) = H2dot(1,1) - LO*ThOd*cos( TLO+ThLO),

[11dot(2,1) = H2dot(2,1) - LO*ThOd*sin( ThO+ThL.0).

Thdd = inv(H2)*({Qxdd: Qydd}-H2dot* Thd-[1{1dot|*Thd-[I11}*ThOdd).
%% Angle accelerations

Thl.1dd = Thdd(1),

Thl.2dd = Thdd(2),

QddotRef(2) = ThL 1dd;

QddotRef(3) = ThL 2dd,

%% %% %% %% %% %%

%% RIGHT ARM %%

%6%%%%%% %% % %%

% The development is similar to the left arm

% Px=R0*cos(ThO+ThRO)+R | *cos(ThO+ThRO+ThR )+R2*cos(ThO+...
ThRO+ThR1+ThR2)

% Py=R0*sin(ThO+ThROY+R 1 *sin(ThO+ThRO+ThR IR 2*sin( ThO+_.
ThRO+ThR1+ThR2)

% [Pxd; Pyd] = [H1]*ThOd + [H2}*Thd

Pxd = Xcd - (LP - LcP) * ThPd * sin(ThP),

Pvd = Yed + (LP - LcP) * ThPd * cos(ThP);,

H2(1,2) = -R2*sin(ThO+ThRO+ThR I1+ThR2).

H2(1,1) = H2(1,2) - Ri*sin(ThO+ThRO+ThR ).

112(2,2) = R2*cos(ThO+ThRO+ThR1+ThR2),

H2(2,1) = H2(2,2) + Ri*cos(ThO+ThRO+ThR 1).

Hi(1,1)= H2(1,1) - RO*sin(ThO+ThRO);

H1(2,1) = H2(2,1) + RO*cos(ThO+ThRO).

Thd = inv(H2) * ([Pxd; Pyd] - HI*Th0d),

% Angle rates

ThR1d = Thd(1),

ThR2d = Thd(2),

% Save for plotting

QdotRef(4) = ThR 1d.

QdotRef(5) = ThR2d;

% [Pxdd, Pydd] = [H1dot]*ThOd+[{H1]*Th0dd + [}12dot|*Thd+]112}*Thdd
Pxdd = Xcdd - (LP - LcP)*(ThPdd*sin(ThP) + ThPd"2*cos(ThP));

Pvdd = Ycdd + (LP - LcP)*(ThPdd*cos(ThP) - ThPd"2*sin(ThP)),
H2dot(1,2) = -R2#(ThOd+ThR 1d+ThR2d)*cos(ThO+ThRO+ThR 1+ThR2);
H2dot(1.1) = H2dot(1,2) - R1*ThOd+ThR 1d)*cos(ThO+ThRO+ThR ).
12dot(2,2) = -R2#(ThOd+ThR 1d+ThR2d)*sin(ThO+ThR0O+ThR 1+ThR2),
H2dot(2.1) = H2dot(2,2) - R1*(ThOd+ThR 1d)*sin( ThO+ThRO+ThR 1)
Hldot(1.1) = H2dot(1,1) - RO*ThOd*cos( ThO+ThRO);

Hidot(2,1) = H2dot(2,1) - RO*ThOd*sin(ThO+ThRO);

Thdd = inv(H2)*([Pxdd; Pydd]-H2dot*Thd-{H 1dot]*ThOd-[H1]*ThOdd);
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*u Angle accelerations
I'hR1dd = Thdd(1),
MR2dd = Thdd(2),
{JddotRef(4) = ThR 1dd.
QddotRef(5) = ThR2dd:

*u%% %% %% %% %% %% % %% %0 %% %
“u% I'ind needed control wheel torque %%
1% %% %% % %% %% %% % %% % %% %

Q  =QR.:

Qdot = CloRet";,

Qddot = QddotRef™,

fl1s. Hdots) = AngMo2(Ls,Ms,CMs, Is,Q,Qdot.Qddoty.

% Cost Function, Jopt

"% Wheel torque is the change in total angular momentum
“4 Joptl 1s integrated while Jopt 2 is not

Joptl = abs(Hdols(7)),

Jopt2 = Joptl;
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