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ABSTRACT 

Future space telescopes must maintain lower mass of the mirrors to keep 

launch cost down while increasing the size and performance of the space 

telescope.  Although much work has been done in both adaptive optics and 

robust control, this thesis explores the application of several Multi-Input, Multi-

Output controller designs for wavefront control of a Segmented Mirror Telescope 

with 936 actuators and 732 sensors.  This thesis builds on previous robust 

control design by combining classical control with an H  robust controller on a 

Singular Value Decomposition reduced model.  It also presents reduction using 

Zernike polynomials and applies it to the integral control model as an alternate to 

Singular Value Decomposition model reduction. 

All methods were able to meet the 10 Hz bandwidth by design.  Therefore, 

the analysis shows that there are several trade-offs that can be made based on 

control system size and desired performance.  The H  controller is combined in 

parallel with the integral controller for this thesis.  The analysis shows that the 

parallel combined controller outperforms all other controllers; however, the cost 

analysis shows that a simpler Zernike reduced model can achieve slightly 

reduced performance at a much lower cost. 
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I. INTRODUCTION  

A. MOTIVATION 

Optics have been used in space since humans began building satellites in 

the 1960s.  Optical systems in space eliminate the atmospheric distortions on the 

light wave while looking into distant galaxies, and provide the ability to image and 

map the earth’s surface.  The disadvantage of putting optics in space is the cost 

incurred by launching heavy optical payloads with large mirrors and lenses.  A 

large static mirror will require a lot of support structure and extremely precise 

machining to maintain a perfectly shaped mirror within the tight tolerances 

required to get higher resolution desired from a system with a large mirror.  The 

purpose of the segmented mirror system is to use a lighter and less rigid 

structure, combined with sensors, and computerized controllers to control the 

surface of the mirrors to remove the various sources of distortion on the light to 

get a better picture.  By reducing the weight, the cost to launch a larger mirror is 

reduced, giving better performance at a lower launch cost. 

The angular resolution for an optical system defines the greatest angular 

separation between two objects that an aperture can resolve.  Angular resolution 

is calculated by the Rayleigh Criteria in Equation (1.1), where  is the minimum 

theoretical angular separation between two objects: 

 1.22
apertureD

   (1.1) 

As the diameter of the aperture increases, the angle between two objects 

can decrease and still be detectable.  This means that far objects, such as stars, 

planets, and galaxies, can be closer together and still be distinguished.  Using 

this equation and some geometry, the ground separation distance is also shown 

to be increased.  In Figure 1, R is the distance to the ground from the aperture 

and D is the diameter of the aperture. 



 

 2

 

Figure 1.    Ground separation distance 

By using the calculations from reference [1], if the approximation of an 

angle: 

 /X R   (1.2)  

is substituted in Equation (1.1), then Equation (1.3) holds as the distinguishable 

distance between two objects on the ground, also known as the ground 

separation distance. 

 1.22
aperture

R
X

D


  (1.3) 

By increasing the diameter of the mirror, the ground separation distance 

can be decreased, which results in better theoretical maximum resolution of the 

system.  In order to achieve a larger mirror in space, a segmented mirror is the 

most obvious choice since it can be folded up to fit within a launch fairing and 

deployed on orbit. 

In addition to the increased resolution, segmented mirrors are also 

potentially more reliable and have a lower lifetime cost.  For example, the Hubble 
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Space Telescope, launched in 1990, orbits the earth at 576 km and is capable of 

sensing from UV to near-Infrared frequencies of light.  It has a 2.4-meter Ritchie-

Chretien Cassegrain primary mirror.  When it was launched in 1990, a spherical 

aberration was discovered in Hubble’s primary mirror [2].  In 1993, the Corrective 

Optics Space Telescope Axial Replacement (COSTAR) was installed to correct 

the primary mirror aberration.  The costs and time required to plan and conduct a 

servicing mission could have been reduced and the three years to correct the 

optical system could have been useable at the same or higher performance if the 

errors in the mirror could have been removed by having controllable segmented 

mirrors with adaptive optics.   

The trade-off between a single, monolithic mirror and a series of smaller 

segmented mirrors is an increased complexity of the system.  Although there are 

risks with a large continuous mirror having a defect or being out of tolerance, the 

complexity of controlling multiple mirrors is a large challenge to overcome.  

Several computer controllers are used in conjunction with multiple sensors and 

actuators.  The James Webb Space Telescope (JWST) is NASA’s next 

generation infrared-optimized telescope, scheduled to launch in 2014, shown in 

Figure 2. 

 

Figure 2.   James Webb Space Telescope (from [2]) 
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The James Webb Space Telescope is a 6.5-meter diameter segmented 

mirror design, and will be launched to the L2 Lagrange Point on the opposite side 

of the earth from the sun.  The primary optic is composed of 18 segmented 

hexagonal mirrors and a large sun shield, which will be folded and deployed after 

launch.  Upon deployment, according to NASA’s Jet Propulsion Laboratory, there 

are three major tasks that must be performed to ensure that the telescope works 

within the tight tolerances required to ensure good picture quality [3].  First, the 

satellite must be Initialized to conduct the initial alignment and figure correction 

control.  This phase consists of coarse alignment of the segments, followed by 

fine phasing to correct the mirrors to a higher accuracy than can be achieved 

with coarse control.  The next phase of Calibration must be done to establish 

influence functions and offsets needed for calculations for the last phase of 

Maintenance.  During the maintenance phase, normal operations are conducted 

correcting for the wave-front error and “long-term monitoring and periodic 

correction of image quality” [3].  Much research has been done on the Alignment 

phase of control of the space segmented mirror as shown in reference [3] and 

[4], which discuss the coarse and fine control of the mirrors.  The James Webb 

Space Telescope uses coarse and fine sensors for the alignment phase.  It uses 

a science camera combined with other techniques for the “maintenance” phase.  

Other segmented telescope applications use a separate sensor, which will be 

discussed later, to detect the wave-front errors for correcting the optical picture in 

the maintenance phase. 

An earth imaging segmented mirror has a different concept of operations 

than a deep space imaging system like the JWST.  The JWST will be 

maneuvering less frequently than an earth imaging satellite.  Since the earth 

imaging satellite will be moving more, it will have more sources of input noise to 

the optical system from sources such as attitude control system or the changing 

thermal gradients across the mirror surface.  The JWST controls the thermal 

issue by using a large sunshade to block the sun from the mirrors and satellite 

structure, which is relatively easy since it will be in an orbit at a Lagrange point 
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and the sun will always be in the same position relative to the satellite.  It would 

be much more difficult to have a continuously controlled or enormous sunshield 

to shade mirrors when looking at the earth, which is nullified by the fact that there 

is energy reflected off the earth’s surface in the form of albedo.  Also, the earth 

has an infrared signature that is absorbed by a satellite and cannot be shielded 

when looking at the earth.  Therefore, it is necessary for an earth-viewing satellite 

to have more control over the wavefront when looking at the surface of the earth 

than a satellite looking at deep space or at galaxies far, far away.   

B. Objectives 

The objective of this thesis is to develop a control system to correct the 

wavefront error.  It is assumed that the coarse and fine control of the system has 

been done and will continue to be done by a separate controller and only the 

wavefront error must be corrected to achieve surface figure control.  This thesis 

will show that by using an integral controller combined with robust control 

techniques, better bandwidth and greater control of the system can be achieved 

than by either robust or classical control alone. 

C. Overview 

Chapter II presents a background in adaptive optics systems and control 

systems for adaptive optics.  This chapter presents the principles of adaptive 

optics systems including the sensors and actuators used to control a wavefront 

for precise imaging. 

Chapter III is a description of the Segmented Mirror Telescope, including 

system identification.  This chapter describes the system on which the thesis 

research was based in order to gain an understanding of how the control 

systems were applied. 

Chapter IV describes classical and robust controls as applied to the 

segmented mirror telescope.  This chapter further explains how the control  
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systems can be combined to create a combined classical and robust control 

system for use in a multi-input multi-output (MIMO) system as applied to the 

segmented mirror telescope. 

Chapter V presents the cost and performance measures used in 

evaluating the control systems and the results of the simulations.  The results are 

analyzed and importance of the findings from the design and simulation are 

discussed. 

Chapter VI discusses the summary, conclusion and future work to 

continue the work done on this thesis. 
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II. BACKGROUND 

A. ADAPTIVE OPTICS SYSTEMS 

Adaptive optics is based on using a light “wavefront” that has been 

distorted in some way and applying control to the optical path of the telescope to 

correct for the aberrations.  Although it is not always a physical reality, it is 

assumed in adaptive optics that light emitted from a surface travels as a flat 

wave.  Imagine light at a specific instance in time being reflected from a surface 

at exactly the same speed and time.  If it is going through a vacuum without any 

interference, it will arrive at a flat sensor as a flat wave and precisely the same as 

it left the surface.  Of course, this is not possible in reality because of multiple 

sources of distortion that the light will undergo as it travels from the source to the 

sensor.  The spreading of the light from a spherical surface is also ignored, due 

to difficulties in reconstructing a wavefront as a curved surface and not a flat 

surface. 

One of the sources of the distortion is the atmosphere. Light refracts when 

it transitions between mediums with different index of refractions, as defined in 

Snell’s Law of Refraction in Equation (2.1), where 1  and 2  are the angle before 

and after transitioning through different “parts” of the atmosphere. 

 2 1

1 2

sin

sin

 
 

  (2.1) 

 

The indices of refraction, 1  and 2 , are indirectly proportional to the 

speed of light through the specific medium based on the frequency of the light 

and the number of free electrons per unit volume, N. 

 2

80.6
1

N

f
  


 (2.2) 
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Since the number of free electrons in the atmosphere is constantly 

changing and are asymmetrically distributed even within the same layers of the 

atmosphere, light will be constantly refracting throughout its path through the 

atmosphere.   

Aside from the external distortions on light, there are often sources of 

aberration internal to the optical system, including physical defects or 

imperfections in the optical components, such as mirrors and lenses.  Defects in 

the lenses such as uneven coatings and slight imperfections in the glass of the 

lenses can cause aberrations.  Mirrored systems can have polished surfaces that 

are imperfect or out-gassing from components in space can collect on the mirror 

causing a difference in reflection on the surface of the mirror.  Micrometeorites 

could cause the mirror to become slightly scratched or pitted.  All of these 

sources of distortion cause a wavefront that would otherwise be flat to distort and 

change shape in some way.  The nature of decreasing the mass of the mirror 

adds additional complexity to the control with the lower natural frequencies in the 

system than an extremely rigid structure.  The problem with lower natural 

frequencies is that more active control will have to be done on the system to 

control the lower frequency to get them to damp out and reduce error in a 

reasonable time.  Also, as discussed before, depending on the application, there 

can also be a thermal disturbance on the mirrors, which will cause a distortion if 

not corrected. 

1. Wavefront Estimation 

a. Zernike Polynomials 

With the knowledge that the atmosphere and other factors distort 

the light coming into the lens, it was necessary to develop a way to 

mathematically describe the wavefront in order to control it.  The Zernike 

polynomials accomplish this through a series of coefficients that describe the  
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phase of the light.  The normalized Zernike polynomials are generally described 

by Equation (2.3), which is normalized over the unit circle by dividing the radius 

  by the maximum radius, R  [5]. 

 
 2

2

0

!
( 1)

! ! !
2 2

n m n s
m s
n

s

n s
R

n m n mR Rs s s

 
 



                   
   

  (2.3) 

And the phase of the wavefront is calculated as [5]: 

    0
00

2 1 1

1
, cos sin

2

n
m

no n nm nm n
n n m

A A R A m B m R
R R

    
 

  

              
   (2.4) 

This phase describes the wave advance or retardation, which can 

be thought of as the height with respect to the planar wavefront. 

Normally, the Zernike polynomials are derived in the polar form, but 

can be transformed into Cartesian coordinates using the relationships in 

Equations (2.5) and (2.6). 

 2 2x y    (2.5) 

 1tan
x

y
   
  

 
 (2.6) 

The first 24 Zernike polynomial terms are shown in Table 1 in the 

Cartesian coordinate system. 

Table 1 shows the increasing order of polynomial coefficients.  

There is an inverse relationship between the coefficients of the Zernike 

polynomials and the amount of influence that they have on the wavefront.  The 

lower the order of polynomial coefficients, the more influence the particular 

coefficient has over the wavefront, similarly to eigenvalues or singular values.  

This will be important later when creating a modal control model. 
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Table 1.   Zernike Polynomials (after [6]) 

#  n  m  Polynomial  Term 

0  0  0  1  Piston 

1  1  1  x  Tilt x 

2  1  1  y  Tilt y 

3  1  0  −1 + 2 (x2 + y2)  Power 

4  2  2  x2 − y2  Astigmatism x 

5  2  2  2 x y  Astigmatism y 

6  2  1  −2 x + 3 x (x2 + y2)  Coma x 

7  2  1  −2 y + 3 y (x2 + y2)  Coma y 

8  2  0  1 − 6 (x2 + y2) + 6 (x2 + y2)2 
Primary 
Spherical 

9  3  3  x3 − 3 x y2  Trefoil x 

10  3  3  3 x2 y − y3  Trefoil y 

11  3  2  −3 x2 + 3 y2 + 4 x2 (x2 + y2) − 4 y2 (x2 + y2) 
Secondary  Astig
x 

12  3  2  −6 x y + 8 x y (x2 + y2) 
Secondary  Astig
y 

13  3  1  3 x − 12 x (x2 + y2) + 10 x (x2 + y2)2 
Secondary  Coma
x 

14  3  1  3 y − 12 y (x2 + y2) + 10 y (x2 + y2)2 
Secondary  Coma
y 

15  3  0  −1 + 12 (x2 + y2) − 30 (x2 + y2)2 + 20 (x2 + y2)3 
Secondary 
Spherical 

16  4  4  x4 − 6 x2 y2 + y4  Tetrafoil x 

17  4  4  4 x3 y − 4 x y3  Tetrafoil y 

18  4  3  −4 x3 + 12 x y2 + 5 x3 (x2 + y2) − 15 x y2 (x2 + y2) 
Secondary 
Trefoil x 

19  4  3  −12 x2 y + 4 y3 + 15 x2 y (x2 + y2) − 5 y3 (x2 + y2) 
Secondary 
Trefoil y 

20  4  2  6 x2 − 6 y2 − 20 x2 (x2 + y2) + 20 y2 (x2 + y2) + 15 x2 (x2 + y2)2 − 15 y2 (x2 + y2)2  Tertiary Astig x 

21  4  2  12 x y − 40 x y (x2 + y2) + 30 x y (x2 + y2)2  Tertiary Astig y 

22  4  1  −4 x + 30 x (x2 + y2) − 60 x (x2 + y2)2 + 35 x (x2 + y2)3  Tertiary Coma x 

23  4  1  −4 y + 30 y (x2 + y2) − 60 y (x2 + y2)2 + 35 y (x2 + y2)3  Tertiary Coma y 

24  4  0  1 − 20 (x2 + y2) + 90 (x2 + y2)2 − 140 (x2 + y2)3 + 70 (x2 + y2)4 
Tertiary 
Spherical 
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2. Optical Corrective Systems 

To correct the aberration errors on the wavefront, yielding a better image, 

adaptive optics was developed.  Although adaptive optics components vary from 

system to system, one of the most common adaptive optics systems is shown in 

Figure 3.  

 

Figure 3.   Common Adaptive Optics System (from [5]) 

Although adaptive optics has been historically used on terrestrial 

telescopes to correct for aberrations from the earth’s atmosphere when looking at 

stars, it can also be applied to space telescopes to correct for the additional 

sources of error as discussed.  A more detailed schematic of the adaptive optics 

system is shown in Figure 4.  This figure shows the control computer in more 

detail and both the reference beam path and the object path. 
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Figure 4.   Adaptive Optics Schematic (from [7]) 

The basis for many adaptive optics systems lies on the principle of phase 

conjugation [5].  Electromagnetic waves are made up of both a phase and an 

amplitude and a wavefront can be described by Equation (2.7), where A is the 

amplitude of the wave and   is the phase of the wave. 

 i t iE A e A e      (2.7) 

To counter the effects of distortion of the wavefront, adaptive optics 

reverses the phase of the wave.  This is called phase conjugation because in 

effect, the complex conjugate of the electromagnetic wave is achieved by 

reversing the sign before the imaginary component of the exponent [5].   

3. Wavefront Sensors 

In order to be able to remove these phase distortions, the system must be 

able to measure the phase of the wavefront.  This is done in the “sensor” block of 

Figure 4 and is called the “wavefront” sensor.  There are several types of 

wavefront sensors currently used, including shearing interferometers and Shack-

Hartmann sensors.  The Shack-Hartmann sensor will be the focus in this thesis 
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because of the specifics of the system analyzed, which will be discussed in 

Chapter III.  A schematic of the Shack-Hartmann sensor is shown in Figure 5. 

 

Figure 5.   Shack-Hartman Lenslet Array (after [7]) 

The Shack-Hartmann sensor is composed of a series of lenslets in a flat 

array.  When light passes through a lens it is focused on the CMOS sensor 

behind the lenslet array.  The measurement of the displacement, x , is used to 

calculate the angle that the light hits the lens, known as the slope of the 

wavefront, which is used to calculate the phase of the light.  These lenslets are 

arranged in an array to give a two-dimensional picture of the planar wave as it 

hits the array of lenslets and projects onto the CMOS sensor behind the lenslet 

grid.  This array of phases is used to correct the wavefront using the different 

options available for wavefront correction, which is most often the deformable 

mirror in adaptive optics. 
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4. Controllable Mirrors 

a. Tip/Tilt Mirror 

The purpose of the tip/tilt mirror is to remove the wavefront tilt.  The 

tilt is the average slope of the wave, and the tip/tilt mirrors serve as pointing for 

the main “beam” of light.  The tip/tilt mirror is for coarse control of the light onto 

the wavefront sensor, e.g., the Shack-Hartmann sensor.  The finely controlled, 

localized slopes are removed using a deformable mirror. 

b. Deformable Mirrors 

The deformable mirrors act as a finely controlled sheet of actuators 

and a mirrored surface or surfaces.  They come in several different types, such 

as multiple segmented mirrors that have individual up/down or tip/tilt actuators or 

a continuous facesheet that have multiple actuators warping and bending the 

mirror surface to remove the wavefront errors as shown in Figure 6.   

 

Figure 6.   Deformable Mirror (from [8]) 

The advantage of the deformable mirror is that they have a 100% 

fill factor to remove the aberrations in the wavefront.  A disadvantage of these 

mirrors is the coupling of the modes.  When one of the actuators bends the 

facesheet, it influences the nearby surface of the mirror to move.  This can be a 

problem if the corrected value of the nearby surface should be different than the 

influenced value and another actuator must be induced to counter the effect, 

which causes influences to the area surrounding the second actuator.  This effect 
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ripples throughout the mirror, and eventually can cause problems with control of 

the mirror caused by induced modes.  This coupling will also reduce the 

bandwidth of the controller. 

B. ADAPTIVE OPTICS CONTROLS 

As previously stated, an adaptive optics system relies on three primary 

things:  wavefront sensors, controllable mirrors, and a computer controller.  The 

computer controller will utilize the readings from the wavefront sensors to apply a 

control law and create command signals to the actuators.  These command 

signals are most often voltages to drive the actuators to a specific position.   

There are typically multiple loops in the control law for the adaptive optics 

system:  coarse control, fine control, and facesheet control, as shown in Figure 7, 

where the actuators, sensors and physical components of the adaptive optics 

system are part of the Plant, G(s).   

 

Figure 7.   General Segmented Space Telescope Control 

Each of these control loops uses one or a combination of all of the 

sensors to control the different actuators.  Coarse control uses gap sensors to 

conduct the initial alignment of the mirrors.  This is the first step in calibrating an 

electro-optical system.  Fine control primarily uses the tip/tilt sensors and controls 
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tip/tilt mirrors to reduce the first order aberrations.  Facesheet control primarily 

uses the Shack-Hartmann sensors and controls the facesheet actuators shown in 

Figure 6.  Facesheet control removes the higher order wavefront aberrations.  

These three control types are not always distinct in each system, depending on 

the application of adaptive optics.  For example, the James Webb Space 

Telescope conducts a calibration phase and operates in fine control mode, but 

does not use a deformable mirror for wavefront correction; it uses a tip/tilt control 

mirror.   

The first step to generating a control law is to use a method for recreating 

the phase of the wavefront.  This is done using either a modal or zonal method, 

as described in [9].  The modal method uses a modal representation, most often 

Zernike Polynomials, for wavefront reconstruction.  The zonal method uses the 

physical coordinates for the estimation.  Once the phase of the wavefront is 

calculated, it can be removed by phase conjugation or other methods.  Phase 

conjugation is the process by which the phase from Equation (2.7) is reversed, or 

negated.  Practically, the phase can be thought of as the distance from the axis 

average of the wavefront.  The first-order aberration, removed by the tip/tilt mirror 

in the fine control phase, is the average slope of the wavefront.  The higher order 

aberrations are the “local” slopes of the wavefront, as measured by the Shack-

Hartmann sensor at each geographic lens position.  The phases at these local 

positions are the distances from the average position of the entire wavefront.  

The phases are “conjugated” by adjusting the deformable mirror to exactly 

negative of the measured phase, allowing for a phase shift, in effect “flattening” 

the wave.  The process is shown in Figure 8. 
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Figure 8.   Wavefront Control 
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III. SEGMENTED MIRROR TELESCOPE 

A. SYSTEM DESCRIPTION 

The analytical model used in this thesis is a segmented mirror telescope 

consisting of six hexagonal segments arranged in the configuration shown in 

Figure 9.  This system was developed and built for testing purposes, but never 

intended for flight.  No work for this thesis was done on the actual hardware, only 

the state-space representation of the mathematical model was provided in the 

Matlab format.   

The center hexagon is left open for light to reflect off a secondary mirror to 

be collected by an optical receiver in the center in the same way that the JWST 

operates. 

 

Figure 9.   Segmented Mirror Lenslet Orientation (from [7]) 

The lenslets shown are the corresponding lenslets from the Shack-

Hartmann Sensor.  As shown in Figure 9, there are 61 lenslets in each of the six 
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Shack-Hartmann sensors, for a total of 366 lenslets.  Each hexagonal mirror has 

156 facesheet actuators, giving a total of 936 actuators.  The primary mirrors are 

deformable by use of these actuators, and there is not another deformable mirror 

in the optical path.  In addition to the Shack-Hartmann sensor, there are phase 

diversity, gap, and jitter sensors.  These sensors are used in the fine control 

phase of the segmented mirror, but are not used for facesheet control.  The fine 

control, bipod, and Fast Steering Mirror (FSM) actuators are used for fine control. 

B. SYSTEM IDENTIFICATION 

The plant model used for this thesis is a state-space model, which 

characterizes the system dynamics and physical relationships mathematically.  

The state space is in the form in Equation (3.1). 

 
x Ax Bu

y Cx Du

 
 


 (3.1) 

The x


 term is a vector of the states and u


 is a vector of the control inputs 

to the system.  The A matrix represents the linear combination of states 

physically present in the entire Segmented Space Telescope system.  There are 

332 states in this system, therefore the size of the A matrix is [332 x 332] 

elements.  The B matrix represents the actuator inputs to the system.  Since the 

Segmented Space Telescope has a total of 997 actuator inputs, and the inputs 

are coupled, the size B matrix is [332 x 997] elements.  The output of the system 

is dictated by the bottom term of Equation (3.1).  The C matrix represents the 

sensor outputs of the system.  There are 936 outputs of the system, therefore 

this is a [936 x 332] matrix.  In addition to the sensor outputs, this state-space 

model also outputs the position states of the model.  These states are not 

physically measured in the real system, so it is not reasonable to use them for 

control of the system.  The D matrix relates the inputs from the u


 vector to the 

outputs, similar to a feed-forward system, and is a [936 x 997] matrix. 

Table 2 shows each input and output of the Matlab state-space model 

used for this thesis. 
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Table 2.   Segmented Mirror Telescope Model Inputs and Outputs 

INPUTS 

  Channels   

Name  Total  From  To  Per Segment 

Face Sheet Actuators  936  1  936  156 

Fine Control Actuators  18  937  954  3 

Bipod Actuators  36  955  990  6 

FSM Torque Actuators  2  991  992   

Base Shake Actuators  3  993  995   

FSM Angle Actuators  2  996  997   

 

OUTPUTS 

  Channels   

Name  Total  From  To  Per Segment 

Shack‐Hartmann Sensor  732  1  732  122 

Gap Sensors  18  733  750  3 

Jitter Sensor  2  751  752   

Phase Diversity  18  753  770  3 

Position States Output  166  771  936   

 

The Shack-Hartmann sensor outputs were given as groups of x-slopes 

and y-slopes for each segment.  The first 61 channels x 6 segments are x-slopes 

and the next 61 channels x 6 segments are y-slopes of the Shack-Hartmann 

Sensor. These slopes could be used to reconstruct the phases for purposes of 

wavefront visualization. 

1. System Characteristics 

The most important system characteristic that is necessary to be known is 

the natural frequency.  The natural frequency of this system was obtained by 

finding the eigenvalues of the A matrix of the state-space model.  The imaginary 

terms of the eigenvalues are the natural frequencies in radians per second.  The 

lowest natural frequency for the Segmented Mirror Telescope system is at 29 Hz,  
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but the frequencies ranged up to 767 Hz.  These frequencies include all 

supporting structural frequencies, as well as the frequencies in the flexible 

mirrors. 

 C. STATE-SPACE MODEL FOR WAVEFRONT CONTROL REDUCTION 

For purposes of this thesis, it is assumed that the coarse and fine 

controllers are operating to remove the pointing and first-order aberrations to the 

wavefront.  Therefore, the only sensors that will be used are the Shack-Hartmann 

sensors and the only actuators that will be used are the facesheet actuators.   

State-space models are dependent on the relative sizes of the matrices.  

The basic pictorial view of the matrices are formatted in a block; the full model of 

the space segmented telescope is shown in Equation (3.2). 

 332 332 332 997

936 997936 332

x x
full

xx

A B
G

C D

 
 
  

 (3.2) 

To use the facesheet actuators for modeling and to build the control law, 

the B matrix was reduced to [332 x 936] and to use only the Shack-Hartmann 

sensors, the C matrix was reduced to [732 x 332].  In order to maintain the 

necessary size of the state space, the D matrix was reduced to [732 x 936].  

Although only the facesheet actuators and the Shack-Hartmann sensors were 

used, it is important to note that the system dynamics as modeled in the A matrix 

remained unchanged. 
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IV. SEGMENTED MIRROR TELESCOPE CONTROL METHODS 

A. CLASSICAL CONTROL 

1. Introduction 

The purpose of a control system is to remove error from a system and 

achieve specific performance objectives of a system.  The control system, or 

compensator, is created in software to use the sensors readings to create a 

control signal and create stability and improve the transient response of the 

system or steady state response of the system.  To design the control system, 

the plant first must be mathematically modeled in a computer program, such as 

Matlab and Simulink.  The general form of a unity feedback system including the 

plant and controller are shown in Figure 10. 

 

Figure 10.   Control System Model 

In a simple spring-mass-damper system, from Newton’s second law, 

Equation (4.1) is the standard equation of motion, where U is the external force 

on the system. 

 mx cx kx U     (4.1) 

In this case, the k m  term represents the square of natural frequency, and 

c m  represents the damping. Using this formula and Laplace transforms, the 

proportional-plus-integral-plus-derivative (PID) controller in Equation (4.2) can be 

created.  Practically, Ki eliminates steady state error, Kd adjusts system damping, 

and Kp adjusts the system stiffness. 

 ( ) i
p d

K
H s K K s

s
    (4.2) 
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The PID controller for the Single-Input, Single-Output (SISO) case is 

modeled according to Figure 11. 

 

Figure 11.   PID Controller 

By using methods of classical control, such as root locus and bode plots to 

tune the gains, Ki, Kp, and Kd, the desired output of the plant, y(s), can be 

controlled to meet desired performance conditions.  The typical performance 

conditions are desired settling time, steady state error, and control bandwidth.  

Control bandwidth is the frequency range at which the system output reasonably 

follows its desired reference.  Bandwidth is calculated as the frequency at which 

the magnitude response curve, or Bode plot, of the closed loop system crosses   

-3 dB in magnitude. 

The compensator used in this thesis is a purely integral control, meaning 

that only Ki and the integrator are used for control and the other loops are not 

used.   

a. Frequency Response 

Frequency response tools are very useful when characterizing 

system dynamics and designing a control system.  Among the most useful 

frequency response techniques are bode plots and root locus plots for SISO 

systems.   

The root locus is used to determine stability of the system.  It is a 

plot of the poles of the system on vertical imaginary axis and horizontal real axis.  
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In order for the system to be stable, the closed loop system must not have any 

poles in the Right-Half Plane (RHP) on the root locus plot.   

The plot of the magnitude and phase versus frequency is called the 

Bode plot.  This plot is useful for determining where the instability in the system 

identified by the root locus exists.  If the magnitude of the bode plot is greater 

than 0 dB at frequencies where the phase plot passes below -180 deg, the 

system is instable.  This information is useful when determining what frequencies 

to design the filters to remove.  

2. Multi-Input, Multi-Output (MIMO) 

The Segmented Mirror Telescope model used in this thesis is a multi-

input, multi-output (MIMO) system.  At the most basic level, a MIMO system can 

be thought of as a series of mass-spring-damper systems.  However, a MIMO 

system behaves differently than a SISO system due to coupling of the inputs.  

Each of the segmented mirrors has 156 facesheet actuators and 61 Shack-

Hartmann lenslets, so each of the actuators has an effect on the wavefront 

sensed by more than one lenslet.  The system is modeled as a state-space 

representation and, although the general theory of integral control can be used 

for control of the mirrors, the implementation of the control system is slightly 

different. 

As discussed in Chapter II, in order to control the wavefront error, the 

traditional way of controlling the wavefront error included recreating the 

wavefront, then applying the conjugate phase to remove the errors.  In this thesis 

the wavefront is not recreated for conjugate phase control.  Instead, the controller 

seeks to create a flat wavefront by controlling the slopes of the wave to zero.  

The slopes of the wave are immediately known by the output of the Shack-

Hartmann sensor, so the use of Zernike polynomials or other methods to 

recreate the wavefront are unnecessary for control of the mirrors.  The Zernike 

coefficients themselves can be used for control, which will be discussed later. 
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Although the slopes of the wavefront are known, the error is not directly 

related to the inputs, meaning that since the inputs and outputs are coupled, it 

becomes necessary for integral control to have a relationship of inputs to outputs 

as part of the control path.  This can be done with a steady-state gain (or DC 

gain) matrix in the control path that relates the inputs of the system to the outputs 

of the system.  The Segmented Mirror Telescope model is represented in state-

space format, G(s), as discussed.  The minimal state-space realization of the 

plant can be represented using Equation (4.3). 

 1( ) ( )G s C sI A B D    (4.3) 

If a system has a fast response, the dynamics of the minimum realization 

can be ignored, represented by the sI  term.  The resulting G matrix is referred to 

as the poke matrix and is shown in Equation (4.4). 

 1( )pokeG C A B D    (4.4) 

Practically, the transfer matrix shown above relates the inputs of the 

system to the outputs of the system (ignoring dynamics).  Therefore, in order to 

relate the output sensors to the actuator inputs for control, the inverse of Gpoke is 

created as a matrix gain.  In the case of the Segmented Mirror Telescope there 

are 936 inputs and 720 outputs; since this is not a square matrix, the 

pseudoinverse of G must be taken rather than the inverse. 

Since the sensors have been translated to associated actuator inputs 

using the inverse of the poke matrix, the control on the actuators can be treated 

as a linear system.  Using the same principles as the SISO integral control 

system, the gain, integrator, and a filter were added for control.  The model for 

classical control used in this thesis is shown in Figure 12. 
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Figure 12.   Simulink Classical Control Model 

a. Model Reduction 

The size of the plant and the associated control system presented 

problems with computer memory when designing and analyzing the control 

system for classical control.  To create a plant that reasonably mimics the full 

sized plant for purposes of control system design, first it is necessary to use 

proven reduction techniques.   

(1) Input/Output Reduction. Input/Output Reduction 

reduces the number of inputs and outputs to the system, but does not change the 

internal dynamics of the full system.  There are two different bases for model 

reduction used in this thesis:  Singular Value Decomposition and Zernike 

Polynomial Coefficient.  Singular value decomposition is built on the premise that 

a matrix can be “decomposed” into three separate weighted matrices, as shown 

in Equation (4.5). 

 ( ) TSVD G U V   (4.5) 

The   matrix contains the most significant singular values, 

and the U and V matrices give the linear combination to transform the singular 

values back into the full G matrix.  A plot of the singular values of the Poke matrix 

in Figure 13 shows that the first 100 singular values in this system are the most 

significant, therefore the system can be reduced to 100 inputs and outputs. 
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Figure 13.   Singular Values of Poke Matrix 

The reduction is accomplished by truncating the U and V 

matrices to the first 100 columns of the U matrix and first 100 rows of the VT 

matrix.  The reduced input/output state-space model is created using Equation 

(4.6). 

 ( ) ( )T
new reduced full reducedG s U G s V  (4.6) 

An examination of the reduced G(s) reveals that it has 100 

inputs, 100 outputs, and 332 states. 

(2) System State Reduction. The system’s states can be 

reduced in a similar way to the Input/Output reduction by using Hankel Singular 

Values.  Hankel Singular Values are similar to the SVD-based input/output 

reduction, but are based on the observability and controllability grammians of the 

plant model.  Using the methods outlined in [7], the Hankel Singular values of the 

Segmented Mirror Telescope are plotted in Figure 14. 
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Figure 14.   SMT Hankel Singular Values 

This figure shows that although there are 332 states present 

in the system, it can be reduced to about 240 without losing any dynamics in the 

system since the Hankel Singular Values have zero influence on the system 

above 240.  The reduction was done in Matlab using reduction algorithms and 

specifying to use Hankel Singlular Values.  These reduced models are used to 

calculate the controller for H  control synthesis. 

b. Gain and Filter Tuning Using SVD Reduction 

As described above, all tuning and testing was done on a plant 

reduced by the SVD method.  To simplify this model, the iK  gain across all of 

the channels was assumed the same.  The goal while tuning the gain was to 

create a stable system that meets the required bandwidth of 10 Hz.  Using 

Matlab’s robust control toolbox, a gain of less than 11 was required to produce a 

stable system, which is confirmed with the plot of the closed loop poles in Figure 

15. 
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Figure 15.   Closed Loop Poles of Integral Control System 

Plotting the root locus for a MIMO system to check for stability is 

impractical, so a plot of the closed loop poles for the system is used instead.  The 

existence of poles in the Right-Half Plane (RHP) of the closed loop pole plot 

would indicate that the system is unstable.  Since all of the poles were in the Left-

Half Plane (LHP), this system is stable. 

Although the system is stable, the bandwidth at the max gain 

condition was only 1.8 Hz, therefore this does not meet the bandwidth 

requirements.  To determine the frequencies that make the system unstable at 

higher bandwidths, the gain was increased to 64 to meet the 10 Hz bandwidth 

requirement.  Although bandwidth is meaningless for an unstable system, by 

looking at the open loop bode plot in Figure 16, the regions of instability can be 

determined for this theoretical bandwidth.  The bode plot of the unstable open 

loop system in Figure 16 confirm that there are several higher natural 

frequencies that are excited by the controller, yielding an unstable system with 

peaks above 0 dB where the phase crosses  180 degrees, which is an indicator 

of the region of instability frequencies. 
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Figure 16.   Open Loop Bode Plot of Unstable System 

To control these natural frequencies, a filter must added to the 

control path to reduce the gain at higher frequencies, but allow the lower 

frequencies to have a higher gain for more control.  Typically, the higher 

frequencies will naturally dampen out without control, as long as the lower 

frequencies are controlled adequately.  All of the gains were adjusted for stable 

systems at nominal conditions only.  No uncertainty or noise was added to the 

original model; therefore, the following adjustments were at the best case for the 

system. 

(1) Notch filters.  In order to bring the frequencies of 

concern below the 0 dB level and to improve performance, a notch filter is added 

at 239 Hz (1500 rad/sec) and a second notch filter is added at 29 Hz (183 

rad/sec).  These filters are second order transfer functions shown in Equations 

(4.7).   

 
2 2

2 2

2 1
( )

2 1
z z z

p p p

s s
F s

s s

  
  

 


 
 (4.7) 
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For a notch filter, z p   and the damping terms are chosen 

to determine the width and max gain of the notch according to Equation (4.8).  

 max 1020 log ( )z pK    (4.8) 

The bode plot of the full fourth order, two-notch filter used is 

shown in Figure 17. 

 

Figure 17.   Notch Filters at 239 Hz and 29 Hz 

This filter removed the higher frequencies, making the 

system stable, allowing the gain to be increased to 438 and the bandwidth to 

increase to 53 Hz, well within the requirement of 10 Hz.  The plot of the closed 

loop poles in Figure 18 validates the system stability; there are no poles in the 

RHP of the closed loop pole plot in Figure 18, therefore this system is stable.  

The poles near the axis are stable, but proximity to the axis results in poor 

system performance. 
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Figure 18.   Closed Loop Poles, System with Notch Filter 

To compare all of the classical control systems using the 

same metrics, each system was built in Matlab using the Control System 

Toolbox, then a step input was applied and the result read at the output.  

Although the system is stable and the bandwidth is within the requirements, this 

system step response to a unity reference input shown in Figure 19 has a long 

settling time. 
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Figure 19.   Notch Step Response at Maximum Stable Gain, Notch Filter 

For a fast system, such as the Segmented Mirror Telescope, 

it is desired to have a fast settling time.  By tuning the gain to get the best step 

response, better performance can be achieved and still meet the bandwidth 

requirement.  The best gain to achieve the minimum bandwidth and best step 

response is 45.  The step response is shown in Figure 20. 



 

 35

 

Figure 20.   Step Response at Minimum Gain, Notch Filter 

The two cases presented show the bounding cases for the 

gain on the system, which define the upper and lower limits of performance.  The 

trade-off for better bandwidth is decreased performance in the step response. 

(2) Elliptic Filter.  The elliptic filter is another type of filter 

that can be used to decrease the frequencies in the area of interest.  This filter 

has 0 dB gain at lower frequencies, then drops off at a cutoff frequency.  It is 

typically a fourth or sixth order filter.  This thesis explored the performance of two 

different sixth-order elliptic filters, one with a cutoff frequency at 29 Hz, and one 

with a cutoff frequency at 60 Hz.  The 29 Hz cut-off frequency was chosen to try 

to get better performance by cutting off the frequency as close to the 29 Hz lower 

natural frequency as possible while allowing the lower frequencies to pass. 

The bode diagram of the 29 Hz elliptic filter is shown in 

Figure 21. 
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Figure 21.   Elliptic Filter Bode Diagram, 29 Hz cut-off 

The gains were tuned the same as with the notch filter, but 

the bottom of the curve was shown to be best to get a maximum bandwidth of 

25.5 Hz using a gain of 113.  This gain produces a very poor step response, as 

shown in Figure 22. 

 

Figure 22.   Step Response at Max Gain with Elliptic Filter, 29 Hz 
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The gain was again reduced to 33 to achieve the best 

performance at the required bandwidth of 10 Hz using the same elliptic filter.  

The step response is shown in Figure 23. 

 

Figure 23.   Step Response, Elliptic Filter, 29 Hz, Best Performance 

This step response has a very fast settling time, but there is 

still a small initial sinusoidal resonance after it has reached steady state, which 

will eventually dampen out over time. 

The bode plot of the elliptic filter with a 60 Hz cut-off 

frequency is shown in Figure 24.  This frequency was chosen to achieve a higher 

bandwidth while still maintaining performance.   
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Figure 24.   Elliptic Filter Bode Diagram, 60 Hz cut-off frequency 

This system has a fast step response, but has a large 

overshoot and still has resonance, due to the 30 Hz natural frequency that is now 

in the pass band for the filter.  This filter produces a significant increase in 

bandwidth to 44 Hz by using a gain of 133.  The step response in Figure 25 

shows the overshoot and a closer look in Figure 26 reveals the steady state 

resonance.   
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Figure 25.   Step Response, Elliptic Filter, 60 Hz, Max Bandwidth 

 

Figure 26.   Step Response Magnification, Elliptic Filter, 60 Hz 
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The gain was reduced again in the same way it was done for 

the previous cases with the 30 Hz elliptic filter and the notch filter, and a gain of 

45 produces a 10 Hz bandwidth.  The performance was better than the max gain 

case, as shown in Figure 27.   

 

Figure 27.   Step Response, Elliptic Filter, 60 Hz, Best Performance 

Magnification to the same scale as Figure 26 shows that the 

steady state resonance is nearly gone, shown in Figure 28. 
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Figure 28.   Step Response Magnification, Elliptic Filter, 60 Hz, Best Perf. 

The classical control system for the Segmented Mirror 

Telescope requires a filter to meet the performance and bandwidth requirements.  

Three different filters were used in this thesis, a double-notch filter, an elliptic 

filter with 30 Hz cut-off and an elliptic filter with a 60 Hz cut-off frequency.  Each 

of these filters produces adequate control and by adjusting the gain, the trade-off 

between performance and bandwidth can be made: better performance can be 

achieved at lower bandwidth or lower performance at higher bandwidth. 

c. Zernike Polynomial Integral Control 

Using the principles of Zernike Polynomials as discussed in 

Chapter II, the wavefront is related to the Shack-Hartmann wavefronts by 

Equation (4.9), where y


 is the vector of Shack-Hartmann sensor outputs, a


 is a 

vector of the Zernike polynomial coefficients, and [dZ] is a transfer matrix that 

maps the physical location of the Shack-Hartmann sensors to the Zernike 

polynomial coefficients. 

  y dZ a   (4.9) 
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Since the use of Zernike coefficients is a set of weighted functions 

relating the Shack-Hartmann outputs to the most influential sensor combinations, 

this can be used for control of the modes of the system instead of directly 

controlling the desired Shack-Hartman outputs.  This thesis used 21 Zernike 

coefficients for control.  This system is shown in Figure 29.   

 

Figure 29.   Zernike Control Model 

The output of the plant is converted to the Zernike coefficients in 

the feedback loop by using the pseudoinverse of [dZ], then gained and integrated 

before being converted back to required sensor readings and finally using the 

inverse of the poke matrix transformed to actuator commands. 

Each of the filters used in the SVD reduced model can also be used 

in the Zernike reduced model at the same frequencies, since the desire is to 

reduce natural frequencies in the physical system.  Gains used in Zernike 

coefficient control cannot be compared directly to the gains used with pure 

classical control, since the Zernike control gain is on the Zernike coefficients and 

not on the error function, but the process for tuning gains and filters is the same 

as in pure integral control. 

(1) No Filters. With no filters, the system is stable with a 

gain of 15 and a bandwidth of 2.4 Hz.  The plot of the closed loop poles confirms 

the stability at this gain in Figure 30. 
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Figure 30.   Zernike Control Closed Loop Poles, No Filters 

As with the classic integral control, this does not meet the 

bandwidth requirements, but it is an improvement in bandwidth over the classic 

integral control alone.  To achieve the required bandwidth of 10 Hz filters are 

needed to reduce the higher frequency resonances to allow the gain to be 

increased.  The same filters that are used with the classic integral control are 

also used with the Zernike polynomial control. 

(2) Notch Filters. The notch filter used for Zernike Integral 

control is shown in Figure 17.  The max Zernike gain to achieve a stable system 

was 594, giving a bandwidth of 59 Hz, which is an 11% increase in bandwidth 

over the classic integral control method.  The step response at this bandwidth is 

equivalent to the classic control method, as shown in Figure 31. 
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Figure 31.   Step Response, Zernike Control, Notch Filter, Max Bandwidth 

Simulations of the bounding case at minimum bandwidth, 

best performance, yield the results shown in Figure 32.  The Zernike gain at this 

bandwidth is 46. 

 

Figure 32.   Zernike Control Step Response, Best Performance, Notch Filter 
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The performance at the lowest bandwidth is about the same, 

but the integrator is only controlling 21 channels, instead of 100 channels from 

the SVD reduced model. 

(3) Elliptic Filter, 29 Hz Cut-off Frequency.  The elliptic 

filter used for this analysis has is the same as used with the SVD-reduced classic 

control with the bode diagram shown in Figure 21.  This elliptic filter produces the 

same results at the same bandwidth, 25.5 Hz, with the same gain of 113 as the 

29 Hz Elliptic filter used in the classic control with SVD-reduced system.  The plot 

of the step response for this system at the maximum bandwidth is shown in 

Figure 33. 

 

Figure 33.   Step Response, Zernike Control, Elliptic Filter, 29 Hz, Max BW 

Using the same gain tuning technique as before, the 29 Hz 

elliptic filter gain was tuned to 33 to achieve minimum bandwidth at 10 Hz.  The 

results of the step response are shown in Figure 34. 
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Figure 34.   Step Response, Zernike Control, Elliptic Filter, 29 Hz, 10 Hz BW 

(4) Elliptic Filter, 60 Hz Cut-off Frequency. The elliptic 

filter with a 60 Hz cut-off frequency used for Zernike control is also identical to 

the classical control filter with the same bode plot as Figure 24.  The gains were 

tuned for a stable system with the best bandwidth achievable at 49 Hz using a 

gain of 201.  The step response is shown in Figure 35. 
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Figure 35.   Step Response, Zernike Control, Elliptic Filter, 60 Hz, Max BW 

The minimum required bandwidth of 10 Hz gain was 44, and 

the step response is shown in Figure 36. 
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Figure 36.   Step Response, Zernike Control, Elliptic Filter, 60 Hz, 10 Hz BW 

B. ROBUST CONTROL 

1. Introduction 

The traditional classical control of adaptive optics relies on controlling the 

actuators by converting the sensor outputs to actuator inputs and ignoring the 

dynamics of the system.  With the increase in complexity of the adaptive optics 

system by using large moving mirrors with more actuators, in order to achieve a 

high level of control, the dynamics of the system must be taken into account.  In 

addition to the internal dynamics of the system, presence of noise and other 

factors cause problems with system stability.  Classical control optimizes the 

performance of the system under ideal conditions and does not directly take into 

account the stability in the presence of uncertainty.  Robust control optimizes the 

worst-case, or robust, performance instead of the best-case performance [10].  

This is done by minimizing system norms. 
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2. Norms 

A norm is a way of quantifying the size of a system mathematically.  

Although one could look at each of the individual elements of a vector, this would 

not give a good idea of the magnitude of the size of the system.  The general 

formula for the vector p-norm is shown in Equation (4.10) [11]. 
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The 1-norm is the sum of all elements of x, the 2-norm is average size of a 

vector, and the infinity-norm is the maximum value of the vector, as shown in 

Equation (4.11). 
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The concept of vector norms can also be applied to matrices as an 

induced matrix norm, which is said to be induced by a vector norm [11].  The 

general form of the induced matrix p-norm is shown in Equation (4.12). 
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3. H  and 2H  Norms 

H  and 2H  norms refer to the  - and 2- induced system norms in the 

Hilbert space.  The Hilbert space is a space with a complete inner product with 

the norm induced by its inner product [11].  The utility of this space is that it 

extends the concept of the Euclidian plane to any number of dimensions, 

including all vector calculations mathematics.  The Hardy spaces are a subset of 

the Hilbert spaces that include the H  and 2H  induced norms.  These norms are 

critical in developing robust control systems. 

The 2H  norm of the G(s) system is defined in Equation (4.13). 
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As previously discussed, the i  are the singular values of the system, 

which can be shown to be the squares of the natural frequencies.  In a complex 

system, the   values represent both direction and frequency, giving a magnitude 

to each of the singular values.  Therefore, the 2H  norm represents the average 

magnitude of the average frequency of the system.  By minimizing this norm, all 

singular values are pushed down over the average peak values.  However, this is 

not an induced norm and does not follow the multiplicative property of norms in 

Equation (4.14). 

 AB A B  (4.14) 

The H  norm in Equation (4.15) is an induced norm and follows the 

multiplicative property, therefore is more useful for analyzing the interconnections 

of systems.  The   is the largest singular value of the system. 

 ( ) max ( ( ))G s G j


 

  (4.15) 

By minimizing the H  norm, the highest peak of the singular values is 

pushed down. 

4. Loopshaping 

Loopshaping is the process of determining the shape of the feedback 

loop.  The “loopshape” specifically refers to the singular value plot of the open 

loop controller and plant model, as defined in Equation (4.16). 

 L GK  (4.16) 

Similar to designing a filter, it involves deciding what frequencies are in the 

performance range, and therefore should be increased in gain, and what 

frequencies are in the “robust” range, and should have a decreased gain.  These 

frequencies and the foundation for building the robust controller are based on 

sensitivity functions. 
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a. Sensitivity Functions 

The system used for reference when looking at the sensitivity 

functions and loopshaping is shown in Figure 37 where di is input disturbance 

and d is output disturbance and n is noise in the feedback loop. 

 

Figure 37.   Control system with disturbances (after [11]) 

The output sensitivity function is defined by Equation (4.17). 

 1( )S I GK    (4.17) 

This function quantifies how sensitive the control system is to 

disturbances at the output.  There is also an input sensitivity matrix that relates 

the sensitivity of the input to disturbances, but the concern of this thesis is 

rejection of disturbances on the mirrors and other spacecraft noise, therefore the 

concentration is on the output sensitivities.   

The complementary sensitivity function is defined in Equation 

(4.18). 

 1( )T GK I GK    (4.18) 

The relationship between the sensitivity function and the 

complementary sensitivity function is shown in Equation (4.19). 

 T S I   (4.19) 

From [11], if the closed-loop system is internally stable, it satisfies 

Equation (4.20). 

 ( ) iy T ref n SGd Sd     (4.20) 
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The effects on the output by disturbance can be reduced by 

minimizing the output sensitivity function (S), but that of the noise (n) can be 

reduced by minimizing the complementary sensitivity function (T).  In practice, 

this means that the maximum singular values of the sensitivity function over a 

range frequencies must be reduced, in order to reduce the effects of noise at 

those frequencies on the system.  This is done by selecting weighting functions 

in order to specify the shape of the desired loop. 

b. Weighting Functions 

Weighting functions are chosen to increase the singular values of 

the system in the low frequencies and decrease the singular values in the higher 

frequencies.  There are two weighing functions that are used for the H  

loopshaping for this thesis: W1 and W3.  The W1 weighting function is a weight 

added to the error and W3 is a weight added to the measured output of the 

controller.  The effect of adjusting W1 is to adjust the inverse of the sensitivity 

function and increase performance in the lower frequencies, and having no affect 

at higher frequencies.  The effect of adjusting W3 is that it conditions the 

complementary transfer function, which has no effect on lower frequencies, but 

decreases the gain at higher frequencies.  The overall effect gives a sigma plot 

as shown in Figure 38. 

 

Figure 38.   Robust Control Loopshaping (from [7]) 
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The choice of weights for this thesis is based on the singular value 

plot of the G(s) plant, shown in Figure 39. 

 

Figure 39.   Plant Singular Values 

The weighting functions designed for H  control of the Segmented 

Mirror Telescope (SMT) are plotted in Figure 40. 



 

 54

 

Figure 40.   Weighing Functions for Robust Control of SMT 

This choice of weighting functions drives down the higher 

frequencies for robustness and increases the gain at the lower frequencies to 

increase performance. The crossover frequency at 0 dB was chosen to be below 

the lowest natural frequency of concern for the system at 30 Hz.   

c. H  Controller Synthesis 

Using the weighting functions previously described, the H  

controller is designed using a mixed sensitivity synthesis in Matlab.  This function 

creates a controller transfer function that minimizes the H  norm of the transfer 

function in Equation (4.21). 
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This is the transfer function between the reference and the 

weighted functions of the augmented plant shown in Figure 41. 
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Figure 41.   H Controller and Augmented Plant 

Using the weighting functions from the previous section and the 

Segmented Mirror Telescope model with the mixsyn command in Matlab, the 

controller is synthesized.  The loopshape, weighting functions, and sensitivity 

functions for the Segmented Mirror Telescope (SMT) are plotted in Figure 42. 
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Figure 42.   Loopshape of H  Control System for SMT 

The performance bound and robustness bound are calculated from 

Equations (4.22) and (4.23) respectively. 

 1 /PerformanceBound W   (4.22) 

 3/RobustnessBound W  (4.23) 

These calculations are based on the small gain theorem, which 

states that Equations (4.24) and (4.25) are true in order for a system to be 

robustly stable, referencing Figure 43 [11]. 

 1/  if and only if ( )M s 
 
   (4.24) 

 1/  if and only if ( )M s 
 
   (4.25) 



 

 57

 

Figure 43.   System With Uncertainty (after [11]) 

In Figure 43 and the small gain theorem, the   represents 

uncertainty in the model, M(s).  The   values used for the performance bounds 

are a product of the mixsyn command in Matlab when synthesizing the controller. 

5. Model Uncertainty 

The advantage of the robust controller is increased performance in the low 

frequency region, and robust performance in the higher frequency regions, and 

the ability to perform in the presence of uncertainties in the model on which the 

controller is based.  The model was built based on the best knowledge of the 

actual system possible.  However, as with any mathematical model, there are 

some assumptions that had to be made, therefore, there are uncertainties 

inherent in the model of the system.  These uncertainties can be modeled as 

either additive or multiplicative, meaning they are either mathematically added to 

the model or multiplied into the model.  The utility of creating an uncertain state-

space model is that it can be used to test the ability of a certain controller to 

handle uncertainty, as well as perform robustness analysis on the controller.   

Uncertainty can be either structured or unstructured.  Unstructured 

uncertainty is added to the model as a percentage of error in the modeling.  It is 

not physically possible to model it as a structured transfer function or other 

modeling technique.  Structured uncertainty is error that can be modeled but is 

still present in the model, such as degradation of the parts of a system over time  
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changing the physical characteristics of the system or plant parameter variations 

[7].  The structured uncertainty can be modeled and added to the system. 

The structured uncertainties are the concern of this thesis, therefore, they 

are multiplied into the SMT model in the A matrix, which has the structure shown 

in Equation (4.26). 
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The bottom left block of the A matrix contains primarily the natural 

frequencies and the bottom right term contains the damping of the system.  For 

this thesis, 5% uncertainty was added to the natural frequencies and 10% 

uncertainty added to the damping due to modeling techniques having more error 

in the damping estimation. 

C. COMBINED ROBUST AND CLASSICAL CONTROL 

Robust control is useful for creating a control system that is able to 

perform and predict the performance of the controller in the presence of 

uncertainties in the plant model.  Classical control is simple to understand and 

proven in real systems, but has to have the robustness to uncertainties built in by 

adjusting the gain and phase margins of the system, which reduce the 

performance of the system.  By combining the high performance of the classical 

controller with the robust performance of the robust controller, a hybrid combined 

robust and classical controller can be designed. 

It is important to note that this controller was built for regulation, which 

means that they are designed to drive the system output to zero.  The stand-

alone controllers are capable of controlling the slopes of the Shack-Hartmann 

Sensors to any desired value, which is what was done when tuning gains and 

filters for classical control, but the desired value of the Shack-Hartmann sensor 

will always be zero.  Therefore, these controllers are truly regulators for the 

Segmented Mirror Telescope wavefront. 
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1. Parallel Combined Control 

The classical and H  controllers are combined in parallel as shown in 

Figure 44. The classical control elements are orange and the robust control 

elements are yellow.  The filter used in this controller is the 60 Hz Elliptic filter 

with a gain of 45, which is the best performing filter of the classical control filters 

at the minimum 10 Hz bandwidth.  The H  controller used in this model is 

identical to the robust controller described in Section B of this chapter with a 

bandwidth of 10 Hz.  It was designed as a stand-alone to control the plant without 

the classical controller. 

 

Figure 44.   Parallel Combined Control Model 

This controller is stable, as illustrated by the plot of the closed loop poles 

in Figure 45.  



 

 60

 

Figure 45.   Parallel Combined Closed Loop Poles 

The sigma value plot for the closed loop controller for this system is shown 

in Figure 46 and the bandwidth of the controller is 22.5 Hz. 
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Figure 46.   Parallel Combined Controller Closed Loop Singular Values 

The advantage of this controller is that if something in the robust controller 

failed or something in the classical controller failed, the other controller can stand 

alone to control the system within bandwidth and performance specification. 
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V. RESULTS AND ANALYSIS 

A. PERFORMANCE AND COST MEASURES 

To adequately compare the different control methods, meaningful cost and 

performance measures must be established and applied adequately.  Typical 

control system performance measures include settling time, percent overshoot, 

and steady state error in response to a step input to the closed loop system.  

These factors will be used to compare the performance of the controllers in the 

closed loop system alone (input to output), but with a MIMO system, they must 

be applied slightly differently than with a SISO system. 

Although the previously mentioned factors are good for comparison with a 

SISO system, they are not necessarily always good measures for MIMO systems 

since there are multiple signals that must be taken as a whole for evaluation of 

the performance.  For the Segmented Mirror Telescope, the output of the system 

is the slopes of the wavefront.  These slopes give a measure of error from zero of 

the wavefront when measured with respect to the root mean square (RMS) of the 

output slopes.  This thesis uses the equation (5.1) to calculate the RMS values at 

each time step in order to get a graph of the surface error with respect to time, 

where x is the value of the slope and n is the number of Shack-Hartmann 

outputs. 
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RMS value graphs are easier to compare between the results of the 

control systems simulations without having to rely on judgment of how the actual 

slopes “look” when plotted.  For every simulation, the RMS values are calculated 

based on the full wavefront, not the reduced system values. 

Since the objective of SMT wavefront control is to maintain a flat 

wavefront in the presence of aberrations or external disturbances on the system, 

RMS is a good measure when a step input is imposed on the mirrors (through a 
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step function to the output of the simulation) and the response of the control 

system to the disturbance is observed.  The step disturbance to all of the mirror 

segments consists of starting all Shack-Hartmann slopes at one, then after 0.001 

seconds dropping the aberration to the mirrors to zero.  Since the reference 

signal is zero, all of the slopes should go to zero.  Settling time and steady state 

error can be compared between the different control systems based on the RMS 

of the sensor output using the disturbance as described.  Part of the objective of 

this thesis include robustness of the model, therefore all simulations were done 

using the model containing uncertainties as discussed in Chapter IV. 

The RMS values are a measure of the performance of the controller.  

Another type of cost measure is the size of the controller.  Although these 

simulations were done on a computer with nearly “unlimited” resources, the size 

of the control system is somewhat irrelevant.  However, when the control system 

is instantiated as an actual control system for a satellite, it will become important 

to keep the size down for power, complexity, and memory use purposes.  

Therefore, a way of determining the “size” of the control effort is necessary as a 

cost measure.  A good way of measuring the size of the control system is by 

determining the order of the control system.  The order of a state-space model is 

simply the number of states in the model.  For an integrator in the integral control 

system, the order is the number of channels being integrated within the specific 

control systems.  Therefore, each of the control systems will be evaluated for 

size of the control system by order of the controller.  For example: the Zernike 

elliptic filter is a 6th order filter multiplied by 21 channels used for control plus 21 

channels of integration gives a control size of 147. 

The size and bandwidth of all of the different control techniques used in 

this thesis are shown for comparison in Table 3.  These numbers are based on 

the sizes of the reduced systems specifically chosen for this thesis, but give a 

basis for comparison of the types of control techniques. 
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Table 3.   Cost Comparison of Control Methods 

Controller Size Max 

Bandwidth 

Classic Control, Notch 500 53 Hz 

Classic Control, Elliptic 29 Hz 700 25 Hz 

Classic Control, Elliptic 60 Hz 700 44 Hz 

Zernike Control, Notch 105 59 Hz 

Zernike Control, Elliptic 29 Hz 147 25.5 Hz 

Zernike Control, Elliptic 60 Hz 147 49 Hz 

Robust Control 282 10 Hz* 

Parallel Combined Control 429 22.5 Hz* 

*Note:  The Robust controller and the H  controller for the Parallel 

Combined Controller were designed for 10 Hz.  This bandwidth is not 

necessarily representative of the Max bandwidth of the robust controller.  

The Parallel combined controller could also be designed to 10 Hz 

bandwidth, if desired. 

B. RESULTS 

1. Classical Control 

All of the classical integral controllers are evaluated at the best 

performance condition, which equates to minimum bandwidth at 10 Hz.  The 

following figures show the response in simulation of the sensor outputs starting at 

a value of one and regulated to zero by the control system. 
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a. Notch Filter 

 

Figure 47.   Classical Control, Notch Filter RMS 

b. Elliptic Filter, 29 Hz Cut-off Frequency 

 

Figure 48.   Classical Control, Elliptic Filter, 29 Hz Cut-Off RMS 
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c. Elliptic Filter, 60 Hz Cut-off Frequency 

 

Figure 49.   Classical Control, Elliptic Filter, 60 Hz Cut-Off RMS 

d. Zernike Control, Notch Filter 

 

Figure 50.   Zernike Control, Notch Filter RMS 
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e. Zernike Control, Elliptic Filter, 29 Hz Cut-off Frequency 

 

Figure 51.   Zernike Control, Elliptic Filter, 29 Hz Cut-off RMS 

f. Zernike Control, Elliptic Filter, 60 Hz Cut-off Frequency 

 

Figure 52.   Zernike Control, Elliptic Filter, 60 Hz Cut-off RMS 
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2. Robust Control 

 

Figure 53.   Robust Control RMS 
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3. Combined Robust And Classical Control 

a. Parallel Combined Control 

 

Figure 54.   Parallel Combined Control RMS 

C. RESULTS AND COST ANALYSIS 

To compare the different control methods by performance, RMS plots for 

one classical control, robust control, parallel combined control, and series 

combined control are shown for the first 0.08 seconds in Figure 55.  Although all 

of the classical control methods were similar, the elliptic filter with 60 Hz cut-off 

frequency was chosen since it had the best performance. 
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Figure 55.   RMS Values Comparison 

Looking at Figure 55, the parallel combined controller appears to have the 

fastest settling time, reaching steady state at 0.022 seconds, while the robust 

controller and classical controller reach steady state at 0.05 and 0.058 seconds 

respectively.  Notice, however, that both of the controllers that have a robust 

controller eventually have a steady state error, while the classical controller at 

steady state has a noticeably smaller steady state error.  Eventually, the robust 

controllers would have reached a zero steady state error, but the classical 

controller seems to reach zero steady state faster.  This error might be 

insignificant, since the RMS values at this point are most likely in the system 

noise, which was not included in the analysis. 

From the cost-to-benefit viewpoint, the Zernike controller with the Notch 

filter has the smallest size at 105.  Given that it has comparable control to the 

other filters and the best possible bandwidth, it is the best of the classical control 
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methods from a size-performance comparison, as well as the best controller 

over-all for size-performance.  The robust controller has better performance as 

far as settling time, but the cost at over double the Zernike notch controller at 282 

does not seem to outweigh the increase in settling time.  From a pure 

performance standpoint, the parallel combined controller has the best 

performance with twice the bandwidth of the classical and robust control methods 

alone.  The trade-off is the greater than quadruple size of the combined 

controller, which is a system design consideration for the Segmented Mirror 

Telescope. 

 



 

 73

VI. SUMMARY AND FUTURE WORK 

A. SUMMARY 

The future of space telescopes is the movement from primary optics that 

are large and monolithic to much larger, lightweight, segmented mirrors.  With 

this increase in size and decrease in mass comes an increase in flexible modes 

and natural frequencies that must be controlled.  These mirrors are highly 

susceptible to onboard aberrations from other sources of noise, as well as 

external distortion of the light entering the mirrors.  There are several techniques 

available to the control system engineer to control the mirrors to create a flat 

wavefront.  The control systems presented in this thesis include robust control, 

classical control, and a hybrid combination of robust and classical control. 

The work on this thesis is specific to the Segmented Mirror Telescope, 

which has six hexagonal mirror segments with the facesheet controlled by 936 

actuators and the slopes of the wavefront measured by 732 Shack-Hartman 

sensor outputs.  The size of a controller for the entire system would be extremely 

large; therefore, it is necessary to reduce the system for generation of a control 

law that can be analyzed using Matlab and Simulink.  Model input/output 

reduction was done using two different methods, Singular Value Decomposition 

and Zernike Polynomial Coefficients.  The Singular Value Decomposition 

technique is used to determine the most influential singular values, then truncate 

the influence matrices and apply the resulting transformation matrices to the 

input and the output of the system.  This allowed an H  controller to be 

generated based on a reduced model and allowed for tuning of the filter 

frequencies and gains.  The other method of reducing the inputs and outputs to 

the system utilized Zernike Polynomial Coefficients, relating the different 

wavefront shapes to the slope outputs of the Shack-Hartmann sensor.   

The classical control method consisted of an integrator, a gain, and a filter 

for each of the reduced system channels.  By tuning the gains and filter 
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frequencies, a stable system with both a minimum and maximum bandwidth 

could be achieved for three different cases of filters:  a notch filter, an elliptic filter 

with 29 Hz cut-off frequency, and an elliptic filter with 60 Hz cut-off frequency.  

Each of these filters are applied to the SVD-reduced and Zernike coefficient-

reduced systems.  The SVD-reduced system was reduced to 100 channels and 

the Zernike coefficient-reduced system was reduced to 21 channels.  The results 

were all very close and could not be distinguished between the two reduction 

techniques.  The cost analysis shows that all of the Zernike coefficient-reduced 

controllers were much smaller than the SVD-reduced systems, and given that 

they produce the same results, if a classical controller is desired, the Zernike-

reduced method is superior in cost-to-benefit.  The performance of the classical 

controller was always measured at the minimum bandwidth of 10 Hz.  The trade-

off with the classical controller is that with increased bandwidth comes decreased 

performance. 

The H  controller provided increased performance over the classical 

controller techniques.  Since it is twice the size of the Zernike coefficient-reduced 

controller and half the size of the SVD-reduced controller, it falls in the middle for 

cost-benefit analysis.  The benefit of this controller is hampered by the 

complexity, though.  One of the factors that could not be tested with this thesis is 

the robustness of the controllers.  If there is an area that the robust controller 

would be better, it is in resistance to aberrations on the mirrors. 

The H  controller and the classical controller are combined in parallel for 

this thesis.  For the parallel combined controller, the performance was increased 

over each of the controllers alone and the bandwidth at this performance was 

doubled.  This makes the parallel combined controller superior in performance 

over all other methods.  This performance comes at a cost, though, at quadruple 

the size of the best performing classical controller.   
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B. FUTURE WORK 

One of the areas that future work can be done on this thesis is 

experimenting with the number of Zernike polynomials used for the reduced 

controller.  When looking at the direct readout of the Zernike polynomials from 

the simulations, the first two are by far the most influential and the rest of them 

are very small.  The size of the controller used for Zernike control could be 

decreased significantly by decreasing the number of coefficients used.  The 

benefit of this would have to be weighed with the assumed decrease in 

performance of the resulting reduced system. 

While conducting research for this thesis, the integral controller was also 

connected in series with the robust controller.  The series combined controller 

showed promise in analysis of the reduced system; however, it failed to perform 

in the full system test.  More research must be done on different methods of 

creating the series-connected combined controller.  Future work with the series 

combined controller should also include applying it to a full system rather than a 

reduced one to look at the performance. 

The parallel combined controller had an H  controller that was based on 

10 Hz bandwidth, but when combined with the classical controller, the bandwidth 

doubled.  Future work on the parallel combined controller would be to design the 

two controllers to have a combined bandwidth of 10 Hz.  This would most likely 

result in a better performing system at the specified bandwidth. 

The reduction of these systems for control were based on perceived 

number of necessary singular values or Zernike polynomials, and consequently 

the costs and conclusions were based on these chosen values.  As a follow-on 

different numbers of Zernike polynomials and singular values should be chosen 

and the results compared to give a better comparison of cost-vs-performance. 
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All of these methods should eventually be applied to a real system.  

Although they performed well in simulation using Matlab and Simulink, they might 

behave differently in an actual testbed.  The most obvious testbed is the 

Segmented Mirror Telescope demonstrator. 
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